首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Ethylene influences a number of processes in Arabidopsis (Arabidopsis thaliana) through the action of five receptors. In this study, we used high-resolution, time-lapse imaging to examine the long-term effects of ethylene on growing, etiolated Arabidopsis seedlings. These measurements revealed that ethylene stimulates nutations of the hypocotyls with an average delay in onset of over 6 h. The nutation response was constitutive in ctr1-2 mutants maintained in air, whereas ein2-1 mutants failed to nutate when treated with ethylene. Ethylene-stimulated nutations were also eliminated in etr1-7 loss-of-function mutants. Transformation of the etr1-7 mutant with a wild-type genomic ETR1 transgene rescued the nutation phenotype, further supporting a requirement for ETR1. Loss-of-function mutations in the other receptor isoforms had no effect on ethylene-stimulated nutations. However, the double ers1-2 ers2-3 and triple etr2-3 ers2-3 ein4-4 loss-of-function mutants constitutively nutated in air. These results support a model where all the receptors are involved in ethylene-stimulated nutations, but the ETR1 receptor is required and has a contrasting role from the other receptor isoforms in this nutation phenotype. Naphthylphthalamic acid eliminated ethylene-stimulated nutations but had no effect on growth inhibition caused by ethylene, pointing to a role for auxin transport in the nutation phenotype.  相似文献   

2.
In Arabidopsis (Arabidopsis thaliana), ethylene is perceived by a receptor family consisting of five members. Subfamily 1 members ETHYLENE RESPONSE1 (ETR1) and ETHYLENE RESPONSE SENSOR1 (ERS1) have histidine kinase activity, unlike the subfamily 2 members ETR2, ERS2, and ETHYLENE INSENSITIVE4 (EIN4), which lack amino acid residues critical for this enzymatic activity. To resolve the role of histidine kinase activity in signaling by the receptors, we transformed an etr1-9;ers1-3 double mutant with wild-type and kinase-inactive versions of the receptor ETR1. Both wild-type and kinase-inactive ETR1 rescue the constitutive ethylene-response phenotype of etr1-9;ers1-3, restoring normal growth to the mutant in air. However, the lines carrying kinase-inactive ETR1 exhibit reduced sensitivity to ethylene based on several growth response assays. Microarray and real-time polymerase chain reaction analyses of gene expression support a role for histidine kinase activity in eliciting the ethylene response. In addition, protein levels of the Raf-like kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), which physically associates with the ethylene receptor ETR1, are less responsive to ethylene in lines containing kinase-inactive ETR1. These data indicate that the histidine kinase activity of ETR1 is not required for but plays a modulating role in the regulation of ethylene responses. Models for how enzymatic and nonenzymatic regulation may facilitate signaling from the ethylene receptors are discussed.  相似文献   

3.
Liu Q  Wen CK 《Plant physiology》2012,158(3):1193-1207
The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1((C65Y))(for ethylene response1-1), ers1-1((I62P)) (for ethylene response sensor1-1), and ers1(C65Y) are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1((C65Y)), but not ers1-1((I62P)), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1((I62P)); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1((I62P)) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1(C65Y), which implied that ETR1 and EIN4 have synergistic effects on ers1(C65Y) functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors.  相似文献   

4.
Responses to the plant hormone ethylene are mediated by a family of five receptors in Arabidopsis that act in the absence of ethylene as negative regulators of response pathways. In this study, we examined the rapid kinetics of growth inhibition by ethylene and growth recovery after ethylene withdrawal in hypocotyls of etiolated seedlings of wild-type and ethylene receptor-deficient Arabidopsis lines. This analysis revealed that there are two phases to growth inhibition by ethylene in wild type: a rapid phase followed by a prolonged, slower phase. Full recovery of growth occurs approximately 90 min after ethylene removal. None of the receptor null mutations tested had a measurable effect on the two phases of growth inhibition. However, loss-of-function mutations in ETR1, ETR2, and EIN4 significantly prolonged the time for recovery of growth rate after ethylene was removed. Plants with an etr1-6;etr2-3;ein4-4 triple loss-of-function mutation took longer to recover than any of the single mutants, while the ers1;ers2 double mutant had no effect on recovery rate, suggesting that receiver domains play a role in recovery. Transformation of the ers1-2;etr1-7 double mutant with wild-type genomic ETR1 rescued the slow recovery phenotype, while a His kinase-inactivated ETR1 construct did not. To account for the rapid recovery from growth inhibition, a model in which clustered receptors act cooperatively is proposed.  相似文献   

5.
6.
Hall AE  Bleecker AB 《The Plant cell》2003,15(9):2032-2041
Ethylene responses in Arabidopsis are controlled by the ETR receptor family. The receptors function as negative regulators of downstream signal transduction components and fall into two distinct subfamilies based on sequence similarity. To clarify the levels of functional redundancy between receptor isoforms, combinatorial mutant lines were generated that included the newly isolated ers1-2 allele. Based on the etiolated seedling growth response, all mutant combinations tested exhibited some constitutive ethylene responsiveness but also remained responsive to exogenous ethylene, indicating that all five receptor isoforms can contribute to signaling and no one receptor subtype is essential. On the other hand, light-grown seedlings and adult ers1 etr1 double mutants exhibited severe phenotypes such as miniature rosette size, delayed flowering, and sterility, revealing a distinct role for subfamily I receptors in light-grown plants. Introduction of an ein2 loss-of-function mutation into the ers1 etr1 double mutant line resulted in plants that phenocopy ein2 single mutants, indicating that all phenotypes observed in the ers1 etr1 double mutant are EIN2 dependent.  相似文献   

7.
Cancel JD  Larsen PB 《Plant physiology》2002,129(4):1557-1567
Ethylene signaling in Arabidopsis begins at a family of five ethylene receptors that regulate activity of a downstream mitogen-activated protein kinase kinase kinase, CTR1. Triple and quadruple loss-of-function ethylene receptor mutants display a constitutive ethylene response phenotype, indicating they function as negative regulators in this pathway. No ethylene-related phenotype has been described for single loss-of-function receptor mutants, although it was reported that etr1 loss-of-function mutants display a growth defect limiting plant size. In actuality, this apparent growth defect results from enhanced responsiveness to ethylene; a phenotype manifested in all tissues tested. The phenotype displayed by etr1 loss-of-function mutants was rescued by treatment with an inhibitor of ethylene perception, indicating that it is ethylene dependent. Identification of an ethylene-dependent phenotype for a loss-of-function receptor mutant gave a unique opportunity for genetic and biochemical analysis of upstream events in ethylene signaling, including demonstration that the dominant ethylene-insensitive phenotype of etr2-1 is partially dependent on ETR1. This work demonstrates that mutational loss of the ethylene receptor ETR1 alters responsiveness to ethylene in Arabidopsis and that enhanced ethylene response in Arabidopsis not only results in increased sensitivity but exaggeration of response.  相似文献   

8.
Ethylene, a regulator of plant growth and development, is perceived by specific receptors that act as negative regulators of the ethylene response. Five ethylene receptors, i.e., ETR1, ERS1, EIN4, ETR2, and ERS2, are present in Arabidopsis and dominant negative mutants of each that confer ethylene insensitivity have been reported. In contrast, maize contains just two types of ethylene receptors: ZmERS1, encoded by ZmERS1a and ZmERS1b, and ZmETR2, encoded by ZmETR2a and ZmETR2b. In this study, we introduced a Cys to Tyr mutation in the transmembrane domain of ZmERS1b and ZmETR2b that is present in the etr1-1 dominant negative mutant and expressed each protein in Arabidopsis. Mutant Zmers1b and Zmetr2b receptors conferred ethylene insensitivity and Arabidopsis expressing Zmers1b or Zmetr2b were larger and exhibited a delay in leaf senescence characteristic of ethylene insensitive Arabidopsis mutants. Zmers1b and Zmetr2b were dominant and functioned equally well in a hemizygous or homozygous state. Expression of the Zmers1b N-terminal transmembrane domain was sufficient to exert dominance over endogenous Arabidopsis ethylene receptors whereas the Zmetr2b N-terminal domain failed to do so. Neither Zmers1b nor Zmetr2b functioned in the absence of subfamily 1 ethylene receptors, i.e., ETR1 and ERS1. These results suggest that Cys65 in maize ZmERS1b and ZmETR2b plays the same role that it does in Arabidopsis receptors. Moreover, the results demonstrate that the mutant maize ethylene receptors are functionally dependent on subfamily 1 ethylene receptors in Arabidopsis, indicating substantial functional conservation between maize and Arabidopsis ethylene receptors despite their sequence divergence.  相似文献   

9.
The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane‐bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor‐interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi‐fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1‐1 and etr1‐2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis.  相似文献   

10.
Ethylene influences many processes in Arabidopsis thaliana through the action of five receptor isoforms. All five isoforms use copper as a cofactor for binding ethylene. Previous research showed that silver can substitute for copper as a cofactor for ethylene binding activity in the ETR1 ethylene receptor yet also inhibit ethylene responses in plants. End-point and rapid kinetic analyses of dark-grown seedling growth revealed that the effects of silver are mostly dependent upon ETR1, and ETR1 alone is sufficient for the effects of silver. Ethylene responses in etr1-6 etr2-3 ein4-4 triple mutants were not blocked by silver. Transformation of these triple mutants with cDNA for each receptor isoform under the promoter control of ETR1 revealed that the cETR1 transgene completely rescued responses to silver while the cETR2 transgene failed to rescue these responses. The other three isoforms partially rescued responses to silver. Ethylene binding assays on the binding domains of the five receptor isoforms expressed in yeast showed that silver supports ethylene binding to ETR1 and ERS1 but not the other isoforms. Thus, silver may have an effect on ethylene signaling outside of the ethylene binding pocket of the receptors. Ethylene binding to ETR1 with silver was ~30% of binding with copper. However, alterations in the K(d) for ethylene binding to ETR1 and the half-time of ethylene dissociation from ETR1 do not underlie this lower binding. Thus, it is likely that the lower ethylene binding activity of ETR1 with silver is due to fewer ethylene binding sites generated with silver versus copper.  相似文献   

11.

Background  

The ethylene receptor family of Arabidopsis consists of five members, falling into two subfamilies. Subfamily 1 is composed of ETR1 and ERS1, and subfamily 2 is composed of ETR2, ERS2, and EIN4. Although mutations have been isolated in the genes encoding all five family members, the only previous insertion allele of ERS1 (ers1-2) is a partial loss-of-function mutation based on our analysis. The purpose of this study was to determine the extent of signaling mediated by subfamily-1 ethylene receptors through isolation and characterization of null mutations.  相似文献   

12.
Ethylene influences many processes in Arabidopsis (Arabidopsis thaliana) through the action of five receptor isoforms. We used high-resolution, time-lapse imaging of dark-grown Arabidopsis seedlings to better understand the roles of each isoform in the regulation of growth in air, ethylene-stimulated nutations, and growth recovery after ethylene removal. We found that ETHYLENE RECEPTOR1 (ETR1) is both necessary and sufficient for nutations. Transgene constructs in which the ETR1 promoter was used to drive expression of cDNAs for each of the five receptor isoforms were transferred into etr1-6;etr2-3;ein4-4 triple loss-of-function mutants that have constitutive growth inhibition in air, fail to nutate in ethylene, and take longer to recover a normal growth rate when ethylene is removed. The patterns of rescue show that ETR1, ETR2, and ETHYLENE INSENSITIVE4 (EIN4) have the prominent roles in rapid growth recovery after removal of ethylene whereas ETR1 was the sole isoform that rescued nutations. ETR1 histidine kinase activity and phosphotransfer through the receiver domain are not required to rescue nutations. However, REVERSION TO SENSITIVITY1 modulates ethylene-stimulated nutations but does not modulate the rate of growth recovery after ethylene removal. Several chimeric receptor transgene constructs where domains of EIN4 were swapped into ETR1 were also introduced into the triple mutant. The pattern of phenotype rescue by the chimeric receptors used in this study supports a model where a receptor with a receiver domain is required for normal growth recovery and that nutations specifically require the full-length ETR1 receptor.  相似文献   

13.
The gaseous hormone ethylene is perceived in Arabidopsis by a five member receptor family that consists of the subfamily 1 receptors ETR1 and ERS1 and the subfamily 2 receptors ETR2, ERS2, and EIN4. Previous work has demonstrated that the basic functional unit for the ethylene receptor, ETR1, is a disulfide-linked homodimer. We demonstrate here that ethylene receptors isolated from Arabidopsis also interact with each other through noncovalent interactions. Evidence that ETR1 associates with other ethylene receptors was obtained by co-purification of ETR1 with tagged versions of ERS1, ETR2, ERS2, and EIN4 from Arabidopsis membrane extracts. ETR1 preferentially associated with the subfamily 2 receptors compared with the subfamily 1 receptor ERS1, but ethylene treatment affected the interactions and relative composition of the receptor complexes. When transgenically expressed in yeast, ETR1 and ERS2 can form disulfide-linked heterodimers. In plant extracts, however, the association of ETR1 and ERS2 can be largely disrupted by treatment with SDS, supporting a higher order noncovalent interaction between the receptors. Yeast two-hybrid analysis demonstrated that the receptor GAF domains are capable of mediating heteromeric receptor interactions. Kinetic analysis of ethylene-insensitive mutants of ETR1 is consistent with their dominance being due in part to an ability to associate with other ethylene receptors. These data suggest that the ethylene receptors exist in plants as clusters in a manner potentially analogous to that found with the histidine kinase-linked chemoreceptors of bacteria and that interactions among receptors contribute to ethylene signal output.  相似文献   

14.
We have investigated the role of ethylene in shoot regeneration from cotyledon explants of Arabidopsis thaliana. We examined the ethylene sensitivity of five ecotypes representing both poor and prolific shoot regenerators and identified Dijon-G, a poor regenerator, as an ecotype with dramatically enhanced ethylene sensitivity. However, inhibiting ethylene action with silver nitrate generally reduced shoot organogenesis in ecotypes capable of regeneration. In ecotype Col-0, we found that ethylene-insensitive mutants (etr1-1, ein2-1, ein4, ein7) exhibited reduced shoot regeneration rates, whereas constitutive ethylene response mutants (ctr1-1, ctr1-12) increased the proportion of explants producing shoots. Our experiments with ethylene over-production mutants (eto1, eto2 and eto3) indicate that the ethylene biosynthesis inhibitor gene, ETO1, can act as an inhibitor of shoot regeneration. Pharmacological elevation of ethylene levels was also found to significantly increase the proportion of explants regenerating shoots. We determined that the hookless1 (hls1-1) mutant, a suppressor of the ethylene response phenotypes of ctr1 and eto1 mutants, is capable of dramatically enhancing shoot organogenesis. The effects of ACC and loss of HLS1 function on shoot organogenesis were found to be largely additive.  相似文献   

15.
Heterotrimeric G proteins function as key players in hydrogen peroxide (H2O2) production in plant cells, but whether G proteins mediate ethylene‐induced H2O2 production and stomatal closure are not clear. Here, evidences are provided to show the Gα subunit GPA1 as a missing link between ethylene and H2O2 in guard cell ethylene signalling. In wild‐type leaves, ethylene‐triggered H2O2 synthesis and stomatal closure were dependent on activation of Gα. GPA1 mutants showed the defect of ethylene‐induced H2O2 production and stomatal closure, whereas wGα and cGα overexpression lines showed faster stomatal closure and H2O2 production in response to ethylene. Ethylene‐triggered H2O2 generation and stomatal closure were impaired in RAN1, ETR1, ERS1 and EIN4 mutants but not impaired in ETR2 and ERS2 mutants. Gα activator and H2O2 rescued the defect of RAN1 and EIN4 mutants or etr1‐3 in ethylene‐induced H2O2 production and stomatal closure, but only rescued the defect of ERS1 mutants or etr1‐1 and etr1‐9 in ethylene‐induced H2O2 production. Stomata of CTR1 mutants showed constitutive H2O2 production and stomatal closure, but which could be abolished by Gα inhibitor. Stomata of EIN2, EIN3 and ARR2 mutants did not close in responses to ethylene, Gα activator or H2O2, but do generate H2O2 following challenge of ethylene or Gα activator. The data indicate that Gα mediates ethylene‐induced stomatal closure via H2O2 production, and acts downstream of RAN1, ETR1, ERS1, EIN4 and CTR1 and upstream of EIN2, EIN3 and ARR2. The data also show that ETR1 and ERS1 mediate both ethylene and H2O2 signalling in guard cells.  相似文献   

16.
Ethylene perception by the ERS1 protein in Arabidopsis   总被引:13,自引:2,他引:11  
Ethylene perception in Arabidopsis is controlled by a family of five genes, including ETR1, ERS1 (ethylene response sensor 1), ERS2, ETR2, and EIN4. ERS1, the most highly conserved gene with ETR1, encodes a protein with 67% identity to ETR1. To clarify the role of ERS1 in ethylene sensing, we biochemically characterized the ERS1 protein by heterologous expression in yeast. ERS1, like ETR1, forms a membrane-associated, disulfide-linked dimer. In addition, yeast expressing the ERS1 protein contains ethylene-binding sites, indicating ERS1 is also an ethylene-binding protein. This finding supports previous genetic evidence that isoforms of ETR1 also function in plants as ethylene receptors. Further, we used the ethylene antagonist 1-methylcyclopropene (1-MCP) to characterize the ethylene-binding sites of ERS1 and ETR1. We found 1-MCP to be both a potent inhibitor of the ethylene-induced seedling triple response, as well as ethylene binding by yeast expressing ETR1 and ERS1. Yeast expressing ETR1 and ERS1 showed nearly identical sensitivity to 1-MCP, suggesting that the ethylene-binding sites of ETR1 and ERS1 have similar affinities for ethylene.  相似文献   

17.
The involvement of ethylene and ethylene receptor Ethylene Response 1 (ETR1) in plant stress responses has been highlighted. However, the physiological processes involved remain unclear. In this study, we have investigated the physiological response of two alleles etr1-1 and etr1-7 mutants during germination and post-germination seedling development in response to salt and osmotic stress. The etr1-1 mutants showed increased sensitivity to osmotic (200 mM or higher mannitol) and salt stress (50 mM NaCl or higher) during germination and seedling development, whereas the etr1-7 mutants displayed enhanced tolerance to the severe stresses (500 mM mannitol or 200 mM NaCl). These results provide physiological and genetic evidence that ethylene receptor ETR1 modulates plant response to abiotic stress. Furthermore, the etr1-1 and etr1-7 mutants showed different responses to exogenous abscisic acid (ABA) inhibition. The etr1-1 mutants were more sensitive to ABA than the wild type during germination, and young seedling development. In sharp contrast, the etr1-7 mutants showed enhanced insensitivity to ABA treatment (>1 μM ABA) in post-germination development including root elongation and greening of cotyledons of the treated seedlings, although the germination was not greatly altered at the tested doses of ABA. The results suggest that ETR1-modulated stress response may mediate ABA. Youning Wang and Tao Wang contributed equally to this report.  相似文献   

18.
Qiu L  Xie F  Yu J  Wen CK 《Plant physiology》2012,159(3):1263-1276
The Arabidopsis (Arabidopsis thaliana) ethylene receptor Ethylene Response1 (ETR1) can mediate the receptor signal output via its carboxyl terminus interacting with the amino (N) terminus of Constitutive Triple Response1 (CTR1) or via its N terminus (etr11-349 or the dominant ethylene-insensitive etr1-11-349) by an unknown mechanism. Given that CTR1 is essential to ethylene receptor signaling and that overexpression of Reversion To Ethylene Sensitivity1 (RTE1) promotes ETR1 N-terminal signaling, we evaluated the roles of CTR1 and RTE1 in ETR1 N-terminal signaling. The mutant phenotype of ctr1-1 and ctr1-2 was suppressed in part by the transgenes etr11-349 and etr1-11-349, with etr1-11-349 conferring ethylene insensitivity. Coexpression of 35S:RTE1 and etr11-349 conferred ethylene insensitivity in ctr1-1, whereas suppression of the ctr1-1 phenotype by etr11-349 was prevented by rte1-2. Thus, RTE1 was essential to ETR1 N-terminal signaling independent of the CTR1 pathway. An excess amount of the CTR1 N terminus CTR17-560 prevented ethylene receptor signaling, and the CTR17-560 overexpressor CTR1-Nox showed a constitutive ethylene response phenotype. Expression of the ETR1 N terminus suppressed the CTR1-Nox phenotype. etr11-349 restored the ethylene insensitivity conferred by dominant receptor mutant alleles in the ctr1-1 background. Therefore, ETR1 N-terminal signaling was not mediated by full-length ethylene receptors; rather, full-length ethylene receptors acted cooperatively with the ETR1 N terminus to mediate the receptor signal independent of CTR1. ETR1 N-terminal signaling may involve RTE1, receptor cooperation, and negative regulation by the ETR1 carboxyl terminus.The gaseous plant hormone ethylene is perceived by a small family of ethylene receptors. Arabidopsis (Arabidopsis thaliana) has five ethylene receptors that are structurally similar to prokaryotic two-component histidine kinase (HK) proteins. Mutants defective in multiple ethylene receptor genes show a constitutive ethylene response phenotype, which indicates a negative regulation of ethylene responses by the receptor genes (Hua and Meyerowitz, 1998).The receptor N terminus has three or four transmembrane domains that bind ethylene. The GAF (for cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA) domain, which follows the transmembrane helices, mediates noncovalent receptor heterodimerization and may have a role in receptor cooperation (Gamble et al., 2002; O’Malley et al., 2005; Xie et al., 2006; Gao et al., 2008). The subfamily I receptors Ethylene Response1 (ETR1) and Ethylene Response Sensor1 (ERS1) have a conserved HK domain following the GAF domain. For subfamily II members ETR2, Ethylene Insensitive4 (EIN4), and ERS2, the HK domain is less conserved, and they lack most signature motifs essential for HK activity (Chang et al., 1993; Gamble et al., 1998; Hua et al., 1998; Qu and Schaller, 2004; Xie et al., 2006). Among the five receptors, ETR1, ETR2, and EIN4 have a receiver domain following the HK domain. The ETR1 HK domain may have a role in mediating the receptor signal to downstream components, and the HK activity facilitates the ethylene signaling (Clark et al., 1998; Huang et al., 2003; Hall et al., 2012). The receiver domain can dimerize and could involve receptor cooperation (Müller-Dieckmann et al., 1999). However, differential receptor cooperation occurs between the receiver domain-lacking ERS1 and the other ethylene receptors, which does not support the hypothesis that the domains involve receptor cooperation (Liu and Wen, 2012).Acting downstream of the ethylene receptors is Constitutive Triple Response1 (CTR1), a MEK kinase (mitogen-activated protein kinase kinase kinase) with Ser/Thr kinase activity, and the kinase domain locates at the C terminus. The CTR1 N terminus does not share sequence similarity to known domains and can physically interact with the ethylene-receptor HK domain (Clark et al., 1998; Huang et al., 2003). ctr1 mutants showing attenuated CTR1 kinase activity or the ETR1-CTR1 association exhibit various degrees of the constitutive ethylene-response phenotype. For example, the ctr1-1 and ctr1btk mutations result from the D694E and E626K substitutions, respectively, in the CTR1 kinase domain, and ctr1-1 shows a stronger ethylene-response phenotype than ctr1btk, with ctr1-1 having much weaker kinase activity than ctr1btk (Kieber et al., 1993; Huang et al., 2003; Ikeda et al., 2009). The ctr1-8 mutation results in the G354E substitution that prevents the ETR1-CTR1 association, and the mutant exhibits a constitutive ethylene-response phenotype. Overexpression of the CTR1 N terminus CTR17-560, which is responsible for interaction with ethylene receptors, leads to constitutive ethylene responses, possibly by titrating out available ethylene receptors (Kieber et al., 1993; Huang et al., 2003). These studies suggest that CTR1 kinase activity and the interaction of CTR1 with the receptor HK domain may be important to the ethylene receptor signal output in suppressing constitutive ethylene responses.Although the ETR1-CTR1 interaction via the HK domain is essential to the ethylene receptor signal output, evidence suggests that the ETR1 receptor signal output can also be independent of the HK activity or domain. The etr1 ers1 loss-of-function mutant displays extreme growth defects. The etr1[HGG] mutation inactivates ETR1 HK activity, and expression of the getr1[HGG] transgene rescues the etr1 ers1 growth defects, which indicates a lack of association of ETR1 receptor signaling and its kinase activity (Wang et al., 2003). The dominant etr1-1 mutation results in the C65Y substitution and confers ethylene insensitivity (Chang et al., 1993), and the expression of the HK domain-lacking etr11-349 and ethylene-insensitive etr1-11-349 isoforms partially suppresses the growth defects of etr1 ers1-2. Loss-of-function mutations of subfamily II members do not affect etr1-11-349 functions. Therefore, etr1-11-349 predominantly cooperates with subfamily I receptors to mediate the ethylene receptor signal output (Xie et al., 2006). Biochemical and transformation studies showing that ethylene receptors can form heterodimers and that each receptor is a component of high-molecular-mass complexes explain how ethylene receptors may act cooperatively (Gao et al., 2008; Gao and Schaller, 2009; Chen et al., 2010).Reversion To Ethylene Sensitivity1 (RTE1), a Golgi/endoplasmic reticulum protein, was isolated from a suppressor screen of the dominant ethylene-insensitive etr1-2 mutation. The cross-species complementation of the rte1-2 loss-of-function mutation by the rice (Oryza sativa) RTE Homolog1 (OsRTH1) suggests a conserved mechanism that modulates the ethylene receptor signaling across higher plant species (Zhang et al., 2012). RTE1 and OsRTH1 overexpression led to ethylene insensitivity in wild-type Arabidopsis but not the etr1-7 loss-of-function mutant, and expression of etr11-349 restored ethylene insensitivity with RTE1 overexpression in etr1-7 (Resnick et al., 2006; Zhou et al., 2007; Zhang et al., 2010). Coimmunoprecipitation of epitope-tagged ETR1 and RTE1 and Trp fluorescence spectroscopy revealed the physical interaction of RTE1 and ETR1 (Zhou et al., 2007; Dong et al., 2008, 2010). Therefore, RTE1 may directly promote ETR1 receptor signal output through the ETR1 N terminus, but whether RTE1 has an essential role in ETR1 N-terminal signaling remains to be addressed.Currently, the biochemical nature of the ethylene receptor signal is unknown, and the underlying mechanisms of mediation of the ethylene receptor signal output remain uninvestigated. Genetic and biochemical studies suggest that activation of CTR1 by ethylene receptors may suppress constitutive ethylene responses; upon ethylene binding, the receptors are converted to an inactive state and fail to activate CTR1, and the suppression of ethylene responses by CTR1 is alleviated (Hua and Meyerowitz, 1998; Klee, 2004; Wang et al., 2006; Hall et al., 2007). However, this model does not address how the ETR1 N terminus, which does not have the CTR1-interacting site, mediates the receptor signal to suppress constitutive ethylene responses. The receptor signal of the truncated etr1 isoforms may be mediated by other full-length ethylene receptors and then activate CTR1; alternatively, the ETR1 N-terminal signal may be mediated by a pathway independent of CTR1 (Gamble et al., 2002; Qu and Schaller, 2004; Xie et al., 2006). Results showing that mutants defective in multiple ethylene receptor genes exhibit a more severe ethylene-response phenotype than ctr1 and that ctr1 mutants are responsive to ethylene support the presence of a CTR1-independent pathway (Hua and Meyerowitz, 1998; Cancel and Larsen, 2002; Huang et al., 2003; Liu et al., 2010).In this study, we investigated whether mediation of ETR1 N-terminal signaling is independent of CTR1 and whether RTE1 is essential to the CTR1-independent ETR1 N-terminal signaling. The ETR1 N-terminal signaling was not mediated via other full-length ethylene receptors, but the signal of full-length ethylene receptors could be mediated by the ETR1 N terminus independent of CTR1. The ETR1 C terminus may inhibit ETR1 N-terminal signaling, whereby deletion of the C terminus facilitates N-terminal signaling. We propose a model for the possible modulation of ETR1 receptor signaling.  相似文献   

19.
A MAPK pathway mediates ethylene signaling in plants   总被引:26,自引:0,他引:26       下载免费PDF全文
Ethylene signal transduction involves ETR1, a two-component histidine protein kinase receptor. ETR1 functions upstream of the negative regulator CTR1. The similarity of CTR1 to members of the Raf family of mitogen-activated protein kinase kinase kinases (MAPKKKs) suggested that ethylene signaling in plants involves a MAPK pathway, but no direct evidence for this has been provided. Here we show that distinct MAPKs are activated by the ethylene precursor aminocyclopropane-1-carboxylic acid (ACC) in Medicago and ARABIDOPSIS: In Medicago, the ACC-activated MAPKs were SIMK and MMK3, while in Arabidopsis MPK6 and another MAPK were identified. Medicago SIMKK specifically mediated ACC-induced activation of SIMK and MMK3. Transgenic Arabidopsis plants overexpressing SIMKK have constitutive MPK6 activation and ethylene-induced target gene expression. SIMKK overexpressor lines resemble ctr1 mutants in showing a triple response phenotype in the absence of ACC. Whereas MPK6 was not activated by ACC in etr1 mutants, ein2 and ein3 mutants showed normal activation profiles. In contrast, ctr1 mutants showed constitutive activation of MPK6. These data indicate that a MAPK cascade is part of the ethylene signal transduction pathway in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号