首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Glutathione peroxidase-1 protects from CD95-induced apoptosis   总被引:9,自引:0,他引:9  
Through the induction of apoptosis, CD95 plays a crucial role in the immune response and the elimination of cancer cells. Ligation of CD95 receptor activates a complex signaling network that appears to implicate the generation of reactive oxygen species (ROS). This study investigated the place of ROS production in CD95-mediated apoptosis and the role of the antioxidant enzyme glutathione peroxidase-1 (GPx1). Anti-CD95 antibodies triggered an early generation of ROS in human breast cancer T47D cells that was blocked by overexpression of GPx1 and inhibition of initiator caspase activation. Enforced expression of GPx1 also resulted in inhibition of CD95-induced effector caspase activation, DNA fragmentation, and apoptotic cell death. Resistance to CD95-mediated apoptosis was not due to an increased expression of anti-apoptotic molecules and could be reversed by glutathione-depleting agents. In addition, whereas the anti-apoptotic protein Bcl-xL prevented CD95-induced apoptosis in MCF-7 cells, it did not inhibit the early ROS production. Moreover, Bcl-xL but not GPx1 overexpression could suppress the staurosporine-induced late generation of ROS and subsequent cell death. Altogether, these findings suggest that GPx1 functions upstream of the mitochondrial events to inhibit the early ROS production and apoptosis induced by CD95 ligation. Finally, transgenic mice overexpressing GPx1 were partially protected from the lethal effect of anti-CD95, underlying the importance of peroxide formation (and GPx1) in CD95-triggered apoptosis.  相似文献   

2.
Oridonin, an active diterpenoid isolated from Rabdosia rubescens, has been reported for its antitumor activity on several cancers. However, its effect on human esophageal cancer remains unclear. In this study, we demonstrated that oridonin could inhibit the growth of human esophageal cancer cells both in vitro and in vivo. Oridonin not only suppressed the proliferation, but also induced cell cycle arrest and mitochondrial-mediated apoptosis in KYSE-30, KYSE-150, and EC9706 cells with dose-dependent manner. Further mechanism studies revealed that oridonin led cell cycle arrest in esophageal cancer cells via downregulating cell cycle-related proteins, such as cyclin B1 and CDK2, while upregulating p53 and p21. Oridonin also increased proapoptotic protein Bax and reduced antiapoptotic protein Bcl-2, as well as the increased expression of cleaved caspase-3, -8, and -9. In addition, oridonin treatment could significantly inhibit the PI3K/Akt/mTOR and Ras/Raf signaling pathway. In vivo results further demonstrated that oridonin treatment markedly inhibited tumor growth in the esophageal cancer xenograft mice model. Taken together, these results suggest that oridonin may be a potential anticancer agent for the treatment of esophageal cancer.  相似文献   

3.
Melanoma differentiation-associated gene-7 (mda-7), also referred to as IL-24, is a novel growth regulatory cytokine that has been shown to regulate the immune system by inducing the expression of inflammatory cytokines, such as TNF, IL-1, and IL-6. Whether the induction of these cytokines by MDA-7 is mediated through activation of NF-kappaB or whether it regulates cytokine signaling is not known. In the present report we investigated the effect of MDA-7 on NF-kappaB activation and on TNF-induced NF-kappaB activation and apoptosis in human embryonic kidney 293 cells. Stable or transient transfection with mda-7 into 293 cells failed to activate NF-kappaB. However, TNF-induced NF-kappaB activation was significantly enhanced in mda-7-transfected cells, as indicated by DNA binding, p65 translocation, and NF-kappaB-dependent reporter gene expression. Mda-7 transfection also potentiated NF-kappaB reporter activation induced by TNF receptor-associated death domain and TNF receptor-associated factor-2. Cytoplasmic MDA-7 with deleted signal sequence was as effective as full-length MDA-7 in potentiating TNF-induced NF-kappaB reporter activity. Secretion of MDA-7 was not required for the potentiation of TNF-induced NF-kappaB activation. TNF-induced expression of the NF-kappaB-regulated gene products cyclin D1 and cyclooxygenase-2, were significantly up-regulated by stable expression of MDA-7. Furthermore, MDA-7 expression abolished TNF-induced apoptosis, and suppression of NF-kappaB by IkappaBalpha kinase inhibitors enhanced apoptosis. Overall, our results indicate that stable or transient MDA-7 expression alone does not substantially activate NF-kappaB, but potentiates TNF-induced NF-kappaB activation and NF-kappaB-regulated gene expression. Potentiation of NF-kappaB survival signaling by MDA-7 inhibits TNF-mediated apoptosis.  相似文献   

4.
The activity of the catalytic domain of the orphan MAP kinase ERK5 is increased by Ras but not Raf-1 in cells, which suggests that ERK5 might mediate Raf-independent signaling by Ras. We found that Raf-1 does contribute to Ras activation of ERK5 but in a manner that does not correlate with Raf-1 catalytic activity. A clue to the mechanism of action of Raf-1 on ERK5 comes from the observation that endogenous Raf-1 binds to endogenous ERK5, suggesting the involvement of regulatory protein-protein interactions. This interaction is specific because Raf-1 binds only to ERK5 and not ERK2 or SAPK. Finally, we demonstrate the ERK5/MEK5 pathway is required for Raf-dependent cellular transformation and that a constitutively active form of MEK5, MEK5DD, synergizes with Raf to transform NIH 3T3 cells. These observations suggest that ERK5 plays a large role in Raf-1-mediated signal transduction.  相似文献   

5.
Chemical investigation of the roots of Croton crassifolius led to the isolation of five pyran-2-one derivatives, including two brand new compounds (12), one new natural product (3) and two known compounds (45). Their structures and absolute configurations were established by spectroscopic analyses as well as comparison between the calculated optical rotation (OR) values with the experimental data. Interestingly, the new compound 1 showed an unusual negative chemical shift at H-11. It is well known that negative chemical shift values of 1H NMR spectrum are extremely rare in natural products. Such a negative chemical shift of 1H NMR spectrum was reproduced by density functional theory (DFT) calculations and explained by the shielding effect from the pyran-2-one ring over the hydrogen atom in the 3D conformations. Then, MTT assay was applied to evaluate the cytotoxicity of the isolated compounds (15) against two liver cancer cell lines (HepG2 and MHCC97H). The results suggested that compound 1 displayed the highest cytotoxicity with an IC50 value of 9.8 μM against HepG2 cells. Moreover, there was no obvious cytotoxicity of compounds 15 on normal liver cell line LO2. Furthermore, the mechanism of apoptosis induction in compound 1-treated HepG2 cells was investigated. The results showed that compound 1 could induce apoptosis via p53-mediated Ras/Raf/ERK suppression in HepG2 cells.  相似文献   

6.
HGF/MET signalling protects Plasmodium-infected host cells from apoptosis   总被引:5,自引:0,他引:5  
Plasmodium, the causative agent of malaria, migrates through several hepatocytes before initiating a malaria infection. We have previously shown that this process induces the secretion of hepatocyte growth factor (HGF) by traversed cells, which renders neighbour hepatocytes susceptible to infection. The signalling initiated by HGF through its receptor MET has multifunctional effects on various cell types. Our results reveal a major role for apoptosis protection of host cells by HGF/MET signalling on the host susceptibility to infection. Inhibition of HGF/MET signalling induces a specific increase in apoptosis of infected cells leading to a great reduction on infection. Since HGF/MET signalling is capable of protecting cells from apoptosis by using both PI3-kinase/Akt and, to a lesser extent, MAPK pathways, we determined the impact of these pathways on Plasmodium sporozoite infection. Although inhibition of either of these pathways leads to a reduction in infection, inhibition of PI3-kinase/Akt pathway caused a stronger effect, which correlated with a higher level of apoptosis in infected host cells. Altogether, the results show that the HGF/MET signalling requirement for infection is mediated by its anti-apoptotic signal effects. These results demonstrate for the first time that active inhibition of apoptosis in host cell during infection by Plasmodium is required for a successful infection.  相似文献   

7.
Redox imbalance is a primary cause of endothelial dysfunction (ED). Under oxidant stress, many critical proteins regulating endothelial function undergo oxidative modifications that lead to ED. Cellular levels of glutathione (GSH), the primary reducing source in cells, can significantly regulate cell function via reversible protein thiol modification. N-acetylcysteine (NAC), a precursor for GSH biosynthesis, is beneficial for many vascular diseases; however, the detailed mechanism of these benefits is still not clear. From HPLC analysis, NAC significantly increases both cellular GSH and tetrahydrobiopterin levels. Immunoblotting of endothelial NO synthase (eNOS) and DUSP4, a dual-specificity phosphatase with a cysteine as its active residue, revealed that both enzymes are upregulated by NAC. EPR spin trapping further demonstrated that NAC enhances NO generation from cells. Long-term exposure to Cd2+ contributes to DUSP4 degradation and the uncontrolled activation of p38 and ERK1/2, leading to apoptosis. Treatment with NAC prevents DUSP4 degradation and protects cells against Cd2+-induced apoptosis. Moreover, the increased DUSP4 expression can redox-regulate the p38 and ERK1/2 pathways from hyperactivation, providing a survival mechanism against the toxicity of Cd2+. DUSP4 gene knockdown further supports the hypothesis that DUSP4 is an antioxidant gene, critical in the modulation of eNOS expression, and thus protects against Cd2+-induced stress. Depletion of intracellular GSH by buthionine sulfoximine makes cells more susceptible to Cd2+-induced apoptosis. Pretreatment with NAC prevents p38 overactivation and thus protects the endothelium from this oxidative stress. Therefore, the identification of DUSP4 activation by NAC provides a novel target for future drug design.  相似文献   

8.
This study addresses the effects of IL-1 beta on apoptosis induced by agonistic anti-CD95 (Fas) Ab. IL-1 beta inhibited anti-CD95 Ab-induced apoptosis in all preparations of normal human articular chondrocytes tested. Inhibitors of nitric oxide synthase or cyclooxygenase did not influence the protective effect of IL-1 beta, indicating that nitric oxide and PGs were not involved in the modulation of CD95-induced apoptosis. However, when the IL-1 beta-dependent induction of NF-kappa B was inhibited, the antiapoptotic effect of IL-1 beta was partially reversed, suggesting that NF-kappa B-mediated gene activation is part of the protective mechanism. In addition, IL-1 beta significantly increased the expression of Bcl-2. The protein tyrosine kinase inhibitor herbimycin A completely eliminated the protective effect of IL-1 beta on CD95-induced apoptosis. These findings suggest that IL-1 beta modulates the CD95 death cascade in chondrocytes by mechanisms that involve tyrosine phosphorylation events and NF-kappa B-dependent gene activation.  相似文献   

9.
HIV-1 Nef is the regulatory protein expressed earliest and most abundantly in the infection cycle. Its expression has been correlated with a plethora of effects detectable either in producer, target, and bystander cells, as well as in the viral particles. Even if the relationship between Nef expression and apoptosis has been already matter of investigation in infected lymphocytes, whose resistance to HIV infection is however limited to few days, this remains to be investigated in cells that in vivo well resist the HIV cytopathic effect. In such an instance, we were interested in establishing whether Nef influences the apoptotic processes in primary human-monocyte-derived macrophages (MDM). High efficiency HIV-1 infection of MDM allowed us to establish that virus-expressed Nef strongly counteracts the HIV-1-induced apoptosis. The Nef mutant analysis suggested that this effect relies on the interaction with different protein partners and cell compartments. We also observed that the Nef protection to the HIV-1-induced apoptosis correlated with the hyper-phosphorylation and consequent inactivation of the pro-apoptotic Bad protein. On the basis of these results, we propose the Nef anti-apoptotic effect as a relevant part of the mechanism of the in vivo establishment of the HIV macrophage reservoirs.  相似文献   

10.
Zhang Q  Gong R  Qu J  Zhou Y  Liu W  Chen M  Liu Y  Zhu Y  Wu J 《Journal of virology》2012,86(3):1544-1554
Hepatitis C virus (HCV) is a major cause of chronic liver diseases worldwide, often leading to the development of hepatocellular carcinoma (HCC). Constitutive activation of the Ras/Raf/MEK pathway is responsible for approximately 30% of cancers. Here we attempted to address the correlation between activation of this pathway and HCV replication. We showed that knockdown of Raf1 inhibits HCV replication, while activation of the Ras/Raf/MEK pathway by V12, a constitutively active form of Ras, stimulates HCV replication. We further demonstrated that this effect is regulated through attenuation of the interferon (IFN)-JAK-STAT pathway. Activation of the Ras/Raf/MEK pathway downregulates the expression of IFN-stimulated genes (ISGs), attenuates the phosphorylation of STAT1/2, and inhibits the expression of interferon (alpha, beta, and omega) receptors 1 and 2 (IFNAR1/2). Furthermore, we observed that HCV infection activates the Ras/Raf/MEK pathway. Thus, we propose that during HCV infection, the Ras/Raf/MEK pathway is activated, which in turn attenuates the IFN-JAK-STAT pathway, resulting in stimulation of HCV replication.  相似文献   

11.
The survival of pancreatic beta cells depends on the balance between external cytotoxic and protective molecular systems. The neuropeptide neurotensin (NT) has been shown to regulate certain functions of the endocrine pancreas including insulin and glucagon release. However, the mechanism of action of NT as well as the identification of receptors involved in the pancreatic functions of the peptide remained to be studied. We demonstrate here that NT is an efficient protective agent of pancreatic beta cells against cytotoxic agents. Both beta-TC3 and INS-1E cell lines and the mouse pancreatic islet cells express the three known NT receptors. The incubation of beta cells with NT protects cells from apoptosis induced either by staurosporine or by IL-1beta. In beta-TC3 cells, NT activates both MAP and PI-3 kinases pathways and strongly reduces the staurosporine or the Il-1beta-induced caspase-3 activity by a mechanism involving Akt activation. The NTSR2 agonist levocabastine displays the same protective effect than NT whereas the NTSR1 antagonist is unable to block the effect of NT suggesting the predominant involvement of the NTSR2 in the action of NT on beta cells. These results clearly indicate for the first time that NT is able to protect endocrine beta cells from external cytotoxic agents, a role well correlated with its release in the circulation after a meal.  相似文献   

12.
The Drosophila EGF receptor is required for differentiation of many cell types during eye development. We have used mosaic analysis with definitive null mutations to analyze the effects of complete absence of EGFR, Ras or Raf proteins during eye development. The Egfr, ras and raf genes are each found to be essential for recruitment of R1-R7 cells. In addition Egfr is autonomously required for MAP kinase activation. EGFR is not essential for R8 cell specification, either alone or redundantly with any other receptor that acts through Ras or Raf, or by activating MAP kinase. As with Egfr, loss of ras or raf perturbs the spacing and arrangement of R8 precursor cells. R8 cell spacing is not affected by loss of argos in posteriorly juxtaposed cells, which rules out a model in which EGFR acts through argos expression to position R8 specification in register between adjacent columns of ommatidia. The R8 spacing role of the EGFR was partially affected by simultaneous deletion of spitz and vein, two ligand genes, but the data suggest that EGFR activation independent of spitz and vein is also involved. The results prove that R8 photoreceptors are specified and positioned by distinct mechanisms from photoreceptors R1-R7.  相似文献   

13.
Autism is a neurodevelopmental disorder characterized by impairments in social interaction, verbal communication and repetitive behaviors. A number of studies have shown that the Ras/Raf/ERK1/2 (extracellular signal-regulated kinase) signaling pathway plays important roles in the genesis of neural progenitors, learning and memory. Ras/Raf/ERK1/2 and ERK5 have also been shown to have death-promoting apoptotic roles in neural cells. Recent studies have shown a possible association between neural cell death and autism. In addition, two recent studies reported that a deletion of a locus on chromosome 16, which included the mitogen-activated protein kinase 3 (MAPK3) gene that encodes ERK1, is associated with autism. Most recently, our laboratory detected that Ras/Raf/ERK1/2 signaling activities were significantly enhanced in the brain of BTBR mice that model autism, as they exhibit many autism-like behaviors. We thus hypothesized that Ras/Raf/ERK1/2 signaling and ERK5 could be abnormally regulated in the brain of autistic subjects. In this study, we show that the expression of Ras protein was significantly elevated in the frontal cortex of autistic subjects. C-Raf phosphorylation was increased in the frontal cortex, while both C-Raf and A-Raf activities were enhanced in the cerebellum of autistic subjects. We also detected that both the protein expression and activities of ERK1/2 were significantly upregulated in the frontal cortex of autistic subjects, but not in the cerebellum. Furthermore, we showed that ERK5 protein expression is upregulated in both frontal cortex and cerebellum of autistic subjects. These results suggest that the upregulation of Ras/Raf/ERK1/2 signaling and ERK5 activities mainly found in the frontal cortex of autistic subjects may be critically involved in the pathogenesis of autism.  相似文献   

14.
Oxidant injury plays a critical role in the degenerative changes that are characterized by a decline in parenchymal cell numbers and viability, and occur with aging and in the etiology of many diseases. The extracellular proteoglycan versican is widely distributed in the extracellular matrix surrounding the cells. This study examines whether versican plays a role in protecting cells from free radical-induced apoptosis. Stable expression of versican or its C-terminal domain significantly decreased H(2)O(2)-induced cellular apoptosis. Cells in adherent monolayer were more resistant to H(2)O(2)-induced apoptosis than cells cultured in suspension. While vigorous trypsinization caused integrin cleavage and rendered the cells more susceptible to H(2)O(2)-induced damages, expression of versican or its C-terminal domain enhanced cell attachment and expression of beta1 integrin and fibronectin. Enhanced cell-matrix interaction by addition of manganese (MnCl(2)) to cultures also significantly diminished H(2)O(2)-induced apoptosis. The results suggest that versican plays an important role in reducing oxidant injury through an enhancement of cell-matrix interaction.  相似文献   

15.
Bcl-2 protects cells from cytokine-induced nitric-oxide-dependent apoptosis   总被引:2,自引:0,他引:2  
 Cytokine-mediated cell death in tumor cells can be achieved through endogenous nitric oxide (NO) from within tumor cells or exogenous NO from either activated macrophages or endothelial cells. The purpose of this study was to determine the role of Bcl-2 in NO-mediated apoptosis. The incubation of murine L929 and NIH3T3 cells with interleukin-1α (IL-1α) and interferon γ (IFNγ) induced high endogenous NO production only in the L929 cells that also underwent apoptosis. NIH3T3 cells were not resistant to NO-mediated apoptosis. In fact, the incubation of L929 and NIH3T3 cells with exogenous NO derived from NO donors, sodium nitroprusside, or S-nitroso-N-acetyl-DL-penicillamine (SNAP) induced death, characterized by typical apoptotic morphology and DNA fragmentation, in both cell types, but to a higher degree in NIH3T3 cells than in the L929 cells. We then measured the effect of Bcl-2 expression on exogenous NO-induced apoptosis. At both the mRNA and protein levels, L929 fibroblasts expressed higher levels of endogenous mouse Bcl-2 than did NIH3T3 cells. At the same time, L929 cells were much more resistant to exogenous NO-induced cell death than were NIH3T3 cells. The inverse correlation between mouse Bcl-2 expression and sensitivity to exogenous NO-mediated cell death was also found in the murine K-1735 melanoma C-23 and X-21 clonal populations. Transfection of both NIH3T3 cells and L929 cells with the human bcl-2 gene led to resistance to both exogenous and endogenous NO-mediated apoptosis. These data demonstrate that NO-mediated apoptosis can be suppressed by expression of Bcl-2, suggesting that abnormal expression of Bcl-2 may influence the efficacy of tumor immunotherapy. Received: 28 June 1998 / Accepted: 23 August 1996  相似文献   

16.
Loss of cardiomyocytes by apoptosis is proposed to cause ventricular remodeling and heart failure. Reactive oxygen species-induced apoptosis of cardiomyocytes has been reported to play an important role in many types of pathological processes of the heart. We investigated whether angiopoietin-1 (Ang1) has direct cytoprotective effects on cardiomyocytes against oxidative stress. Cultured H9c2 cells (cardiomyocytes) were treated with hydrogen peroxide (H(2)O(2)). Apoptosis was evaluated by flow cytometry, TUNEL assay and DNA laddering. The H(2)O(2) treatment caused typical apoptosis of H9c2 cells in a time-dependent manner. Transfection of recombinant adenovirus expressing Ang1 resulted in a sustained phosphorylation of AKT and inhibition of H(2)O(2)-induced apoptosis in H9c2 cells. This effect could be reversed by AKT inhibition. These results suggest that Ang1 protects cardiomyocytes from oxidative stress-induced apoptosis by regulating the activity of AKT.  相似文献   

17.
Qian NX  Russell M  Johnson GL 《Life sciences》1995,56(11-12):945-949
Acetylcholine muscarinic m1 receptors and m2 receptors are predominantly coupled to the heterotrimeric G proteins Gq, 11 and Gi, respectively. Stimulation of the m1 and m2 receptors in different cell types activate the Ras/Raf/MAP kinase pathway. The ability of the m1 receptor to activate the MAP kinase pathway is dependent on the isoforms of adenylyl cyclase expressed in specific cell types. Specific adenylyl cyclases respond to different signals, including calcium and protein kinase C, with increased cAMP synthesis resulting in protein kinase A activation. Stimulation of protein kinase A inhibits Raf and subsequent MAP kinase activation by G protein-coupled receptors and growth factor receptor tyrosine kinases. G protein-coupled receptors can positively and negatively regulate the responsiveness of tyrosine kinase-stimulated response pathways.  相似文献   

18.
Sendai virus (SeV), a pneumotropic virus of rodents, has an accessory protein, V, and the V protein has been shown to interact with MDA5, inhibiting IRF3 activation and interferon‐β production. In the present study, interaction of the V protein with various IRF3‐activating proteins including MDA5 was investigated in a co‐immunoprecipitation assay. We also investigated interaction of mutant V proteins from SeVs of low pathogenicity with MDA5. The V protein interacted with at least retinoic acid inducible gene I, inhibitor of κB kinase epsilon and IRF3 other than MDA5. However, only MDA5 interacted with the V protein dependently on the C‐terminal V unique (Vu) region, inhibiting IRF3 reporter activation. The Vu region has been shown to be important for viral pathogenicity. We thus focused on interaction of the V protein with MDA5. Point mutations in the Vu region destabilized the V protein or abolished the interaction with MDA5 when the V protein was stable. The V‐R320G protein was highly stable and interacted with MDA5, but did not inhibit activation of IRF3 induced by MDA5. Viral pathogenicity of SeV is related to the inhibitory effect of the V protein on MDA5, but is not always related to the binding of V protein with MDA5.  相似文献   

19.
Autism is a neurodevelopmental disorder characterized by impairments in social interaction, verbal communication and repetitive behaviors. BTBR mouse is currently used as a model for understanding mechanisms that may be responsible for the pathogenesis of autism. Growing evidence suggests that Ras/Raf/ERK1/2 signaling plays death-promoting apoptotic roles in neural cells. Recent studies showed a possible association between neural cell death and autism. In addition, two studies reported that a deletion of a locus on chromosome 16, which includes the MAPK3 gene that encodes ERK1, is associated with autism. We thus hypothesized that Ras/Raf/ERK1/2 signaling could be abnormally regulated in the brain of BTBR mice that models autism. In this study, we show that expression of Ras protein was significantly elevated in frontal cortex and cerebellum of BTBR mice as compared with B6 mice. The phosphorylations of A-Raf, B-Raf and C-Raf were all significantly increased in frontal cortex of BTBR mice. However, only C-Raf phosphorylation was increased in the cerebellum of BTBR mice. In addition, we further detected that the activities of both MEK1/2 and ERK1/2, which are the downstream kinases of Ras/Raf signaling, were significantly enhanced in the frontal cortex. We also detected that ERK1/2 is significantly over-expressed in frontal cortex of autistic subjects. Our results indicate that Ras/Raf/ERK1/2 signaling is upregulated in the frontal cortex of BTBR mice that model autism. These findings, together with the enhanced ERK1/2 expression in autistic frontal cortex, imply that Ras/Raf/ERK1/2 signaling activities could be increased in autistic brain and involved in the pathogenesis of autism.  相似文献   

20.
1-Methyl-4-phenylpyridinium ion (MPP+), an inhibitor of mitochondrial complex I, has been widely used as a neurotoxin because it elicits a severe Parkinson's disease-like syndrome characterized by elevation of intracellular reactive oxygen species level and apoptotic death. Adiponectin, secreted from adipose tissue, mediates systemic insulin sensitivity with liver and muscle as target organs. Adiponectin can also suppress superoxide generation in endothelial cells. In the present study, we investigated the protective effects of adiponectin on MPP+-induced cytotoxicity in human neuroblastoma SH-SY5Y cells, as well as the underlying mechanism. Our results suggest that the protective effects of adiponectin on MPP+-induced apoptosis may be ascribed to its anti-oxidative properties, anti-apoptotic activity via inducing expression of SOD and catalase, and regulation of Bcl-2 and Bax expression. These data indicated that adiponectin might provide a useful therapeutic strategy for the treatment of progressive neurodegenerative diseases such as Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号