首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traditionally, Gouy-Chapman theory has been used to calculate the distribution of ions in the diffuse layer next to a charged surface. In recent years, the same theory has found application to adsorption (incorporation, partitioning) of charged peptides, hormones, or drugs at the membrane-water interface. Empirically it has been found that an effective charge, smaller than the physical charge, must often be used in the Gouy-Chapman formula. In addition, the large size of these molecules can be expected to influence their adsorption isotherms. To improve evaluation techniques for such experiments, comparatively simple extensions of the standard Gouy-Chapman formalism have been studied which are based on a discrete charge virial expansion. The model allows for the mobility of charged groups at the interface. It accounts for finite size of the adsorbed macromolecules and for discrete charge effects arising from pair interactions in the interface plane. In contrast to previous discrete charge treatments this model nearly coincides with the Gouy-Chapman formalism in the case where the adsorbing molecules are univalent. Large discrepancies are found for multivalent molecules. This could explain the reduced effective charges needed in the standard Gouy-Chapman treatment. The reduction factor can be predicted. The model is mainly limited to low surface coverage, typical for the adsorption studies in question.  相似文献   

2.
The binding capacity of one-hundred-and-seventy-two 8-mer to 11-mer peptides carrying HLA-A24 anchor residues to HLA-A*2402 molecules was analyzed by using a HLA class I stabilization assay. Most (76.2%) of these peptides bound to HLA-A*2402 molecules. These results confirmed previous findings that Tyr and Phe at P2 as well as Phe, Trp, Ile, and Leu at the C-terminus were main anchor residues for HLA-A*2402. Tyr at P2 was a stronger anchor residue than Phe, while bulky aromatic hydrophobic residues Phe and Trp at the C-terminus are stronger anchors than aliphatic hydrophobic residues Ile and Leu. These results were also supported by an analysis using a panel of mutated 9-mer peptides at P2 and P9. Taken together, these results suggest that HLA-A*2402 molecules have deep B- and F-pockets because they favor peptides carrying bulky aromatic hydrophobic residues at P2 and the C-terminus. The affinity of 8-mer peptides was significantly lower than that of 9-mer to 11-mer peptides, while there was no difference in affinity between 9-mer, 10-mer, and 11-mer peptides. The affinity of peptides carrying bulky aromatic hydrophobic residues at the C-terminus was higher than that of peptides carrying aliphatic hydrophobic residues in each of the 8-mer to 11-mer peptides, though the greatest difference in affinity was observed in 11-mer peptides. The strong interaction of side chains of these anchor residues with the corresponding pockets may permit the effective binding of 10-mer and 11-mer peptides to HLA-A*2402 molecules.  相似文献   

3.
Temperature-dependent magnetic circular dichroism (MCD) spectroscopy has been used for the first time to probe the electronic structure of the Mo active site in sulfite oxidase (SO). The enzyme was poised in the catalytically relevant [Mo(V):Fe(II)] state by anaerobic reduction of the enzyme with the natural substrate, sulfite, in the absence of the physiological oxidant cytochrome c. The [Mo(V):Fe(II)] state is of particular importance, as it is proposed to be a catalytic intermediate in the oxidative half reaction, where SO is reoxidized to the resting [Mo(VI):Fe(III)] state by two sequential one-electron transfers to cytochrome c. The MCD spectrum of the enzyme shows no charge transfer transitions below 17 000 cm−1. This has been interpreted to result from (1) a severe reduction in ene-1,2-dithiolate sulfur in-plane and out-of-plane p orbital mixing, (2) a decrease in the dithiolate sulfur out-of-plane p-Mo dxy orbital overlap, and (3) an orthogonal orientation between the vertical cysteine sulfur p (perpendicular to the Mo–Scys σ-bond) and Mo dxy orbitals. The spectroscopically determined cysteine sulfur p-Mo dxy bonding scheme in the [Mo(V):Fe(II)] state is consistent with the crystallographically determined O–Mo–Scys–C dihedral angle of 90° and precludes a covalent interaction between the vertical cysteine sulfur p orbital and Mo dxy, effectively decoupling the cysteine from an effective through-bond electron transfer pathway. We have tentatively assigned a 22 250 cm−1 positive C-term feature in the MCD as the cysteine S(σ)→Mo dxy charge transfer that becomes allowed by a combination of configuration interaction and low-symmetry; however, the orbital overlap is anticipated to be quite small due to the near orthogonality of these orbitals. Therefore, we propose that the primary role of the coordinated cysteine is to decrease the effective nuclear charge on Mo by charge donation to the metal, statically poising the active site at more negative reduction potentials during electron transfer (ET) regeneration. Finally, the results of this study are consistent with the pyranopterin ene-1,2-dithiolate acting to couple the Mo site into efficient superexchange pathways for ET regeneration following oxygen atom transfer to the substrate.  相似文献   

4.
The interaction between 9-mer peptides and HLA-B51 molecules was investigated by quantitative peptide binding assay using RMA-S cell expressing human β2-microglobulin and HLA-B51 molecules. Of 147 chemically synthesized 9-mer peptides possessing two anchor residues corresponding to the motif of HLA-B*5101 binding self-peptides, 27 paptides bound to HLA-B*5101 molecules. Pro and Ala at position 2 as well as Ile at position 9 were confirmed to be main anchor residues, while Gly at position 2 as well as Val, Leu, and Met at position 9 were weak anchor residues for HLA-B*5101. The A-pocket is suspected to have a critical role in peptide binding to MHC class I molecules because this pocket corresponds to the N-terminus of peptides and has a strong hydrogen bond formed by conserved Tyr residues. Further analysis of peptide binding to HLA-B*5102 and B*5103 molecules showed that a single amino acid substitution of Tyor for His at residue 171(B*5102) and that of Gly for Trp at residue 167 (B*5103) has a minimum effect in HLA-B51-peptide binding. Since previous studies showed that some HLA-B51 alloreactive CTL clones failed to kill the cells expressing HLA-B*5102 or HLA-B*5103, these results imply that the structural change of the A-pocket among HLA-B51 subtypes causes a critical conformational change of the epitope for TCR recognition rather than influences the interaction between peptides and MHC class I molecules.  相似文献   

5.
In light of the performance of the SD2 pigments in DSSC, in order to expand the absorption spectral scope, decrease the energy difference between the highest occupied and the lowest unoccupied molecular orbitals, with SD2 dye molecular electron donor and electron acceptor as the fundamental framework, the indole fragment and thiophene derivative in the prototype dye molecule were replaced by the two π-bridges (labeled PA, PB, respectively) and the four auxiliary electron acceptors (labeled A1, A2, A3, A4, respectively). For the sake of characterizing dye molecules as thoroughly as possible in DSSC, the frontier orbital energy levels, ultraviolet absorption spectra, natural bond orbital analysis, intramolecular charge transfer, charge and hole reorganization energies, parameters influencing the short-circuit current density and the open-circuit photovoltage for these eight individual dye molecules are carried out to try to fully characterize the properties of these dye molecules. According to these computational results of physical quantities and based on the performance of these dye molecules in the above aspects, in this paper, six free molecular models were picked out to combine with titanium dioxide cluster to calculate their geometrical structures, frontier orbital distributions, electron excitation energies, ultraviolet absorption spectra and the composition of the electronic transitions in chloroform solvent with polarizable continuum model. The results of these calculations show that the PA-A2 and PB-A4 dye molecule has better properties in electron transfer and spectral absorption range before and after the adsorption on the titanium dioxide.  相似文献   

6.
We report on molecular dynamics simulations of major histocompatibility complex (MHC)-peptide complexes. Class I MHC molecules play an important role in cellular immunity by presenting antigenic peptides to cytotoxic T cells. Pockets in the peptide-binding groove of MHC molecules accommodate anchor side chains of the bound peptide. Amino acid substitutions in MHC affect differences in the peptide-anchor motifs. HLA-A*0217, human MHC class I molecule, differs from HLA-A*0201 only by three amino acid residues substitutions (positions 95, 97, and 99) at the floor of the peptide-binding groove. A*0217 showed a strong preference for Pro at position 3 (p3) and accepted Phe at p9 of its peptide ligands, but these preferences have not been found in other HLA-A2 ligands. To reveal the structural mechanism of these observations, the A*0217-peptide complexes were simulated by 1000 ps molecular dynamics at 300 K with explicit solvent molecules and compared with those of the A*0201-peptide complexes. We examined the distances between the anchor side chain of the bound peptide and the pocket, and the rms fluctuations of the bound peptides and the HLA molecules. On the basis of the results from our simulations, we propose that Pro at p3 serves as an optimum residue to lock the dominant anchor residue (p9) tightly into pocket F and to hold the peptide in the binding groove, rather than a secondary anchor residue fitting optimally the complementary pocket. We also found that Phe at p9 is used to occupy the space created by replacements of three amino acid residues at the floor within the groove. These findings would provide a novel understanding in the peptide-binding motifs of class I MHC molecules.  相似文献   

7.
Semiempirical MNDO and ZINDO calculations have been performed to investigate the ground states of the neutral molecules and mono- and di-cations of nitrobenzyl-substituted tetramethylfulvalene (TMF), tetramethyl-tetrahydrofulvalene (TMTHF), and tetramethyl-tetrathiafulvalene (TMTTF). In particular, the effects of the linker groups on the direct charge transfer between the fulvalene and the nitrobenzyl groups have been studied. As linkers,-(CH2)2-, -CH2O-,-CH2S-, and -CO- were used. The coefficients of the highest occupied and lowest unoccupied molecular orbitals, the oscillator strengths and excited-state dipole moments for the vertical excitations from the neutral ground states, as obtained with SCI calculations, are reported. Although the dipole moments increase by 40–50 D when exciting from the HOMO localized on the fulvalene fragment to the LUMO localized on the nitrobenzyl part, all four linkers are found to be good insulators and thus, no direct optical donor to acceptor charge transfer can be observed. An alternative route, the photoinduced charge transfer process involving local excitations to form metastable intermediate states, is discussed. Due to the insulating properties of the linkers, these will then efficiently stabilize the charge transfer complex.  相似文献   

8.
A rechargeable battery that uses sulfur at the cathode and a metal (e.g., Li, Na, Mg, or Al) at the anode provides perhaps the most promising path to a solid‐state, rechargeable electrochemical storage device capable of high charge storage capacity. It is understood that solubilization in the electrolyte and loss of sulfur in the form of long‐chain lithium polysulfides (Li2Sx, 2 < x < 8) has hindered development of the most studied of these devices, the rechargeable Li‐S battery. Beginning with density‐functional calculations of the structure and interactions of a generic lithium polysulfide species with nitrile containing molecules, it is shown that it is possible to design nitrile‐rich molecular sorbents that anchor to other components in a sulfur cathode and which exert high‐enough binding affinity to Li2Sx to limit its loss to the electrolyte. It is found that sorbents based on amines and imidazolium chloride present barriers to dissolution of long‐chain Li2Sx and that introduction of as little as 2 wt% of these molecules to a physical sulfur‐carbon blend leads to Li‐S battery cathodes that exhibit stable long‐term cycling behaviors at high and low charge/discharge rates.  相似文献   

9.
The electronic structure of protein chains L and M in photosynthetic reaction center (PRC) of Rhodobacter sphaeroides (Van Niel) Imhoff, Truper et Pfennig) was studied by using the Overlapping Dimer Approximation method and the Extended Negative Factor Counter method at ab initio level. The result indicated that: (1) Amino acid residues, the molecular orbitals of which composed the main components of frontier orbitals of protein chain L (M ), are located at the random coil areas of chain L (α helix areas of chain M ). Since the random coil is flexible and more easy to change its conformation in the electron transfer process and to reduce the energy of the system, and the structure of the α helix is reletively stable, this difference might be one of the causes for the electron transfer in photosynthetic reaction center (PRC) only takes place along the L branch. (2) The His residues which axially coordinated to the “special pair” P and accessory chlorophyll molecules (ABChls) are essentially important for the ELUMO levels of P and ABChl. But, the corresponding molecular orbitals of these His residues do not appear in the composition of frontier orbitals of protein chains. It means that the interaction between pigment molecules and protein chains do not influence the contribution to the frontier orbitals of protein chains explicitly, but influences the corresponding ELUMO levels significantly.  相似文献   

10.
Natural products acquire massive structural and chemical diversity, which cannot be coordinated by any synthetic libraries for small molecules and they are continuing to inspire novel discoveries in health sciences. We have performed the computational calculations for geometry optimization and prediction of electronic and structural properties of some plant phenolic compounds through Gaussian 09 program. Energies of molecular orbitals were computed, to mimic out the stabilities arising from charge delocalization and intramolecular interactions. This process indicated the eventual charge transfer within the molecules. The molecular docking and ADMET properties of these compounds with a novel anticancer (HER2) and anti-inflammatory (COX-2) targets revealed that two molecules were capable of inhibiting both the targets, and could be used as multi target inhibitors. Furthermore, molecular dynamics simulation studies were performed to elucidate the binding mechanism and the comparison of inhibitor’s binding mode with diverse biological activities as anticancer and anti-inflammatory agents. A high-quality association was reported among quantum chemical, ADMET, docking, dynamics and MMGBSA results.

Communicated By Ramaswamy H. Sarma  相似文献   


11.
《Inorganica chimica acta》1988,143(1):137-145
The effective nuclear charge model has been applied to the rare earth trihalides. A set of the effective nuclear charge values of the rare earth atoms has been evaluated from the bond stretch force constants obtained by normal coordinate analysis of the infrared spectra of the lanthanide trifluorides.The force constants and the fundamental frequencies of all the lanthanide trihalides have been calculated by means of the effective nuclear charge model. The calculated results are in agreement with the experimental data. The results show that the most probable configuration of the lanthanide trihalides is pyramidal with C symmetry, although the geometry of the lanthanide trifluoride molecules is very close to planar. It is also found that the frequency ν2 (symmetric deformation) and the frequency ν4 (antisymmetric deformation) will vary with the bond angle (XLnX).  相似文献   

12.
Supercoiled 3993-bp pGEMEX DNA immobilized on four substrates (freshly cleaved mica, standard amino mica, and modified amino mica with an increased or decreased surface charge density in comparison to standard amino mica) has been visualized by atomic force microscopy in the air. Plectonomically supercoiled DNA molecules, as well as single molecules with an extremely high compaction level (i.e., with a significantly higher superhelix density compared to those previously observed experimentally or estimated theoretically), have been visualized on modified amino mica with an increased surface charge density. The distance between nucleotide pairs along the duplex axis has been determined by measuring the contour length of individual oversupercoiled DNA molecules. The estimated rise per base pair varies from 1.94 to 2.19 Å. These supercoiled DNA molecules, which are compressed like a spring and have a decreased rise per base pair compared to previously known DNA forms are considered to be a new form of DNA, S-DNA. A model of S-DNA has been constructed. Molecules of S-DNA may be an intermediate in the course of the compaction of single supercoiled DNA molecules into spheroids and minitoroids. The DNA oversupercoiling, followed by the compression of the supercoiled molecules, has been shown to be accounted for by a high surface charge density of amino mica on which DNA molecules are immobilized.  相似文献   

13.
 The binding of 303 8-mer to 11-mer peptides carrying the anchor residues at P2 and the C-terminus to HLA-B*5101 molecules was examined by a stabilization assay in which peptides were incubated with RMA-S-B*5101 cells at 26 °C for 3 h. Analysis of the binding of these peptides to HLA-B*5101 molecules showed that Pro and Ala at P2, and Ile, Val, and Leu at the C-terminus functioned as anchor residues, while Gly at P2 and Met at the C-terminus were weak anchors. Pro was a stronger anchor residue than Ala at P2, while Ile was the strongest anchor at the C-terminus. Among 8-mer to 11-mer peptides, the 9-mer peptides showed the strongest binding to HLA-B*5101 molecules. This is in contrast to our recent findings that 10-mer and 11-mer peptides bind to HLA-B*3501 molecules as effectively as 9-mer peptides. Since both HLA class I molecules have the same B-pocket and the binding peptides carry the same anchor residues, it is assumed that the structure of the F-pocket may restrict the length of binding peptides. The ability of HLA-B*5101 binding peptides to stabilize the HLA-B*5101 molecules was markedly lower than that of HLA-B*3501 binding peptides to stabilize the HLA-B*3501 molecules. It is known that HLA-B*5101 is a slow assembling molecule, while HLA-B*3501 assembles rapidly. The results imply that the slow assembling of HLA-B*5101 molecules results from the low affinity of peptides to HLA-B*5101 molecules. Received: 14 August 1996 / Revised: 8 October 1996  相似文献   

14.
Due to gradual and controlled changes of interatomic distances between heavy atoms in OH…F of C6H5OH…F systems it was possible to study the electronic structure evolution. Computation at B3LYP/6-311+G(d,p) level of theory was performed for this purpose. Changes in charges at atoms and characteristics at bond critical points (BCPs) of the H-bond region and also in distant parts of the systems were investigated by means of natural bond orbitals (NBO) and atoms in molecules (AIM) analyses. It is shown that at the border line between partially covalent and non-covalent H-bonding (Espinosa et al. in J Chem Phys 117:5529, 2002; Grabowski et al. in J Phys Chem B 110:6444, 2006) with the H…F interatomic distance ∼1.8 Ǻ the hydrogen atom has the most positive charge. In addition, the change in the atomic charge values in the interacting region affects the phenyl ring properties. The decrease of the sum of atomic charges as well as of the aromaticity was noticed when the OH….F distance is shortened.  相似文献   

15.
The M?ssbauer effect in Fe(57) has been used to study the molecules, hemoglobin, O(2)-hemoglobin, CO(2)-hemoglobin, and CO-hemoglobin (within red cells) and the molecules, hemin and hematin (in the crystalline state). Quadrupole splittings and isomeric shifts observed in the M?ssbauer spectra of these molecules are tabulated. The temperature dependence of the quadrupole splitting and relative recoil-free fraction for hemoglobin with different ligands has been investigated. An estimate of the Debye-Waller factor in O(2)-hemoglobin at 5 degrees K is 0.83. An asymmetry in the quadrupole splitting observed in hemoglobin is attributed to a directional dependence of the recoil-free fraction which establishes the sign of the electric field gradient in the molecule and indicates that the lowest lying d orbital of the Fe atoms is |xy>. This asymmetry indicates that the iron atoms in hemoglobin are vibrating farther perpendicular to the heme planes than parallel to them, and, in fact, the ratio of the mean square displacements perpendicular and parallel to the heme planes in hemoglobin is approximately 5.5 at 5 degrees K. The temperature dependence of the quadrupole splitting in hemoglobin has been used to estimate a splitting between the lowest lying iron atom d orbitals of approximately 420 cm(-1).  相似文献   

16.
The geometries have been optimized by using density functional theory. The highest occupied molecular orbitals are delocalized on triphenylamine moiety while lowest unoccupied molecular orbital are localized on anchoring group. Intramolecular charge transfer has been observed from highest occupied molecular orbitals to lowest unoccupied molecular orbital. By replacing the vinyl hydrogens with methoxy as well as one benzene ring as bridge leads to a raised energy gap while extending the bridge decreases the energy gap compared to parent molecule. The HOMO energies bump up by extending the bridge. The LUMO energies of all the investigated dyes are above the conduction band of TiO(2) and HOMOs are below the redox couple except 3c. The distortion between anchoring group and triphenylamine can hamper the recombination reaction.  相似文献   

17.
The acid molecules H2SO3, H2SO4, and H3PO4 are usually drawn using "Lewis structures" which exhibit the octet extension by 3d-orbitals on sulfur and phosphorus, respectively. Thus, S=O and P=O double bonds are assumed to be formed. The natural d-orbital occupancies on S and P, however, were calculated to be as low as 0.1 e, and therefore, an octet extension can hardly be expected. After the natural bond orbitals (NBO) search procedure was forced to attempt to form different Lewis structures of bonds and lone pairs, we defined the optimal Lewis structure, if a dominant structure exists at all, by the maximum electronic charge in Lewis orbitals. Indeed, sulfur obeys the octet rule in the optimal zwitterionic Lewis structures and does not form S=O double bonds. No dominant resonance structure could be found for H3PO4 where polarized PO ?-bond and zwitterionic PO bond structures exhibit similar weights.  相似文献   

18.
Vibrational analysis of 2-amino-6-nitrobenzothiazole (2A6NBT) molecule has been carried out at room temperature using FT-IR and FT-Raman spectroscopic techniques. The equilibrium geometry, bonding features and harmonic vibrational frequencies have been investigated with the help of the density functional theory DFT method. The non-linear optical (NLO) behaviour of the examined molecule has been studied followed by the determination of the electric dipole moment μ, the polarisability α and hyperpolarisability β using HF/6-31G(d,p) method. Stability of the molecule arising from hyperconjugative interactions and charge delocalisation have been analysed using the natural bond orbital analysis. The results show that charge in electron density in the σ* and π* antibonding orbitals and second-order delocalisation energies (E2) confirms the occurrence of intramolecular charge transfer within the molecule. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis following the scaled quantum mechanical force field methodology. The energy and oscillator strength calculated by time-dependent density functional theory complements with the experimental findings. The simulated spectra satisfactorily coincide with the experimental spectra.  相似文献   

19.
Natural orbitals for chemical valence (NOCV) were used to describe bonding in conjugated pi-electron molecules. The 'single' C-C bond in trans-1,3-butadiene, 1,3-butadiene-1,1,4,4-tetra-carboxilic acid, 1,3,5,7-octatetraene, and 11-cis-retinal was characterized. In the NOCV framework, the formation of the sigma-bond appears as the sum of two complementary charge transfer processes from each vinyl fragment to the bond region, and partially to the other fragment. The formation of the pi-component of the bond is described by two pairs of NOCV representing the transfer of charge density from the neighboring 'double' C-C bonds. The NOCV eigenvalues and the related fragment-fragment bond multiplicities were used as quantitative measures of the sigma- and pi- contributions. The sigma-component of the 'single' C-C bonds appears to be practically constant in the systems analyzed, whereas the pi-contributions increase from butadiene (ca. 7.5%) to retinal (ca. 14%).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号