首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
2.
Oral squamous cell carcinoma (OSCC) is a pathological type of oral cancer, which accounts for over 90% of oral cancers. It has been widely shown that circRNA is involved in the regulation of multiple malignant oral diseases including OSCC. However, the mechanism underlying how circRNA regulates OSCC is still not clearly elucidated. In this article, we report circFOXO3 promotes tumor growth and invasion of OSCC by targeting miR‐214 which specifically degrades the lysine demethylase 2A (KDM2A). CircRNA sequencing was conducted in OSCC tumor and tumor‐side tissues, and the expression of circFOXO3 is found to be markedly increased in tumor tissues. CircFOXO3 is also highly expressed in several OSCC cell lines compared with human oral keratinocytes. Transwell assay and colony formation showed that knockdown of circFOXO3 prevents the invasion and proliferation of oral cancer cells. Via bioinformatic research, miR‐214 was found to be the target of circFOXO3 and correlate well with circFOXO3 both in vitro and in vivo. KDM2A was then validated by database analysis and luciferase assay to be the direct target of miR‐214. KDM2A helps to promote tumor invasiveness and proliferation of OSCC. Collectively, our results proved that circFOXO3 sponges miR‐214 to up‐regulate the expression of KDM2A, thus promotes tumor progression in OSCC.  相似文献   

3.
Objectives20‐hydroxyeicosatetraenoic acid (20‐HETE) is a metabolite of arachidonic acid catalysed by cytochrome P450 enzymes and plays an important role in cell death and proliferation. We hypothesized that 20‐HETE synthesis inhibition may have protective effects in traumatic brain injury (TBI) and investigated possible underlying molecular mechanisms.Materials and methodsNeurologic deficits, and lesion volume, reactive oxygen species (ROS) levels and cell death as assessed using immunofluorescence staining, transmission electron microscopy and Western blotting were used to determine post‐TBI effects of HET0016, an inhibitor of 20‐HETE synthesis, and their underlying mechanisms.ResultsThe level of 20‐HETE was found to be increased significantly after TBI in mice. 20‐HETE synthesis inhibition reduced neuronal apoptosis, ROS production and damage to mitochondrial structures after TBI. Mechanistically, HET0016 decreased the Drp1 level and increased the expression of Mfn1 and Mfn2 after TBI, indicating a reversal of the abnormal post‐TBI mitochondrial dynamics. HET0016 also promoted the restoration of SIRT1 and PGC‐1α in vivo, and a SIRT1 activator (SRT1720) reversed the downregulation of SIRT1 and PGC‐1α and the abnormal mitochondrial dynamics induced by 20‐HETE in vitro. Furthermore, plasma 20‐HETE levels were found to be higher in TBI patients with unfavourable neurological outcomes and were correlated with the GOS score.ConclusionsThe inhibition of 20‐HETE synthesis represents a novel strategy to mitigate TBI‐induced mitochondrial dysfunction and neuronal apoptosis by regulating the SIRT1/PGC‐1α pathway.  相似文献   

4.
5.
Islet inflammation severely impairs pancreatic β‐cell function, but the specific mechanisms are still unclear. Interleukin1‐β (IL‐1β), an essential inflammatory factor, exerts a vital role in multiple physio‐pathologic processes, including diabetes. Calcium/calmodulin‐dependent serine protein kinase (CASK) is an important regulator especially in insulin secretion process. This study aims to unveil the function of CASK in IL‐1β–induced insulin secretion dysfunction and the possible mechanism thereof. Islets of Sprague‐Dawley (SD) rats and INS‐1 cells stimulated with IL‐1β were utilized as models of chronic inflammation. Insulin secretion function associated with Cask and DNA methyltransferases (DNMT) expression were assessed. The possible mechanisms of IL‐1β‐induced pancreatic β‐cell dysfunction were also explored. In this study, CASK overexpression effectively improved IL‐1β‐induced islet β‐cells dysfunction, increased insulin secretion. DNA methyltransferases and the level of methylation in the promoter region of Cask were elevated after IL‐1β administration. Methyltransferase inhibitor 5‐Aza‐2’‐deoxycytidine (5‐Aza‐dC) and si‐DNMTs partially up‐regulated CASK expression and reversed potassium stimulated insulin secretion (KSIS) and glucose‐stimulated insulin secretion (GSIS) function under IL‐1β treatment in INS‐1 and rat islets. These results reveal a previously unknown effect of IL‐1β on insulin secretion dysfunction and demonstrate a novel pathway for Cask silencing based on activation of DNA methyltransferases via inducible nitric oxide synthase (iNOS) and modification of gene promoter methylation.  相似文献   

6.
Previous studies have suggested that the cellular Ca2+ and iron homeostasis, which can be regulated by mitochondrial calcium uniporter (MCU), is associated with oxidative stress, apoptosis and many neurological diseases. However, little is known about the role of MCU‐mediated Ca2+ and iron accumulation in traumatic brain injury (TBI). Under physiological conditions, MCU can be inhibited by ruthenium red (RR) and activated by spermine (Sper). In the present study, we used RR and Sper to reveal the role of MCU in mouse and neuron TBI models. Our results suggested that the Ca2+ and iron concentrations were obviously increased after TBI. In addition, TBI models showed a significant generation of reactive oxygen species (ROS), decrease in adenosine triphosphate (ATP), deformation of mitochondria, up‐regulation of deoxyribonucleic acid (DNA) damage and increase in apoptosis. Blockage of MCU by RR prevented Ca2+ and iron accumulation, abated the level of oxidative stress, improved the energy supply, stabilized mitochondria, reduced DNA damage and decreased apoptosis both in vivo and in vitro. Interestingly, Sper did not increase cellular Ca2+ and iron concentrations, but suppressed the Ca2+ and iron accumulation to benefit the mice in vivo. However, Sper had no significant impact on TBI in vitro. Taken together, our data demonstrated for the first time that blockage of MCU‐mediated Ca2+ and iron accumulation was essential for TBI. These findings indicated that MCU could be a novel therapeutic target for treating TBI.  相似文献   

7.
The persistent transactivation of epidermal growth factor receptor (EGFR) causes subsequent activation of the TGF‐β/Smad3 pathway, which is closely associated with fibrosis and cell proliferation in diabetic nephropathy (DN), but the exact mechanism of persistent EGFR transactivation in DN remains unclear. ARAP1, a susceptibility gene for type 2 diabetes, can regulate the endocytosis and ubiquitination of membrane receptors, but the effect of ARAP1 and its natural antisense long non‐coding RNA (lncRNA), ARAP1‐AS2, on the ubiquitination of EGFR in DN is not clear. In this study, we verified that the expression of ARAP1 and ARAP1‐AS2 was significantly up‐regulated in high glucose‐induced human proximal tubular epithelial cells (HK‐2 cells). Moreover, we found that overexpression or knockdown of ARAP1‐AS2 could regulate fibrosis and HK‐2 cell proliferation through EGFR/TGF‐β/Smad3 signalling. RNA pulldown assays revealed that ARAP1‐AS2 directly interacts with ARAP1. Coimmunoprecipitation, dual‐immunofluorescence and ubiquitination assays showed that ARAP1 may maintain persistent EGFR activation by reducing EGFR ubiquitination through competing with Cbl for CIN85 binding. Taken together, our results suggest that the lncRNA ARAP1‐AS2 may promote high glucose‐induced proximal tubular cell injury via persistent EGFR/TGF‐β/Smad3 pathway activation by interacting with ARAP1.  相似文献   

8.
SARS‐CoV‐2 vaccines are highly efficient against severe forms of the disease, hospitalization and death. Nevertheless, insufficient protection against several circulating viral variants might suggest waning immunity and the need for an additional vaccine dose. We conducted a longitudinal study on the kinetics and persistence of immune responses in healthcare workers vaccinated with two doses of BNT162b2 mRNA vaccine with or without prior SARS‐CoV‐2 infection. No new infections were diagnosed during follow‐up. At 6 months, post‐vaccination or post‐infection, despite a downward trend in the level of anti‐S IgG antibodies, the neutralizing activity does not decrease significantly, remaining higher than 75% (85.14% for subjects with natural infection, 88.82% for vaccinated after prior infection and 78.37% for vaccinated only). In a live‐virus neutralization assay, the highest neutralization titres were present at baseline and at 6 months follow‐up in persons vaccinated after prior infection. Anti‐S IgA levels showed a significant descending trend in vaccinated subjects (p < 0.05) after 14 weeks. Cellular immune responses are present even in vaccinated participants with declining antibody levels (index ratio 1.1–3) or low neutralizing activity (30%–40%) at 6 months, although with lower T‐cell stimulation index (p = 0.046) and IFN‐γ secretion (p = 0.0007) compared to those with preserved humoral responses.  相似文献   

9.
Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号