首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we investigated the influence of initial sucrose concentration on the accumulation of biomass, phenols, flavonoids, chlorogenic acid, and hypericin in adventitious root cultures of Hypericum perforatum L. Cultures were initiated in shake flasks by using half-strength Murashige and Skoog (MS) medium, 1.0 mg l−1 indolebutyric acid (IBA), 0.1 m g l−1 kinetin, and different concentrations 0, 1, 3, 5, 7, or 9% in w/v) of sucrose and were maintained in darkness. The medium supplemented with 3% (w/v) sucrose resulted in the optimum biomass accumulation, but higher sucrose concentrations (5, 7, and 9%) inhibited biomass accumulation due to the relatively higher osmotic pressure. However, the amount of total phenols, flavonoids, chlorogenic acid, and total hypericin was increased with the roots grown in the medium supplemented with 5, 7, and 9% (w/v) sucrose. The antioxidant potential of methanolic extract [1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid; ABTS) radical scavenging activities] of H. perforatum adventitious roots was also assessed and correlated with the metabolite accumulation. Cultures maintained with higher initial sucrose concentration (5, 7, and 9% w/v) showed increased accumulation of phenols, flavonoids, chlorogenic acid, and total hypericin, and this might be due to the osmotic stress at elevated sucrose concentrations. To verify the effect of osmotic stress on lipid peroxidation, the levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), and proline were determined in the adventitious roots and the results revealed a marked increase in the concentrations of these compounds. These results suggest that optimal adventitious root biomass could be achieved in the MS medium with 3% (w/v) sucrose and increased sucrose concentration resulted in osmotic stress and, in turn, induces the accumulation of secondary metabolites.  相似文献   

2.
We investigated the effects of plant growth regulators [6-benzyladenine (BA), kinetin (Kin), 6-γ,γ-dimethylallylaminopurine (2iP), thidiazuron (TDZ) and α-naphthaleneacetic acid (NAA)], modified Murashige and Skoog (MS) medium containing 10 mM NH4 + and 5 mM NO3 and supplemented with 2iP, BA, Kin and NAA (MSM medium), and two elicitors [jasmonic acid (JA), and salicylic acid (SA)], on plant growth and accumulation of hypericins (hypericin and pseudohypericin) and hyperforin in shoot cultures of Hypericum hirsutum and H. maculatum. Our data suggested that culture of shoots on MS medium supplemented with BA (0.4 mg l−1) or Kin (0.4 mg l−1) enhanced production of hypericins in H. maculatum and hyperforin in H. hirsutum. Hypericins and hyperforin concentrations decreased in both species when TDZ (0.4 mg l−1) was added to the MS medium. Also, TDZ induced hyperhydric malformations and necrosis of regenerated shoots. Cultivation of H. maculatum on MSM medium resulted in approximately twofold increased production of hypericins compared to controls, and the growth of H. hirsutum shoots on the same medium led to a 6.16-fold increase in hyperforin production. Of the two elicitors, SA was more effective in stimulating the accumulation of hypericins. At 50 μM, SA enhanced the production of hypericin (7.98-fold) and pseudohypericin (13.58-fold) in H. hirsutum, and, at 200 μM, enhanced the production of hypericin (2.2-fold) and pseudohypericin (3.94-fold) in H. maculatum.  相似文献   

3.
Four precursors (l-phenylalanine, l-tryptophan, cinnamic acid and emodin) and one signal elicitor (methyl jasmonate, MeJA) were added to liquid cultures of Hypericum perforatum L. to study their effect on production of hyperforin and hypericins (pseudohypericin and hypericin). The addition of l-phenylalanine (75 to 100 mg l−1) enhanced production of hypericins, but hyperforin levels were decreased. Hypericin, pseudohypericin and hyperforin concentrations were all decreased when l-tryptophan (25 to 100 mg l−1) was added to the medium. However, addition of l-tryptophan (50 mg l−1) with MeJA (100 μM) stimulated hyperforin production significantly (1.81-fold) and resulted in an increased biomass. Cinnamic acid (25, 50 mg l−1) and emodin (1.0 to 10.0 mg l−1) each enhanced hyperforin accumulation in H. perforatum, but did not affect accumulation of hypericins.  相似文献   

4.
Hypericum perforatum is a well-known medicinal plant which contains a wide variety of metabolites, including xanthones, which have a wide range of biological properties, including antifungal activity. In the present study, we evaluated the capability of roots regenerated from calli of H. perforatum subsp. angustifolium to produce xanthones. Root biomass was positively correlated with the indole-3-butyric acid concentration, whereas a concentration of 1 mg l−1 was the most suitable for the development of roots. High auxin concentrations also inhibited xanthone accumulation. Xanthones were produced in large amounts, with a very stable trend throughout the culture period. When the roots were treated with chitosan, the xanthone content dramatically increased, peaking after 7 days. Chitosan also induced a release of these metabolites into the culture. The maximum accumulation (14.26 ± 0.62 mg g−1 dry weight [DW]) and release (2.64 ± 0.13 mg g−1 DW) of xanthones were recorded 7 days after treatment. The most represented xanthones were isolated, purified, and spectroscopically characterized. Antifungal activity of the total root extracts was tested against a broad panel of human fungal pathogen strains (30 Candida species, 12 Cryptococcus neoformans, and 16 dermatophytes); this activity significantly increased when using chitosan. Extracts obtained after 7 days of chitosan treatment showed high antifungal activity (mean minimum inhibitory concentration of 83.4, 39.1, and 114 μg ml−1 against Candida spp., C. neoformans, and dermatophytes, respectively). Our results suggest that root cultures can be considered as a potential tool for large-scale production of extracts with stable quantities of xanthones.  相似文献   

5.
Palmaria palmata and Gracilaria verrucosa are edible red seaweeds and potential protein sources for human or animal nutrition, so studies were conducted on their in vitro protein digestibility. After 30 min predigestion by pepsin followed by 6 h digestion into a cell dialysis containing porcine pancreatin, the in vitro protein digestibility of P. palmata and G. verrucosa, expressed in regard to casein digestibility, was 4.9% and 42.1%, respectively. The level of protein digestibility seems to be related to the amount of soluble fibre, which was 45.3% and 30.5%, respectively.  相似文献   

6.
Hypericum perforatum L. (St. John’s wort) produces a number of phytochemicals having medicinal, anti-microbial, anti-viral and anti-oxidative properties. Plant extracts are generally used for treatment of mild to medium cases of depression. Plant regeneration can be achieved in this species by in vitro culture of a variety of explants. However, there are no reports of regeneration from petal explants. In this report plant regeneration from petal explants of St. John’s wort was evaluated. Petals of various ages were cultured on agarized Murashige and Skoog 1962 (MS) medium supplemented with auxin and cytokinin (kinetin), maintained in the dark and callus and shoot regeneration determined after 28 days. At an auxin to cytokinin ratio of 10:1, callus and shoot formation were induced by all levels of indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA), while 2,4-dichlorophenoxyacetic acid (2,4-D) induced only callus formation. The optimum level of auxin for shoot regeneration was 1.0 and 0.1 mg/l kinetin, where the regeneration frequency was 100 percent for all three auxins. The highest number of shoots per explant (57.4 and 53.4) was obtained with IAA and IBA, respectively. In the absence of auxin, kinetin levels of 0.1 and 0.25 mg/l induce callus and shoot formation at low frequency but not at lower levels. Callus and shoot formation did not occur in the absence of growth regulators. Petal-derived shoots were successfully rooted on half-strength MS medium without a requirement for exogenous auxin and flowering plants were established under greenhouse conditions. From these results it can be concluded that auxin type is a critical factor for plant regeneration from petal explants of Hypericum perforatum and there is no absolute requirement for high levels of cytokinin.  相似文献   

7.
(R)-Phenylacetylcarbinol (PAC), a pharmaceutical precursor, was produced from benzaldehyde and pyruvate by pyruvate decarboxylase (PDC) of Candida utilis in an aqueous/organic two-phase emulsion reactor. When the partially purified enzyme in this previously established in vitro process was replaced with C. utilis cells and the temperature was increased from 4 to 21 °C, a screen of several 1-alcohols (C4–C9) confirmed the suitability of 1-octanol as the organic phase. Benzyl alcohol, the major by-product in the commercial in vivo conversion of benzaldehyde and sugar to PAC by Saccharomyces cerevisiae, was not formed. With a phase volume ratio of 1:1 and 5.6 g C. utilis l−1 (PDC activity 2.5 U ml−1), PAC levels of 103 g l−1 in the octanol phase and 12.8 g l−1 in the aqueous phase were produced in 15 h at 21 °C. In comparison to our previously published process with partially purified PDC in an aqueous/octanol emulsion at 4 °C, PAC was produced at a 4-times increased specific rate (1.54 versus 0.39 mg U−1 h−1) with simplified catalyst production and reduced cooling cost. Compared to traditional in vivo whole cell PAC production, the yield on benzaldehyde was 26% higher, the product concentration increased 3.9-fold (or 6.9-fold based on the organic phase), the productivity improved 3.1-fold (3.9 g l−1 h−1) and the catalyst was 6.9-fold more efficient (PAC/dry cell mass 10.3 g g−1).*Dedicated with gratitude to Prof. Dr. Franz Lingens – “Theo”.  相似文献   

8.
Vilà M  Maron JL  Marco L 《Oecologia》2005,142(3):474-479
The enemy release hypothesis (ERH), which has been the theoretical basis for classic biological control, predicts that the success of invaders in the introduced range is due to their release from co-evolved natural enemies (i.e. herbivores, pathogens and predators) left behind in the native range. We tested this prediction by comparing herbivore pressure on native European and introduced North American populations of Hypericum perforatum (St Johns Wort). We found that introduced populations occur at larger densities, are less damaged by insect herbivory and suffer less mortality than populations in the native range. However, overall population size was not significantly different between ranges. Moreover, on average plants were significantly smaller in the introduced range than in the native range. Our survey supports the contention that plants from the introduced range experience less herbivore damage than plants from the native range. While this may lead to denser populations, it does not result in larger plant size in the introduced versus native range as postulated by the ERH.  相似文献   

9.

Key message

Acetic acid acts as a signal molecule, strongly enhancing xanthone biosynthesis in Hypericum perforatum root cultures. This activity is specific, as demonstrated by the comparison with other short-chain monocarboxylic acids.

Abstract

We have recently demonstrated that Hypericum perforatum root cultures constitutively produce xanthones at higher levels than the root of the plant and that they respond to chitosan (CHIT) elicitation with a noteworthy increase in xanthone production. In the present study, CHIT was administered to H. perforatum root cultures using three different elicitation protocols, and the increase in xanthone production was evaluated. The best results (550 % xanthone increase) were obtained by subjecting the roots to a single elicitation with 200 mg l?1 CHIT and maintaining the elicitor in the culture medium for 7 days. To discriminate the effect of CHIT from that of the solvent, control experiments were performed by administering AcOH alone at the same concentration used for CHIT solubilization. Unexpectedly, AcOH caused an increase in xanthone production comparable to that observed in response to CHIT. Feeding experiments with 13C-labeled AcOH demonstrated that this compound was not incorporated into the xanthone skeleton. Other short-chain monocarboxylic acids (i.e., propionic and butyric acid) have little or no effect on the production of xanthones. These results indicate that AcOH acts as a specific signal molecule, able to greatly enhance xanthone biosynthesis in H. perforatum root cultures.
  相似文献   

10.
11.
12.
The species origin of Yunnan gayal has been controversial since many years. However, few recent genetic studies have suggested that it has perhaps originated from the hybridization between male Bos frontalis and female B. taurus or B. indicus. Being an important semi-wild bovid species, this has also been listed under the red list of International Union of Conservation of Nature and Natural Resources. However, there is limited information available about the immunogenicity of this precarious species of Bos. Major histocompatibility complex (MHC) plays a pivotal role in immune response to infectious diseases in vertebrates. In the present study, we have investigated the structural and functional characteristics and possible duplication of the MHC-DQA genes in gayal (B. frontalis). Two full-length cDNA clones of the MHC-DQA genes were amplified and designated as Bofr-DQA1 (DQA*0101) and Bofr-DQA2 (DQA*2001) with GenBank accession numbers KT318732 and KT318733, respectively. A comparison between Bofr-DQA1, Bofr-DQA2 and to other MHC-DQA molecules from different animal species showed that nucleotide and encoded amino acid sequences of these two identified MHC-DQA genes have more similarity to alleles of specific DQA1 and DQA2 molecules from other Ruminantia species than to each other. The phylogenic investigation also demonstrated a large genetic distance between these two genes than to homologous from the other species. The large genetic distance between Bofr-DQA1 and Bofr-DQA2, and the presence of different bovine DQA putative motifs clarify that these sequences are nonallelic type. These results could suggest that duplication of the DQA genes has also occurred in gayal. The findings of the present study have strengthened our understanding to MHC diversity in rare ruminants and mutation of immunological functions, selective and evolutionary forces that affect MHC variation within and between species.  相似文献   

13.
Carnivorous pitcher plants host diverse microbial communities. This plant–microbe association provides a unique opportunity to investigate the evolutionary processes that influence the spatial diversity of microbial communities. Using next-generation sequencing of environmental samples, we surveyed microbial communities from 29 pitcher plants (Sarracenia alata) and compare community composition with plant genetic diversity in order to explore the influence of historical processes on the population structure of each lineage. Analyses reveal that there is a core S. alata microbiome, and that it is similar in composition to animal gut microfaunas. The spatial structure of community composition in S. alata (phyllogeography) is congruent at the deepest level with the dominant features of the landscape, including the Mississippi river and the discrete habitat boundaries that the plants occupy. Intriguingly, the microbial community structure reflects the phylogeographic structure of the host plant, suggesting that the phylogenetic structure of bacterial communities and population genetic structure of their host plant are influenced by similar historical processes.  相似文献   

14.
This study was undertaken to pyramid two effective leaf rust resistance genes (Lr19 and Lr24) derived from Thinopyrum (syn. Agropyron), in the susceptible, but agronomically superior wheat cultivar HD2733 using marker-assisted selection. In the year 2001, HD2733 was released for irrigated timely sown conditions of the north eastern plains zone (NEPZ) of India became susceptible to leaf rust, a major disease of the region. Background selection helped in developing near-isogenic lines (NILs) of HD2733 with Lr19 and Lr24 with 97.27 and \(98.94\%\), respectively, of genomic similarity with the parent cultivar, after two backcrossing and one generation of selfing. NILs were intercrossed to combine the genes Lr19 and Lr24. The combination of these two genes in the cultivar HD2733 is expected to provide durable leaf rust resistance in farmers’ fields.  相似文献   

15.
16.
Phycocyanin, a blue pigment, is a type of phycobiliproteins. Because of its various potential properties, phycocyanin is applied to various fields, such as nutraceutical, pharmaceutical, medicine, cosmetics, and biotechnological research. The cost and application of phycocyanin are highly dependent on its purity index. In this study, ammonium chloride is presented as a novel, effective, and inexpensive salt for phycocyanin extraction. Compared with sodium phosphate, which is commonly used during phycocyanin extraction process, ammonium chloride solution efficiently extracted phycocyanin with high purity from Arthrospira platensis FACHB-314. In addition, ammonium phosphate solution is also presented as an alternative precipitation agent in phycocyanin purification that may replace the widely used ammonium sulfate. Statistical analysis shows that there is no significant difference in phycocyanin concentration between crude extracts (overall mean of 0.208 and 0.215 for extraction using sodium phosphate and ammonium chloride, respectively). However, the difference in phycocyanin purity ratio (A620/A280) between these two extractions is significant (overall mean of 0.742 and 1.428 for extraction using sodium phosphate and ammonium chloride, respectively). With ammonium chloride, the purity indexes of phycocyanin are 1.5 and 2.81 after the optimum extraction step, and precipitation used as the primary purification step, respectively. The present study describes a novel purification method to achieve phycocyanin with analytical grade without multiple purification steps.  相似文献   

17.
A genetic map of Pinus sylvestris was constructed using ESTP (expressed sequence tag polymorphism) markers and other gene-based markers, AFLP markers and microsatellites. Part of the ESTP markers (40) were developed and mapped earlier in Pinus taeda, and additional markers were generated based on P. sylvestris sequences or sequences from other pine species. The mapping in P. sylvestris was based on 94 F1 progeny from a cross between plus-tree parents E635C and E1101. AFLP framework maps for the parent trees were first constructed. The ESTP and other gene sequence-based markers were added to the framework maps, as well as five published microsatellite loci. The separate maps were then integrated with the aid of AFLPs segregating in both trees (dominant segregation ratios 3:1) as well as gene markers and microsatellites segregating in both parent trees (segregation ratios 1:1:1:1 or 1:2:1). The integrated map consisted of 12 groups corresponding to the P. taeda linkage groups, and additionally three and six smaller groups for E1101 and E635C, respectively. The number of framework AFLP markers in the integrated map is altogether 194 and the number of gene markers 61. The total length of the integrated map was 1,314 cM. The set of markers developed for P. sylvestris was also added to existing maps of two P. taeda pedigrees. Starting with a mapped marker from one pedigree in the source species resulted in a mapped marker in a pedigree of the other species in more than 40% of the cases, with about equal success in both directions. The maps of the two species are largely colinear, even if the species have diverged more than 70 MYA. Most cases of different locations were probably due to problems in identifying the orthologous members of gene families. These data provide a first ESTP-containing map of P. sylvestris, which can also be used for comparing this species to additional species mapped with the same markers.Communicated by C. Möllers  相似文献   

18.
Hairy root cultures of Echinacea, one of the most important medicinal plants in the US, represent a valuable alternative to field cultivation for the production of bioactive secondary metabolites. In this study, the three most economically important species of Echinacea (Echinacea purpurea, Echinacea pallida, and Echinacea angustifolia) were readily transformed with two strains of Agrobacterium that produce the hairy root phenotype. Transformed roots of all three species exhibited consistent accelerated growth and increased levels of alkamide production. Optimization of the culture of Echinacea hairy roots was implemented to enhance both growth and alkamide production concomitantly. The use of half-strength Gamborg’s B5 medium supplemented with 3.0% sucrose was twice as effective in maintaining hairy root production than any other media tested. The addition of indolebutyric acid increased the growth rate of roots by as much as 14-fold. Alkamide production increased severalfold in response to the addition of the elicitor, jasmonic acid, but did not respond to the addition of indolebutyric acid. Induced accumulation of the important bioactive compounds, alkamides 2 and 8, was observed both in transformed roots and in response to jasmonic acid treatments. The results of this study demonstrate the efficacy of hairy root cultures of Echinacea for the in vitro production of alkamides and establish guidelines for optimum yield.  相似文献   

19.
Ultrasonic pretreatment, lysozyme, inorganic osmotics and bovine albumin were used to prepare the spheroplasts of Arthrospira platensis (Spirulina platensis). The average cell number of the fragments from the filaments of strain A9 was about 2.2 cells after 80-s ultrasonic pretreatment. These fragments could regenerate and were suitable material for isolating spheroplasts, so the optimum conditions for doing this were investigated. The best enzymolysis parameters were designed. During the isolation process, gentle shaking of the enzymolysis sample for several times greatly enhanced the proportion of spheroplasts. However, no spheroplasts were obtained when organic compounds were used as osmotics. The spheroplasts could form typical colonies on plate of inorganic medium, with a regeneration rate of about 3%. These spheroplasts might be used as competence cells to carry on the research of genetic transformation.  相似文献   

20.
Hairy root-regenerated clones of Hypericum perforatum L. grown in vitro similarly to those successfully adapted to ex vitro conditions showed phenotype features typical for plants transformed with Agrobacterium rhizogenes T-DNA. These included reduced apical dominance, increased branching, dwarfing and reduced fertility. Transgenic clones differed in ability to develop root system as a necessary condition for transfer to the soil. One of the profiling characters, capability of hypericin biosynthesis was altered as well. Dark glands as the sites of hypericin accumulation and/or synthesis exhibited significantly higher densities on both, leaves and petals of transgenic clones comparing to controls. In the genome of transgenic clones, rolABC genes were detected. Both clones harboured similar copy number of individual rol genes. However, copy numbers descended from rolA to rolC gene in both clones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号