共查询到20条相似文献,搜索用时 15 毫秒
1.
S B Shears 《The Journal of biological chemistry》1989,264(33):19879-19886
Inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) metabolism has been studied in liver homogenates and in 100,000 x g supernatant and particulate fractions. When liver homogenates were incubated in an "intracellular" medium containing 5 mM MgATP, equal proportions of Ins(1,3,4)P3 were dephosphorylated and phosphorylated. Two inositol tetrakisphosphate (InsP4) products and an inositol pentakisphosphate (InsP5) were detected. The InsP4 isomers were unequivocally identified as inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) and inositol 1,3,4,6-tetrakisphosphate (Ins(1,3,4,6)P4) by high performance liquid chromatography separation of inositol phosphates, periodate oxidation, alkaline hydrolysis, and stereo-specific polyol dehydrogenase. Ins(1,3,4)P3 5-kinase is a novel enzyme activity and accounted for 16% of the total Ins(1,3,4)P3 phosphorylation. Ins(1,3,4,6)P4 was also shown to be further phosphorylated to inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P5) by a kinase not previously known to occur in liver. About 75% of Ins(1,3,4)P3 kinase activities were soluble and were partly purified by anion-exchange fast protein liquid chromatography. The two Ins(1,3,4)P3 kinase activities eluted as a single peak that was well resolved from Ins(1,3,4)P3 phosphatase, Ins(1,3,4,6)P4 5-kinase, and Ins(1,3,4,5)P4 5-phosphatase activities. A further novel observation was that 10 microM Ins(1,3,4,5)P4 inhibited Ins(1,3,4)P3 kinase activities by 60%. 相似文献
2.
Inositol 1,3,4-trisphosphate 5/6-kinase is a protein kinase that phosphorylates the transcription factors c-Jun and ATF-2 总被引:6,自引:0,他引:6
Phosphorylation of inositol 1,3,4-trisphosphate by inositol 1,3,4-trisphosphate 5/6-kinase is the first committed step in the formation of higher phosphorylated forms of inositol. We have shown that the eight proteins called the COP9 signalosome complex copurify with calf brain 5/6-kinase. Because the complex has been shown to phosphorylate c-Jun in vitro, we tested both the complex and 5/6-kinase and found that both are able to phosphorylate c-Jun and ATF-2 on serine/threonine residues. These findings establish a link between two major signal transduction systems: the inositol phosphates and the stress response system. 相似文献
3.
Specificity determinants in inositol polyphosphate synthesis: crystal structure of inositol 1,3,4-trisphosphate 5/6-kinase 总被引:3,自引:0,他引:3
Inositol hexakisphosphate and other inositol high polyphosphates have diverse and critical roles in eukaryotic regulatory pathways. Inositol 1,3,4-trisphosphate 5/6-kinase catalyzes the rate-limiting step in inositol high polyphosphate synthesis in animals. This multifunctional enzyme also has inositol 3,4,5,6-tetrakisphosphate 1-kinase and other activities. The structure of an archetypal family member, from Entamoeba histolytica, has been determined to 1.2 A resolution in binary and ternary complexes with nucleotide, substrate, and product. The structure reveals an ATP-grasp fold. The inositol ring faces ATP edge-on such that the 5- and 6-hydroxyl groups are nearly equidistant from the ATP gamma-phosphate in catalytically productive phosphoacceptor positions and explains the unusual dual site specificity of this kinase. Inositol tris- and tetrakisphosphates interact via three phosphate binding subsites and one solvent-exposed site that could in principle be occupied by 18 different substrates, explaining the mechanisms for the multiple specificities and catalytic activities of this enzyme. 相似文献
4.
Ras signaling in tumor necrosis factor-induced apoptosis. 总被引:5,自引:0,他引:5
J C Trent nd D J McConkey S M Loughlin M T Harbison A Fernandez H N Ananthaswamy 《The EMBO journal》1996,15(17):4497-4505
Tumor necrosis factor (TNF) exerts cytotoxicity on many types of tumor cells but not on normal cells. The molecular events leading to cell death triggered by TNF are still poorly understood. Our previous studies have shown that enforced expression of an activated H-ras oncogene converted non-tumorigenic, TNF-resistant C3H 10T1/2 fibroblasts into tumorigenic cells that also became very sensitive to TNF-induced apoptosis. This finding suggested that Ras activation may play a role in TNF-induced apoptosis. In this study we investigated whether Ras activation is an obligatory step in TNF-induced apoptosis. Introduction of two different molecular antagonists of Ras, the rap1A tumor suppressor gene or the dominant-negative rasN17 gene, into H-ras-transformed 10TEJ cells inhibited TNF-induced apoptosis. Similar results were obtained with L929 cells, a fibroblast cell line sensitive to TNF-induced apoptosis, which does not have a ras mutation. While Ras is constitutively activated in TNF-sensitive 10TEJ cells, TNF treatment increased Ras-bound GTP in TNF-sensitive L929 cells but not in TNF-resistant 10T1/2 cells. Moreover, RasN17 expression blocked TNF-induced Ras-GTP formation in L929 cells. These results demonstrate that Ras activation is required for TNF-induced apoptosis in mouse fibroblasts. 相似文献
5.
Philip W. Majerus David B. Wilson Chunfen Zhang Peter J. Nicholas Monita P. Wilson 《Advances in enzyme regulation》2010,50(1):365-372
ITPK1 is the rate-limiting enzyme in the pathway leading to formation of the highly phosphorylated inositol phosphates including IP6 and the inositol pyrophosphates. One or more of these metabolites are essential for life as deletion of either of the kinases that form IP5 or IP6 in mice results in embryonic lethality. We have produced mice harboring a hypomorphic allele for Itpk1, and mice homozygous for this gene trap allele produce low but detectable levels of active enzyme. We have studied the expression of Itpk1 in various tissues and found that the enzyme is highly expressed in smooth muscle of vessels and other tissues. In addition, these mice have neural tube defects in 12% of homozygous embryos. Since the levels of enzyme expression vary greatly in homozygous animals, we speculate that relative deficiency of one or more inositol phosphates accounts for these defects. We plan to feed an inositol deficient diet or one with supplemental inositol to animals to demonstrate altered prevalence of neural tube defects. 相似文献
6.
The expression of the gene OsITL1 coding for the inositol 1,3,4-trisphosphate 5/6-kinase protein was induced by 200 mM NaCl or dehydration. The expression of OsITL1 in response to NaCl and dehydration suggests the possible functions of OsITL1 in osmotic stress responses; however, physiological tests indicate that the expression of OsITL1 in tobacco decreases tolerance to NaCl during germination and seedling development. This result was consistent with that obtained on treatment of mature tobacco seedlings with NaCl (200 mM), suggesting that OsITL1 inversely regulates plant responses to osmotic stress. 相似文献
7.
Keratin-dependent, epithelial resistance to tumor necrosis factor-induced apoptosis 总被引:24,自引:0,他引:24
下载免费PDF全文

Tumor necrosis factor (TNF) is a cytokine produced by macrophages and T lymphocytes that acts through two distinct receptors, TNFR1 (60 kD, CD120a) and TNFR2 (80 kD, CD120b), to affect cellular proliferation, differentiation, survival, and cell death. In addition to its proinflammatory actions in mucosal tissue, TNF is important for liver regeneration. Keratin 8 (K8) and keratin 18 (K18) form intermediate filaments characteristic of liver and other single cell layered, internal epithelia and their derivative cancers. K8-deficient (K8(-)) mice, which escape embryonic lethality, develop inflammatory colorectal hyperplasia, mild liver abnormalities, and tolerate hepatectomy poorly. We show that normal and malignant epithelial cells deficient in K8 and K18 are approximately 100 times more sensitive to TNF-induced death. K8 and K18 both bind the cytoplasmic domain of TNFR2 and moderate TNF-induced, Jun NH(2)-terminal kinase (JNK) intracellular signaling and NFkappaB activation. Furthermore, K8(-) and K18(-) mice are much more sensitive to TNF dependent, apoptotic liver damage induced by the injection of concanavalin A. This moderation of the effects of TNF may be the fundamental function of K8 and K18 common to liver regeneration, inflammatory bowel disease, hepatotoxin sensitivity, and the diagnostic, persistent expression of these keratins in many carcinomas. 相似文献
8.
M Abdullah P J Hughes A Craxton R Gigg T Desai J F Marecek G D Prestwich S B Shears 《The Journal of biological chemistry》1992,267(31):22340-22345
The metabolism of inositol 1,3,4-trisphosphate is a pivotal branch point of inositol phosphate turnover; its dephosphorylation replenishes cellular inositol pools, its phosphorylation at the 6-position supports the synthesis of inositol pentakisphosphate, and its phosphorylation at the 5-position produces inositol 1,3,4,5-tetrakisphosphate (Shears, S.B. (1989) J. Biol. Chem. 264, 19879-19886). In order to increase understanding of the control of inositol-1,3,4-trisphosphate kinase activity, the enzyme was highly purified from rat liver by precipitation with polyethylene glycol, MonoQ ion-exchange chromatography, heparin-agarose affinity chromatography, and a novel affinity chromatography procedure that utilized Affi-Gel resin to which InsP6 was coupled (Marecek, J.F., and Prestwich, G.D. (1991) Tetrahedron Lett. 32, 1863-1866). The final purification was about 26,000-fold, with a 6% yield. This final preparation performed both 5- and 6-kinase activities in the ratio of approximately 1:5. The affinity of the enzyme for inositol 1,3,4-trisphosphate was 0.04 microM, the highest yet determined for an inositol phosphate kinase. Both inositol 1,3,4,5-tetrakisphosphate and inositol 1,3,4,6-tetrakisphosphate were competitive inhibitors of the kinase (Ki values of 2-4 microM). The enzyme was determined to have a molecular mass of 36 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Kinase activity was unaffected by Ca2+/calmodulin, protein kinase A, or protein kinase C. 相似文献
9.
Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis 总被引:8,自引:0,他引:8
Vanden Berghe T Kalai M van Loo G Declercq W Vandenabeele P 《The Journal of biological chemistry》2003,278(8):5622-5629
Triggering tumor necrosis factor receptor-1 (TNFR1) induces apoptosis in various cell lines. In contrast, stimulation of TNFR1 in L929sA leads to necrosis. Inhibition of HSP90, a chaperone for many kinases, by geldanamycin or radicicol shifted the response of L929sA cells to TNF from necrosis to apoptosis. This shift was blocked by CrmA but not by BCL-2 overexpression, suggesting that it occurred through activation of procaspase-8. Geldanamycin pretreatment led to a proteasome-dependent decrease in the levels of several TNFR1-interacting proteins including the kinases receptor-interacting protein, inhibitor of kappa B kinase-alpha, inhibitor of kappa B kinase-beta, and to a lesser extent the adaptors NF-kappaB essential modulator and tumor necrosis factor receptor-associated factor 2. As a consequence, NF-kappa B, p38MAPK, and JNK activation were abolished. No significant decrease in the levels of mitogen-activated protein kinases, adaptor proteins TNFR-associated death domain and Fas-associated death domain, or caspase-3, -8, and -9 could be detected. These results suggest that HSP90 client proteins play a crucial role in necrotic signaling. We conclude that inhibition of HSP90 may alter the composition of the TNFR1 complex, favoring the caspase-8-dependent apoptotic pathway. In the absence of geldanamycin, certain HSP90 client proteins may be preferentially recruited to the TNFR1 complex, promoting necrosis. Thus, the availability of proteins such as receptor-interacting protein, Fas-associated death domain, and caspase-8 can determine whether TNFR1 activation will lead to apoptosis or to necrosis. 相似文献
10.
11.
Trimeric tumor necrosis factor (TNF) binding leads to recruitment of TRADD to TNFR1. In current models, TRADD recruits RIP, TRAF2, and FADD to activate NF-kappaB, Jun N-terminal protein kinase (JNK), and apoptosis. Using stable short-hairpin RNA (shRNA) knockdown (KD) cells targeting these adaptors, TNF death-inducing signaling complex immunoprecipitation demonstrates competitive binding of TRADD and RIP to TNFR1, whereas TRAF2 recruitment requires TRADD. Analysis of KD cells indicates that FADD is necessary for Fas-L- or TRAIL- but not TNF-induced apoptosis. Interestingly, TRADD is dispensable, while RIP is required for TNF-induced apoptosis in human tumor cells. TRADD is required for c-Jun phosphorylation upon TNF exposure. RIP KD abrogates formation of complex II following TNF exposure, whereas TRADD KD allows efficient RIP-caspase 8 association. Treatment with TRAIL also induces formation of a complex II containing FADD, RIP, IKKalpha, and caspase 8 and 10, leading to activation of caspase 8. Our data suggest that TNF triggers apoptosis in a manner distinct from that of Fas-L or TRAIL. 相似文献
12.
M.Anglica Carrasco Silvia Figueroa 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》1995,110(4)
Frog skeletal muscle contains a kinase activity that phosphorylates inositol 1,4,5-trisphosphate to inositol 1,3,4,5-tetrakisphosphate. The inositol 1,4,5-trisphosphate 3-kinase activity was mainly recovered in the soluble fraction, where it presented a marked dependency on free calcium concentration in the physiological range in the presence of endogenous calmodulin. At pCa 5, where the activity was highest, the soluble 3-kinase activity displayed a Km for inositol 1,4,5-trisphosphate of 1.6 μM and a Vmax value of 25.1 pmol mg−1 min−1. The removal rates of inositol 1,4,5-trisphosphate by 3-kinase and 5-phosphatase activities of the total homogenate under physiological ionic conditions were very similar, suggesting that both routes are equally important in metabolizing inositol 1,4,5-trisphosphate in frog skeletal muscle. 相似文献
13.
HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-kappaB pathway 总被引:16,自引:0,他引:16
Zhou BP Hu MC Miller SA Yu Z Xia W Lin SY Hung MC 《The Journal of biological chemistry》2000,275(11):8027-8031
Overexpression of HER-2/neu correlates with poor survival of breast and ovarian cancer patients and induces resistance to tumor necrosis factor (TNF), which causes cancer cells to escape from host immune defenses. The mechanism of HER-2/neu-induced TNF resistance is unknown. Here we report that HER-2/neu activates Akt and NF-kappaB without extracellular stimulation. Blocking of the Akt pathway by a dominant-negative Akt sensitizes the HER-2/neu-overexpressing cells to TNF-induced apoptosis and inhibits IkappaB kinases, IkappaB phosphorylation, and NF-kappaB activation. Our results suggested that HER-2/neu constitutively activates the Akt/NF-kappaB anti-apoptotic cascade to confer resistance to TNF on cancer cells and reduce host defenses against neoplasia. 相似文献
14.
15.
Inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate formation in Ca2+-mobilizing-hormone-activated cells. 总被引:7,自引:0,他引:7
下载免费PDF全文

The inositol trisphosphate liberated on stimulation of guinea-pig hepatocytes, pancreatic acinar cells and dimethyl sulphoxide-differentiated human myelomonocytic HL-60 leukaemia cells is composed of two isomers, the 1,4,5-trisphosphate and the 1,3,4-trisphosphate. Inositol 1,4,5-trisphosphate was released rapidly, with no measurable latency on hormone stimulation, and, consistent with its proposed role as an intracellular messenger for Ca2+ mobilization, there was good temporal correlation between its formation and Ca2+-mediated events in these tissues. There was a definite latency before an increase in the formation of inositol 1,3,4-trisphosphate could be detected. In all of these tissues, however, it formed a substantial proportion of the total inositol trisphosphate by 1 min of stimulation. In guinea-pig hepatocytes, where inositol trisphosphate increases for at least 30 min after hormone application, inositol 1,3,4-trisphosphate made up about 90% of the total inositol trisphosphate by 5-10 min. In pancreatic acinar cells, pretreatment with 20 mM-Li+ caused an increase in hormone-induced inositol trisphosphate accumulation. This increase was accounted for by a rise in inositol 1,3,4-trisphosphate; inositol 1,4,5-trisphosphate was unaffected. This finding is consistent with the observation that Li+ has no effect on Ca2+-mediated responses in these cells. The role, if any, of inositol 1,3,4-trisphosphate in cellular function is unknown. 相似文献
16.
The PTEN tumor suppressor protein inhibits tumor necrosis factor-induced nuclear factor kappa B activity 总被引:7,自引:0,他引:7
Gustin JA Maehama T Dixon JE Donner DB 《The Journal of biological chemistry》2001,276(29):27740-27744
17.
The effect of commonly used food antioxidants on recombinant tumor necrosis factor alpha (rTNF-alpha)-induced cytotoxicity, growth enhancement and adhesion has been evaluated. Butylated hydroxyanisole (BHA) and 4-hydroxymethyl-2,6-di-t-butylphenol (HBP) were the only two of nine antioxidants that completely inhibited rTNF-alpha-induced cytotoxicity in L929 and WEHI 164 fibrosarcoma cells. Ethoxyquin, propyl gallate and butylated hydroquinone only partially inhibited rTNF-alpha-induced cytotoxicity, while the antioxidants butylated hydroxytoluene (BHT), alpha-tocopherol, ascorbic acid and thiodipropionic acid had minimal effects. The only difference between the molecular structure of the efficient HBP and the non-efficient BHT, is a hydroxymethyl group instead of a hydroxyl group on the phenolic ring. Neither BHA nor BHT inhibited the activation of NF kappa B after 10 or 60 min challenge with rTNF-alpha in L929 cells. BHA also inhibited rTNF-alpha-induced, but not rIL-1 beta-induced growth enhancement in FS-4 fibroblasts. Further, BHA blocked both rTNF-alpha-induced and rIL-1 beta-induced prostaglandin E2 synthesis in FS-4 fibroblasts. BHA inhibited the rTNF-alpha-induced release of arachidonic acid in both FS-4 and L929 cells, suggesting that BHA inhibits cellular phospholipase(s). Neither alpha-tocopherol nor BHA inhibited rTNF-alpha-induced adhesiveness of human endothelial cells. The results indicate that BHA is a specific and potent inhibitor of rTNF-alpha- and rTNF-beta-induced cytotoxicity, as well as of rTNF-alpha-induced growth enhancement. 相似文献
18.
19.
Identification of Inositol 1,3,4-Trisphosphate 5-Kinase and Inositol 1,3,4,5-Tetrakisphosphate 6-Kinase in Immature Soybean Seeds 总被引:6,自引:0,他引:6
下载免费PDF全文

Brian Q. Phillippy 《Plant physiology》1998,116(1):291-297
In extracts of immature soybean (Glycine max [L.] Merr.) seeds inositol tetrakisphosphate was formed from [3H]inositol 1,3,4-trisphosphate but not from [3H]inositol 1,4,5-trisphosphate. Inositol 1,3,4-trisphosphate kinase was purified to a specific activity of 3.55 min−1 mg−1 by polyethylenimine clarification and anion-exchange chromatography. The partially purified enzyme converted [3H]inositol 1,3,4-trisphosphate to inositol 1,3,4,5-tetrakisphosphate as the major product and inositol 1,3,4,6- and/or 1,2,3,4-tetrakisphosphate as the minor product. Subsequent experiments revealed a separate inositol 1,3,4,5-tetrakisphosphate 6-kinase activity, which could link these enzymes to inositol hexakisphosphate synthesis via the previously reported inositol 1,3,4,5,6-pentakisphosphate 2-kinase. The apparent Km values for inositol 1,3,4-trisphosphate kinase were 200 ± 0 nm for inositol 1,3,4-trisphosphate and 171 ± 4 μm for ATP, and the reaction was not reversible. The kinetics were such that no activity could be detected using unlabeled inositol 1,3,4-trisphosphate and [γ-32P]ATP, which suggested that other kinases may have been observed when less purified fractions were incubated with radiolabeled ATP. Inositol 1,3,4-trisphosphate kinase was nonspecifically inhibited more than 80% by various inositol polyphosphates at a concentration of 100 μm. 相似文献
20.
Yuli Wu Manorama Tewari Shijun Cui Raphael Rubin 《Journal of cellular physiology》1996,168(3):499-509
The effect of insulin-like growth factor (IGF) on tumor necrosis factor (TNF)-induced cell killing was determined for mouse BALB/c3T3 fibroblasts in vitro. Cells maintained in 0.5% fetal bovine serum (FBS) were killed by TNF within 6 h in a concentration-dependent manner, an effect that was prevented by IGF-I. TNF-induced cytotoxicity of 3T3 cells that overexpress the human IGF-I receptor (p6 cells) was prevented by IGF-I alone in the absence of serum. TNF-induced cell death was associated with the morphologic features of apoptosis and the release of low-molecular-weight DNA, both of which were prevented by IGF-I. Neither epidermal growth factor (EGF) nor platelet-derived growth factor (PDGF) protected p6 cells from TNF-induced apoptosis. The specific protective action of the IGF-I receptor was demonstrated further by the marked sensitivity to TNF of embryo fibroblasts derived from mice with targeted disruption of the IGF-I receptor (R cells) but not of fibroblasts derived from wild-type littermates or R cells transfected with the cDNA for the human IGF-I receptor. Cycloheximide or actinomycin D markedly reduced the protection offered by IGF-I. IGF-I protection of BALB/c3T3 cells persisted for up to 5 days in the presence of PDGF and EGF, whereas IGF-I lost its effectiveness after 2 days in the absence of growth factors. IGF-I did not prevent TNF-induced release of arachidonic acid. The results demonstrate a specific role for the IGF-I receptor in the protection against TNF cytotoxicity. This action of the IGF-I receptor is mediated by protective cytosolic proteins that exhibit a high rate of turnover and whose levels are regulated principally by factors within serum other than IGF-I. © 1996 Wiley-Liss, Inc. 相似文献