首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Assembly and packing of clathrin into coats   总被引:20,自引:12,他引:8       下载免费PDF全文
We present a model for the packing of clathrin molecules into the characteristic hexagons and pentagons covering coated pits and vesicles. The assembly unit is a symmetrical trimer with three extended legs. Polymerization of these units occurs in seconds under suitable conditions, giving empty polyhedral cages resembling the structures around coated vesicles. Images of small, negatively stained fragments of cages, assembled directly on electron microscope grids, reveal details of the structure, which correlate well with the predicted features of the model. There is one clathrin trimer at each polyhedral vertex, and each leg of the trimer extends along two neighboring polyhedral edges. Quasi-equivalent packing in pentagons and hexagons in polyhedra of different sizes requires a variable joint at the vertex of the molecule and a hinge in each leg. The construction of clathrin coats is remarkable for the extended fibrous contacts that each molecule makes with many others. Such contacts may confer mechanical strength combined with flexibility needed when a vesicle is pinched off from the membrane.  相似文献   

3.
B M Pearse 《The EMBO journal》1985,4(10):2457-2460
In ionic conditions in which clathrin coats are stable, the mannose-6-phosphate receptor associates with the 100-kd/50-kd coat complexes purified from bullock brain coated vesicles. These aggregates exist as striking spherical structures of 300-1000 A diameter. When clathrin is included in the assembly mixture, cages are formed which apparently encapsulate these aggregates, giving, in the absence of lipid, structures resembling full coated vesicles.  相似文献   

4.
Flat clathrin lattices or 'plaques' are commonly believed to be the precursors to clathrin-coated buds and vesicles. The sequence of steps carrying the flat hexagonal lattice into a highly curved polyhedral cage with exactly 12 pentagons remains elusive, however, and the large numbers of disrupted interclathrin connections in previously proposed conversion pathways make these scenarios rather unlikely. The recent notion that clathrin can make controlled small conformational transitions opens new avenues. Simulations with a self-assembling clathrin model suggest that localized conformational changes in a plaque can create sufficiently strong stresses for a dome-like fragment to break apart. The released fragment, which is strongly curved but still hexagonal, may subsequently grow into a cage by recruiting free triskelia from the cytoplasm, thus building all 12 pentagonal faces without recourse to complex topological changes. The critical assembly concentration in a slightly acidic in vitro solution is used to estimate the binding energy of a cage at 25-40 k(B) T/clathrin.  相似文献   

5.
Brain clathrin and clathrin-associated proteins.   总被引:6,自引:0,他引:6       下载免费PDF全文
The assembly of clathrin into baskets or cages in vitro may depend on formation of complex between clathrin and a polypeptide doublet migrating in the 30000-mol.wt. region. Clathrin with several associated proteins was isolated from coated-vesicle fractions of bovine cerebral cortex. Most associated proteins were separated by Sepharose 4B column chromatograhy. The eluted clathrin retained only the 30000-mol.wt. doublet and assembled into baskets at pH 6.5. Limited proteolysis of coated vesicles or clathrin assembled as baskets removed these clathrin-associated proteins (CAPs) without detectably altering clathrin. Enzyme-treated clathrin assembled into open-lattice structures but no longer formed baskets in vitro. Latex particles with bound enzyme cleaved the CAPs from coated vesicles and clathrin baskets, suggesting that the CAPs protrude from the exterior of the clathrin lattice.  相似文献   

6.
The sorting of specific proteins into clathrin-coated pits and the mechanics of membrane invagination are determined by assembly of the clathrin lattice. Recent structures of a six-fold barrel clathrin coat at 21 A resolution by electron cryomicroscopy and of the clathrin terminal domain and linker at 2.6 A by X-ray crystallography together show how domains of clathrin interact and orient within the coat and reveal the strongly puckered shape and conformational variability of individual triskelions. The beta propeller of the terminal domain faces the membrane so that recognition segments from adaptor proteins can extend along its lateral grooves. Clathrin legs adapt to different coat environments in the barrel by flexing along a segment at the knee that is free of contacts with other molecules.  相似文献   

7.
D A Brodie 《Tissue & cell》1982,14(2):253-262
Addition of tannic acid to the primary glutaraldehyde fixative and the viewing of thin sections by stereo electron microscopy greatly simplifies the detection of vertebrate cell Golgi complex beads which are otherwise difficult to see since they do not stain with bismuth. These results confirm the generality of conclusions from experiments on arthropod beads which are easily observed because of their bismuth affinity. In vertebrate and arthropod cells, bead rings encircle the base of forming transition vesicles below the growing portion of the vesicle that is covered with a clathrin coat. Their unique position at such a sharp functional and structural boundary in intercompartmental transport suggests that the bead rings may specify a select region of rough endoplasmic reticulum devoid of ribosomes where clathrin coats can induce transition vesicle formation and prevent intermixing of the elements of a returning transition vesicle.  相似文献   

8.
Bullock brain coated vesicles contain a family of at least six 100-kd polypeptides which have the property of promoting clathrin assembly. These proteins have been purified from Triton X-100-extracted coated vesicles by a combination of gel filtration and chromatography on hydroxylapatite and DE-52 cellulose. Three major 100-kd species occur as complexes with a stoichiometric amount of a 50-kd polypeptide. On cross-linking these complexes, the chief products appear to contain two polypeptides of 100 kd and two of 50 kd. These 100-kd/50-kd complexes will polymerise with low concentrations of clathrin to give a relatively homogeneous population of coats predominantly of the 'barrel' size. In contrast, three other polypeptides of 100 kd lack the 50-kd protein but polymerise with clathrin under the same conditions to yield coats of a wide range of sizes including 'barrels', truncated icosahedra and particles of greater than 100 nm diameter. When clathrin cages are reassembled with a saturating amount of 100-kd/50-kd complexes and studied by electron microscopy, the additional proteins appear to follow the underlying geometry of the clathrin polyhedra, partially filling in the polygonal faces of the cage structures. Saturation appears to require approximately 3 molecules of 100-kd polypeptide per clathrin trimer.  相似文献   

9.
《The Journal of cell biology》1983,97(5):1339-1347
A protein activity has been identified in extracts of coated vesicles that enables purified clathrin triskelions to reassemble in vitro into coat structures of uniform size. Coats formed in the presence of this preparation, regardless of the buffer system employed, are uniform in size with a mean diameter of 78 nm (+/- 5 nm SD) and a sedimentation coefficient (S20,w) of approximately 250S. Analysis of the reassembled coats on dodecyl sulfate acrylamide gels reveals that they have specifically incorporated three polypeptides from the preparation: those of Mr congruent to 52,000, 100,000, and 110,000. The 52,000-, 100,000-, and 110,000-mol-wt polypeptides are incorporated in molar ratios of 0.85, 1.11, and 0.26, respectively, per three clathrin monomers (equivalent to one triskelion). We therefore designate these as assembly polypeptides (AP). In contrast, coats formed from clathrin alone, under permissive buffer conditions, are larger (400S), more heterogeneous in size (101 nm +/- 15 nm SD), and are composed only of clathrin and its associated light chains. These biochemical and biophysical characteristics distinguish AP-reassembled coats from coats formed by triskelions alone. AP-reassembled coats can be isolated, dissociated, then reassembled in the absence of any other factors. This recycling indicates that all the information needed for reassembly is present in the coat-incorporated polypeptides themselves. Reassembly is stoichiometric and saturable with respect to both clathrin and AP concentration. In the presence of AP, significant coat reassembly occurs at clathrin concentrations as low as 0.06 mg/ml. AP-mediated reassembly proceeds at 4 degrees, 22 degrees, and 37 degrees C. Coat formation also proceeds efficiently at intracellular pH values (7.2- 7.5) in the presence of AP. In its absence, reassembly does not occur at all above pH 6.7. In summary, AP promotes clathrin reassembly into coat structures of uniform size and distinctive composition under physiologically relevant salt, temperature, and pH conditions. In addition, the close similarity in size between AP-reassembled coats in vitro and coated membranes in the Golgi region in vivo raises the possibility that AP in the cell may be associated with this subpopulation of coat structures.  相似文献   

10.
W Matsui  T Kirchhausen 《Biochemistry》1990,29(48):10791-10798
AP-2 is the class of clathrin-associated protein complex found in coated vesicles derived from the plasma membrane of eukaryotic cells. We demonstrate here, using a chemical method, that an AP-2 complex is an asymmetric structure consisting of one large alpha chain, one large beta chain, one medium AP50 chain, and one small AP17 chain. The complex has been shown to contain a core and two appendages. The AP core includes the small AP17 and the medium AP50 chains together with the amino-terminal domains of the large alpha and beta chains. One appendage corresponds to the carboxy-terminal domain of the beta chain. We find that as in the case of the beta chains, the carboxy-terminal portion of the alpha chains is an independently folded domain corresponding to the second appendage. We use limited tryptic proteolysis of clathrin/AP-2 coats to show the release of the appendages from the interior of the coats and the retention of the AP core by the remaining clathrin lattice. In addition, we find that the AP core stabilizes the coat and prevents its depolymerization. These results are consistent with the proposal that the AP core contains the binding site(s) for clathrin, while the alpha- and beta-chain appendages interact with membrane components of coated pits and coated vesicles.  相似文献   

11.
The Dna J homologue, auxilin, acts as a co-chaperone for Hsc70 in the uncoating of clathrin-coated vesicles during endocytosis. Biochemical studies have aided understanding of the uncoating mechanism but until now there was no structural information on how auxilin interacts with the clathrin cage. Here we have determined the three-dimensional structure of a complex of auxilin with clathrin cages by cryo-electron microscopy and single particle analysis. We show that auxilin forms a discrete shell of density on the inside of the clathrin cage. Peptide competition assays confirm that a candidate clathrin box motif in auxilin, LLGLE, can bind to a clathrin construct containing the beta-propeller domain and also displace the well-characterised LLNLD clathrin box motif derived from the beta-adaptin hinge region. The means by which auxilin could both aid clathrin coat assembly and displace clathrin from AP2 during uncoating is discussed.  相似文献   

12.
In many cells endosomal vacuoles show clathrin coats of which the function is unknown. Herein, we show that this coat is predominantly present on early endosomes and has a characteristic bilayered appearance in the electron microscope. By immunoelectron microscopy we show that the coat contains clathrin heavy as well as light chain, but lacks the adaptor complexes AP1, AP2, and AP3, by which it differs from clathrin coats on endocytic vesicles and recycling endosomes. The coat is insensitive to short incubations with brefeldin A, but disappears in the presence of the phosphatidylinositol 3-kinase inhibitor wortmannin. No association of endosomal coated areas with tracks of tubulin or actin was found. By quantitative immunoelectron microscopy, we found that the lysosomal-targeted receptors for growth hormone (GHR) and epidermal growth factor are concentrated in the coated membrane areas, whereas the recycling transferrin receptor is not. In addition, we found that the proteasomal inhibitor MG 132 induces a redistribution of a truncated GHR (GHR-369) toward recycling vesicles, which coincided with a redistribution of endosomal vacuole-associated GHR-369 to the noncoated areas of the limiting membrane. Together, these data suggest a role for the bilayered clathrin coat on vacuolar endosomes in targeting of proteins to lysosomes.  相似文献   

13.
An enzyme that removes clathrin coats: purification of an uncoating ATPase   总被引:51,自引:21,他引:30  
Uncoating ATPase, an abundant 70,000-mol-wt polypeptide mediating the ATP-dependent dissociation of clathrin from coated vesicles and empty clathrin cages, has been purified to virtual homogeneity from calf brain cytosol. Uncoating protein is present in cells in amounts roughly stoichiometric with clathrin. This enzyme is isolated as a mixture of monomers and dimers, both forms being active. ATP can support protein-facilitated dissociation of clathrin at micromolar levels; all other ribotriphosphates as well as deoxy-ATP are inactive. The clathrin that is released from cages consists of trimers (triskelions) in a stoichiometric complex with uncoating ATPase. These complexes with clathrin have little tendency to self-associate at neutral pH, and at acidic pH they interfere with the assembly of free clathrin. The possible existence and function of these complexes as clathrin carriers in cells would explain why uncoating protein is made in quantities equivalent to clathrin.  相似文献   

14.
Proteins on the merozoite surface of the human malarial parasite Plasmodium falciparum are targets of the host's immune response. The merozoite surface location of p75, a 75 kd P. falciparum protein, was established by immunoelectron microscopy using antisera raised to the expressed product of a cDNA clone. Immunoprecipitation from protein extracts biosynthetically labeled during different periods of the asexual cycle showed that p75 is made continuously, although ring-stage parasites appear to synthesize larger quantities. p75 is conserved and invariant in size in eight isolates of P. falciparum. The 880 bp cDNA sequence encoding part of p75 reveals one open reading frame containing a repetitive sequence unit of four amino acids. The predicted reading frame is correct since antisera to a synthetic peptide corresponding to the repetitive region recognize p75 in immunoblots. The sequence of p75 is homologous with the sequences of proteins from the ubiquitous, highly conserved family of 70 kd heat-shock proteins, suggesting an important physiological function for p75. The cDNA fragment encoding part of p75 hybridizes with multiple genomic fragments, whose sizes are identical in DNA from nine P. falciparum strains, suggesting that the gene for p75 is well conserved and may be part of a gene family.  相似文献   

15.
16.
The optimal trade-off between offspring size and number can depend on details of the mode of reproduction or development. In marine organisms, broadcast spawning is widespread, and external coats are a common feature of spawned eggs. Egg jelly coats are thought to influence several aspects of fertilization and early development, including the size of the target for sperm, fertilization efficiency, egg suspension time, polyspermy, embryo survival, and fecundity. These costs and benefits of investment in jelly result in trade-offs that can influence optimal reproductive allocation and the evolution of egg size. I develop an optimization model that sequentially incorporates assumptions about the function of egg coats in fertilization. The model predicts large variation in coat size and limited variation in ovum size under a broad range of conditions. Heterogeneity among spawning events further limits the range of ovum sizes predicted to evolve under sperm limitation. In contrast, variation in larval mortality predicts a broad range of optimal ovum sizes that more closely reflects natural variation among broadcast-spawning invertebrates. By decoupling physical and energetic size, egg coats can enhance fertilization, maintain high fecundity, and buffer the evolution of ovum size from variation in spawning conditions.  相似文献   

17.
Clathrin triskelions can assemble into lattices of different shapes, sizes and symmetries. For many years, the structures of clathrin lattices have been studied by single particle cryo-electron microscopy, which probed the architecture of the D6 hexagonal barrel clathrin coat at the molecular level. By introducing additional image processing steps we have recently produced a density map for the D6 barrel clathrin coat at subnanometer resolution, enabling us to generate an atomic model for this lattice [Fotin, A., Cheng, Y., Sliz, P., Grigorieff, N., Harrison, S.C., Kirchhausen, T., Walz, T., 2004. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573-579]. We describe in detail here the image processing steps that we have added to produce a density map at this high resolution. These procedures should be generally applicable and may thus help determine the structures of other large protein assemblies to higher resolution by single particle cryo-electron microscopy.  相似文献   

18.
19.
To assess the contribution of individual endocytic proteins to the assembly of clathrin coated pits, we depleted the clathrin heavy chain and the alpha-adaptin subunit of AP-2 in HeLa-cells using RNA interference. 48 h after transfection with clathrin heavy chain-specific short interfering RNA both, the heavy and light chains were depleted by more than 80%. Residual clathrin was mainly membrane-associated, and an increase in shallow pits was noted. The membrane-association of adaptors, clathrin assembly lymphoid myeloid leukemia protein (CALM), epsin, dynamin, and Eps15 was only moderately affected by the knockdown and all proteins still displayed a punctate staining distribution. Clathrin depletion inhibited the uptake of transferrin but not that of the epidermal growth factor. However, efficient sorting of the epidermal growth factor into hepatocyte growth factor-regulated tyrosine kinase substrate-positive endosomes was impaired. Depletion of alpha-adaptin abolished almost completely the plasma membrane association of clathrin. Binding of Eps15 to membranes was strongly and that of CALM moderately reduced. Whereas the uptake of transferrin was efficiently blocked in alpha-adaptin knockdown cells, the internalization and sorting of the epidermal growth factor was not significantly impaired. Since neither clathrin nor AP-2 is essential for the internalization of EGF, we conclude that it is taken up by an alternative mechanism.  相似文献   

20.
ATP hydrolysis was used to power the enzymatic release of clathrin from coated vesicles. The 70,000-mol-wt protein, purified on the basis of its ATP-dependent ability to disassemble clathrin cages, was found to possess a clathrin-dependent ATPase activity. Hydrolysis was specific for ATP; neither dATP nor other ribonucleotide triphosphates would either substitute for ATP or inhibit the hydrolysis of ATP in the presence of clathrin cages. The ATPase activity is elicited by clathrin in the form of assembled cages, but not by clathrin trimers, the product of cage disassembly. The 70,000-mol-wt polypeptide, but not clathrin, was labeled by ATP in photochemical cross-linking, indicating that the hydrolytic site for ATP resides on the uncoating protein. Conditions of low pH or high magnesium concentration uncouple ATP hydrolysis from clathrin release, as ATP is hydrolyzed although essentially no clathrin is released. This suggests that the recognition event triggering clathrin-dependent ATP hydrolysis occurs in the absence of clathrin release, and presumably precedes such release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号