首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Size exclusion chromatography and low-angle laser light scattering have been used for studying the evolution of schizophyllan polysaccharide during a thermal treatment (t > 100°C) in aerated solution. Thermal denaturation of the native triple helices into single chains is initiated above 135°C and is complete in 10 min at 160°C. Both conformations can coexist in the 130–140°C temperature range. In the presence of oxygen, both forms of the biopolymer undergo severe thermal degradation. The rate of degradation was found to be independent of chain length and conformation. An activation energy of 104 kJ mol−1 was determined. The reaction was base-catalyzed. Analysis of chromatographic patterns indicate that the degradation probably occurs through an ‘all-or-none’ process.  相似文献   

2.
Differential scanning calorimetry, circular dichroism, and visible absorption spectrophotometry were employed to elucidate the structural stability of thermophilic phycocyanin derived from Cyanidium caldarium, a eucaryotic organism which contains a nucleus, grown in acidic conditions (pH 3.4) at 54°C. The obtained results were compared with those previously reported for thermophilic phycocyanin derived from Synechococcus lividus, a procaryote containing no organized nucleus, grown in alkaline conditions (pH 8.5) at 52°C. The temperature of thermal unfolding (td) was found to be comparable between C. caldarium (73°C) and S. lividus (74°C) phycocyanins. The apparent free energy of unfolding (ΔG[urea]=0) at zero denaturant (urea) concentration was also comparable: 9.1 and 8.7 kcal/mole for unfolding the chromophore part of the protein, and 5.0 and 4.3 kcal/mole for unfolding the apoprotein part of the protein, respectively. These values of td and ΔG[urea]=0 were significantly higher than those previously reported for mesophilic Phormidium luridum phycocyanin (grown at 25°C). These findings revealed that relatively higher values of td and ΔG[urea]=0 were characteristics of thermophilic proteins. In contrast, the enthalpies of completed unfolding (ΔHd) and the half-completed unfolding (ΔHd)1/2 for C. caldarium phycocyanin were much lower than those for S. lividus protein (89 versus 180 kcal/mole and 62 versus 115 kcal/mole, respectively). Factors contributing to a lower ΔHd in C. caldarium protein and the role of charged groups in enhancing the stability of thermophilic proteins were discusse.  相似文献   

3.
A Cellulomonas sp. LX newly isolated from soil samples could degrade the extracellular polysaccharide (xanthan) of Xanthomonas campestris. Such degradation was inhibited by glucose addition. Xanthan-degrading enzyme activity was found in the culture supernatant when Cellulomonas sp. LX was grown in the medium with xanthan as carbon source. The optimal pH and temperature for the xanthan-degrading reaction was 6.0 and 40 °C, respectively. The bioactivity of the xantho-oligosaccharide was examined with the soybean cotyledon bioassay and found it was an active elicitor.  相似文献   

4.
Starch-poly (ethylene-co-acrylic acid) (EAA) complexes were prepared by jet-cooking mixtures of either cornstarch, waxy cornstarch or high amylose cornstarch with aqueous ammonia dispersions of EAA (4% EAA based on the weight of starch). Viscosities (η) were determined at temperatures ranging from 80°C to 22°C, and plots of log η versus 1/T (K−1) were prepared. When cooked with EAA, cornstarch and waxy cornstarch showed major changes in viscous behavior between 50°C and 60°C. Above 50–60°C, viscosity increased markedly with a reduction in temperature; however, viscosity increased slowly below 50–60°C with an apparent activation energy for the process approximating that of water itself. The temperature dependence of the measured viscosity from 80°C to 60°C could be attributed to the large increase in size and complexity of the flowing particles as individual amylopectin molecules were bound together by complexed EAA. Apparently, complexing is essentially complete at 50°C. When high amylose cornstarch was cooked in the absence of EAA, retrogradation produced a sharp increase in log η at temperatures below about 50°C. However, if EAA is present, association between amylose molecules apparently takes place via complex formation rather than retrogradation, since log η increases sharply at about 70–80°C. Also, in contrast to cornstarch and waxy cornstarch, log η versus 1/T plots for high amylose cornstarch did not level off at low temperatures. In general, viscosities increased with the pH of the system, particularly when η was measured at high temperatures. This could result from improved complexing ability of EAA under high pH conditions, possibly due to reduced micelle size and maximum extension of polymer chains from micelle surfaces.  相似文献   

5.
Three thermoalkaliphilic bacteria, which were grown at pH 9.3–10 and 60–65 °C were isolated out of a textile wastewater drain. The unknown micro-organisms were identified as thermoalkaliphilic Bacillus sp. Growth conditions were studied and catalase activities and stabilities compared. Catalases from Bacillus SF showed high stabilities at 60 °C and pH 9 (t1/2=38 h) and thus this strain was chosen for further investigations, such as electron microscopy, immobilization of catalase and hydrogen peroxide degradation studies. Degradation of hydrogen peroxide with an immobilized catalase from Bacillus SF enabled the reuse of the water for the dyeing process. In contrast, application of the free enzyme for treatment of bleaching effluents, caused interaction between the denaturated protein and the dye, resulting in reduced dye uptake, and a higher color difference of 1.3 ΔE* of dyed fabrics compared to 0.9 ΔE* when using the immobilized enzyme.  相似文献   

6.
The influence of xanthan conformation on the physicochemical behaviour of their mixtures with galactomannan from Schizolobium parahybae mannose:galactose ratio (M/G=3), was studied by viscoelastic measurements, differential scanning calorimetry (DSC) and chiroptical (circular dichroism) methods. The results suggested a more effective interaction of the galactomannan with disordered xanthan segments, which are more abundant in low salt concentrations but are still present in lower proportion at temperatures lower than the temperature of xanthan conformational transition (Tm). The dependence of ellipticity with temperature in a circular dichroism (CD) spectra suggested an ordering of the xanthan chains induced by galactomannan at the temperature of gel formation (Tg≈25°C), under conditions where xanthan alone exhibits a disordered conformation. The lower Tg value found (≈25°C) compared with that (60°C) usually described in the literature is certainly related to the M/G ratio and the galactosyl unit distribution along the mannan main chain.  相似文献   

7.
Xanthan gum fermentation represents a good model for the study of the mixing of rheologically complex culture broths. Most of the previous work on power consumption dealt with ‘standard’, single impellers and used model fluids to simulate xanthan broths. This work describes the characterization of three dual-impeller combinations (D/T = 0·53) for the mixing of dehydrated—reconstituted fermentation broths of Xanthomonas campestris that had matched rheology to the actual broths. The bottom impeller was a Rushton turbine (RT) and the top impeller was another RT, a 45° pitched blade turbine (PT) or an A-310 Lightnin mixer (A310). The experiments were carried out in a tank of 0·0094 m3 working volume equipped with an air bearing dynamometer. The power was measured in a wide range of xanthan concentrations (5–40 kg m−3) in aerated (0·25, 0·5 and 1·0 vvm) and unaerated conditions. Unaerated power number (Po) vs. Reynolds number (Re) curves showed similar trends for the three combinations. Exponents close to −1 were obtained in the laminar region. A minimum in Po (Pomin) occurred at Re = 30–40, then increasing to a plateau value which was evident at Re> 200. In the transition region Pomin values were 4·3 (RT and RT), 3·6 (RT and PT) and 2·4 (RT and A310). The aerated power data for (RT and PT) and (RT and A-310) showed higher torque instabilities than the dual RT combinations at higher xanthan concentrations. The higher the xanthan concentrations, the higher the drop in power and the less important the effect of the aeration rate. Among the combinations tested, when using Rushton turbines, the well-mixed ‘cavern’ reached the tank wall (i.e., fluid motion was observed) at the lowest volumetric power input. High  相似文献   

8.
Attempt was done to prepare food supplements with high content of c9, t11-CLA or t10, c12-CLA. A free acid mixture containing CLA isomers was esterified with ethanol by enzyme catalysis. Novozyme 435 and Lipase AY30 were screened, and Lipase AY30 was employed to catalyze esterification reaction because of its high fractionation efficiency. Effect of reaction conditions on total esterification was investigated, and the optimal reaction conditions were: 140 U of lipase amount, reaction temperature at 50 °C, a pH of 6.5, and molar ratio of FFA–CLA to ethanol at 1:1. Based on the studies above, experiments of esterification and purification were done, and the best fractionation efficiency was obtained when the total esterification was 37%, and the corresponding purity and recovery of c9, t11-CLA were 75.50 and 49.85%, and that of t10, c12-CLA were 72.02 and 62.32%.  相似文献   

9.
Lactobacillus reuteri shows certain beneficial effects to human health and is recognized as a probiotic. However, its application in frozen foods is still not popular because of its low survival during freezing and frozen storage. Cell immobilization technique could effectively exert protection effects to microbial cells in order to enhance their endurance to unfavorable environmental conditions as well as to improve their viability and cell concentration. Ca-alginate and κ-carrageenan were used to immobilize L. reuteri in this research, and the immobilized cells were exposed to different freezing temperatures, i.e. − 20 °C, − 40 °C, − 60 °C, − 80 °C, and stored at − 40 °C and − 80 °C for 12 weeks. The objectives were to study the protection effects of cell immobilization against the adverse conditions of freezing and frozen storage, and the effects of freezing temperatures to the immobilized cells. Cell immobilization was used to raise the survival of L. reuteri during freezing and frozen storage in order to develop frozen foods with the probiotic effects of L. reuteri. Results indicated that immobilized L. reuteri possessed better survival in both freezing and frozen storage. The survival of immobilized L. reuteri was higher than that of free cells, and the effects of lower freezing temperature were better than higher freezing temperature. The immobilization effects of Ca-alginate were found to be superior to κ-carrageenan. Cell immobilized L. reuteri exhibits potential to be used in frozen foods.  相似文献   

10.
Grafting is regarded as a promising tool to broaden the temperature optimum of elite tomato cultivars. However, suitable low-temperature tolerant tomato rootstocks are not yet available and its breeding is hampered by a lack of variation in low-temperature tolerance within the cultivated tomato. In this study, therefore, the impact of grafting tomato (Solanum lycopersicum Mill. cv. Moneymaker, Sl) onto the rootstock of a cold-tolerant high-altitude accession of a related wild species (Solanum habrochaites LA 1777 Humb. & Bonpl., Sh) was examined at different combinations of optimal (25 °C) and/or suboptimal (15 °C) air/root-zone temperatures (RZT), i.e. 25/25, 25/15, 15/25 and 15/15 °C. Self-grafted tomato plants were used as controls. Both scion/rootstock combinations, Sl/Sl and Sl/Sh, were grown hydroponically and compared for biomass production and partitioning, plant morphology, carbohydrate partitioning and leaf C and N status. Grafting tomato onto Sh increased the relative growth rate of shoots with 26 and 11% at 25/15 and 15/15 °C, respectively. This increase could be attributed to stimulation of the leaf expansion rate. Graft combinations with Sh rootstocks were characterized by higher root mass ratios, particularly at 15 °C RZT. Suboptimal RZT strongly reduced the relative growth rate of Sl roots but not of Sh. This was correlated to differences in inhibition of root elongation. In contrast to tomato grafted onto Sh, leaf total C and total N concentrations increased in self-grafted tomato plants in response to 15 °C RZT. The increase in leaf total C concentration of Sl/Sl graft combinations at 15 °C RZT could be ascribed largely to starch accumulation. This study illustrates that growth of vegetative tomato plants at suboptimal temperature is for a significant part inhibited by its poor root development. Grafting tomato onto a low-temperature rootstock provides an alternative tool to reduce, in part, the grow-limiting effects of suboptimal RZ temperature on the shoot. To improve the low-temperature tolerance of existing commercial tomato rootstocks, S. habrochaites LA 1777 appeared to be a valuable germplasm pool.  相似文献   

11.

1. 1.|The effect of temperature on caecal function was examined in the naked mole-rat Heterocephalus glaber, a poikilothermic mammal, which consumes a high proportion of fibre in its natural diet.

2. 2.|The temperature of optimal caecal function was determined from fermentation data measure at three specifically chosen temperatures (28, 33 and 40°C).

3. 3.|There was no significant difference between gas production at 33 and 40°C, however, gas production was significantly lower at 28°C.

4. 4.|The relative proportions of the gases produced were markedly different at 33 and 40°C (P ≤ 0.01). More methane and hydrogen were produced at 33°C than at 40°C.

5. 5.|These data suggest that microbial organisms within the caecum were active and functioning more effectively at 33°C (the preferred body temperature of the naked mole-rat) than at the other two temperatures.

Author Keywords: Caecal fermentation; temperature effects; gas production; hind gut; naked mole-rat; Heterocephalus glaber  相似文献   


12.
Studies on the stability of the vanillin entrapped within the spherical aggregates obtained from amaranth (Amaranthus paniculatus L.), quinoa (Chenopodium quinoa L.), rice (Oryza sativa L.) and colocasia (Colocasia esculenta L.) in the presence of gum Arabic, carboxymethyl cellulose (CMC) and carrageenan at 0.1–1.0% as bonding agents, were obtained by spray drying a 20% (w/w) starch dispersion at 120 °C. Vanillin was used at 5% based on starch (bos). The loss of vanillin over a 6-week storage period followed a first order kinetics. The stability was evaluated in terms of t1/2 (weeks) from a semi-log plot of percentage retention of vanillin vs. storage time in weeks. The t1/2 for the total vanillin and entrapped vanillin within the spherical aggregates prepared from different starches decreased in the order, amaranth>colocasia>chenopodium>rice. The t1/2 decreased with an increase in the amylose content of the starches, although it was not linear. With respect to the bonding agent the stability decreased in the order, gum Arabic>CMC>carrageenan. While CMC and carrageenan gave an increasing value of t1/2 with an increase in concentration from 0.5 to 1.0%, gum Arabic surprisingly gave a higher t1/2 value at 0.5% as compared to 1.0%.  相似文献   

13.
Physico-chemical modifications promoted by heat treatment and dehydration at different temperatures (30–80 °C) on acemannan, a bioactive polysacharide from aloe vera (Aloe barbadensis Miller) parenchyma, were evaluated. Modification of acemannan, a storage polysaccharide, was particularly significant when dehydration was performed above 60 °C. Heating promoted marked changes in the average molecular weight (MW) of the bioactive polysaccharide, increasing from 45 kDa, in fresh aloe, to 75 and 81 kDa, for samples dehydrated at 70 and 80 °C, respectively. This could be attributed to structural modifications, such as deacetylation and losses of galactose-rich side-chains from the mannose backbone. These structural modifications were reflected by the significant changes occurring in the related functional properties, such as swelling, water retention capacity, and fat adsorption capacity, which exhibited a significant decrease as the temperature of dehydration increased. Further, dehydration also promoted significant modification of the main type of cell wall polysaccharides present within the aloe parenchyma tissues. Pectic polysaccharides from the cell wall matrix were affected by heating, probably due to either β-elimination processes or enzyme-catalysed degradation. The influence that these physico-chemical modifications might have on the bioactivity and properties of processed products from A. barbadensis Miller needs to be considered.  相似文献   

14.
The kinetics of malolactic fermentation in Chardonnay wine by immobilised Lactobacillus casei cells has been studied. Calcium pectate gel and chemically modified chitosan beads were used as supports for immobilisation. Repeated batch fermentations were carried out with different wine samples, some of which were treated with sulfur dioxide (free 19–25 mg/litre and total 80–88 mg/litre), in shake flask at 36, 25 and 20°C without any loss of activity. The degradation of malic acid obtained using immobilised cells was twice as high as that obtained with free cells. At an initial pH 3·2, decrease of malic acid of about 30% was observed at 25°C in one hour using L. casei cells immobilised either in pectate gel or on chitosan. Among the physico-chemical parameters studied, temperature was the main factor affecting metabolism of the organic acids as well as the rate of the malolactic fermentation. Operational stability of calcium pectate gel beads and chemically modified chitosan beads was 6 months after eight fermentations and 2 months after five fermentations, respectively, which proved the possibility of industrial application of the chosen supports in wine making.  相似文献   

15.
Pro-transglutaminase from Streptomyces mobaraensis was expressed in Escherichia coli as a fusion protein carrying a C-terminal histidine tag (pro-MTG-His6). The recombinant organism was cultivated in 15 L bioreactor scale and pro-MTG-His6 was purified by immobilized metal affinity chromatography. Activation of the inactive pro-enzyme using trypsin resulted in an unexpected degradation of the transglutaminase and a concomitant loss of activity. Therefore, a set of commercially available proteases was investigated for their activation potential without destroying the target enzyme. Besides trypsin, chymotrypsin and proteinase K were found to activate but hydrolyze the (pro-MTG-His6). Cathepsin B, dispase I, and thrombin were shown to specifically hydrolyze pro-MTG-His6 without deactivation. TAMEP, the endogeneous protease from S. mobaraensis was purified for comparison and also found to activate the recombinant histidine-tagged transglutaminase without degradation. The TAMEP activated MTG-His6 was purified and characterized. The specific activity (23 U/mg) of the recombinant histidine-tagged transglutaminase, the temperature optimum (50 °C), and the temperature stability (t1/2 at 60 °C = 1.7 min) were comparable to the wild-type enzyme. A C-terminal peptide tag did neither affect the activity nor the stability but facilitated the purification. The purification of the histidine-tagged protein is possible before or after activation.  相似文献   

16.
Two thermophilic extracellular proteases, designated Lmm-protease-Lh (29 kDa) and Hmm-protease-Lh (62 kDa), were purified from the Lactobacillus helveticus from kefir, and found active in media containing dithiothreitol; the activity of Lmm-protease-Lh was increased significantly in media containing also EDTAK2. Both novel proteases maintained full activity at 60 °C after 1-h incubation at 10 °C as well as at 80 °C, showing optimum kcat/Km values at pH 7.00 and 60 °C. Only irreversible inhibitors specific for cysteine proteinases strongly inhibited the activity of both novel enzymes, while they remained unaffected by irreversible inhibitors specific for serine proteinases. Both enzymes hydrolyzed the substrate Suc-FR-pNA via Michaelis–Menten kinetics; conversely, the substrate Cbz-FR-pNA was hydrolyzed by Lmm-protease-Lh via Michaelis–Menten kinetics and by Hmm-protease-Lh via substrate inhibition kinetics. Valuable rate constants and activation energies were estimated from the temperature-(kcat/Km) profiles of both enzymes, and useful results were obtained from the effect of different metallic ions on their Michaelis–Menten parameters.  相似文献   

17.
In-situ gelation of semidilute xanthan solutions with trivalent chromium, aluminum or iron ions was studied by rheology and UV-spectroscopy. Measurements of the elastic modulus of xanthan gel cylinders prepared by dialysis against the complexing ion at pH values from 2 to 6 indicate that monomeric species of the ion are ineffective, whereas dimeric or higher oligomeric species are effective in crosslinking the polysaccharide. When chromium was used as the crosslinking species, the dependence of the gelation rate on the ionic concentration followed a power law with a coefficient of 1·7. The gelation time and the gelation rate were found to extrapolate to zero at 1 m Cr for 2·5 mg/ml xanthan. The limiting concentration of xanthan needed for gelation with 5 m Cr(III) at 20°C was estimated as 0·35 mg/ml. This critical xanthan concentration is close to the overlap concentration c* estimated from the experimentally determined intrinsic viscosity [η] using c* = 1·4/[η]. An apparent activation energy for crosslinking of xanthan was calculated as Ea = 42 kJ/mol and Ea = 108 kJ/mol for Cr and Al ions, respectively. The fractal dimensionality of xanthan-Cr at the sol-gel transition was estimated as 1·3 applying the Chambon-Winter criterion for gelation, thus indicating that this gelation criterion is applicable also to stiff-chain polysaccharides such as xanthan.  相似文献   

18.
Male rats (450 g, n=11/group) were heated at an ambient temperature of 42°C until a rectal temperature of 42.8°C was attained. Rats, then received either saline (30°C)+tail ice water immersion (F+I) or saline (30°C)+tail ice water immersion+Nifedipine, a peripheral vasodilator, (F+I+N) to determine cooling rate effectiveness and survivability. The time to reach a rectal temperature of 42.8°C averaged 172 min in both groups resulting in similar heating rates (0.029°C/min). The cooling rates in group F+I and F+I+N were not significantly different from each other. We conclude that since Nifedipine did not improve cooling rates when combined with fluid+tail ice water immersion, its use as a cooling adjunct does not seem warranted.  相似文献   

19.
Whole cells of Bacillus halodurans LBK 261 were used as a source of catalase for degradation of hydrogen peroxide. The organism, B. halodurans grown at 55°C and pH 10, yielded a maximum catalase activity of 275 U g-1 (wet wt.) cells. The catalase in the whole cells was active over a broad range of pH with a maximum at pH 8-9. The enzyme was optimally active at 55°C, but had low stability above 40°C. The whole cell biocatalyst exhibited a Km of 6.6 mM for H2O2 and Vmax of 707 mM H2O2 min-1 g-1 wet wt. cells, and showed saturation kinetics at 50 mM H2O2. The cells were entrapped in calcium alginate and used for H2O2 degradation at pH 9 in batch and continuous mode. In the batch process, the immobilized preparation containing 1.5 g (wet wt.) cells could be recycled at least four times for complete degradation of the peroxide in 50 mL solution at 25°C. An excess of immobilized biocatalyst could be used in a continuous stirred tank reactor for an average of 9 days at temperatures upto 55°C, and in a packed bed reactor (PBR) for 5 days before the beads started to deform.  相似文献   

20.
Growth and dark respiration rates of the marine diatom Leptocylindrus danicus Cleve were measured in axenic batch culture under 49 combinations of temperature (5, 10, 15, 20°C), daylength(15:9, 12:12, 9:15 LD), and irradiance (at least four irradiances per daylength). Cell division rates exhibited a temperature-dependent daylength effect. Optimal temperatures occurred between 15 and 20°C. Both the initial slope () and the growth rate at light saturation (μmax) were strongly influenced by temperature; increased five-fold and μmax by an order of magnitude between 5 and 20°C. The compensation irradiance (Ic) was independent of temperature. μmax was 2.7 div day−1 at 20°C, 2.6 at 15°C, 1.1 at 10°C, and 0.3 at 5 °C. Cells grown under 15:9 and 12:12 LD exhibited similar growth-light curves at 20°C and at 15°C. μmax of cells grown under 9:15 LD at these temperatures were substantially lower than μmax under longer daylengths. Growth at 10 and 5°C was independent of daylength.

Dark respiration rates were a linear function of cell division rates at 10, 15, and 20°C, and support the concept that growth rate is dependent on dark respiration rate. These relationships were not influenced by daylength. A detectable relationship between dark respiration and growth at 5°C was not observed.

Photosynthesis and excretion showed temperature-dependent curvilinear relationships with growth rate, reflecting the lower saturation irradiance for growth compared to light saturation of photosynthesis and excretion. The relationship between Chl a-specific photosynthesis and growth was controlled by the C:Chl a ratio, which showed a positive correlation with cell division rate. At 15 and 20°C, light saturation of growth was associated with C:Chl a ratios of 40 to 60; at 5 and 10°C, cells growing at μmax contained C:Chl a in ratios of 80 to 110.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号