首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Pancreatic lipase plays a key role in intestinal digestion of feed fat, and is often deficient in young animals such as weaning piglets. The objective of this study was to express and characterize a partial codon optimized porcine pancreatic lipase (opPPL). A 537 bp cDNA fragment encoding N-terminus amino acid residue of the mature porcine pancreatic lipase was synthesized according to the codon bias of Pichia pastoris and ligated to the full-length porcine pancreatic lipase cDNA fragment. The codon optimized PPL was cloned into the pPICZαA (Invitrogen, Beijing, China) vector. After the resultant opPPL/pPICZαΑ plasmid was transformed into P.pastoris, the over-expressed extracellular opPPL containing a His-tag to the C terminus was purified using Ni Sepharose affinity column (GE Healthcare, Piscataway, NJ, USA), and was characterized against the native enzyme (commercial PPL from porcine pancreas, Sigma). The opPPL exhibited a molecular mass of approximately 52 kDa, and showed optimal temperature (40°C), optimal pH (8.0), Km (0.041 mM), and Vmax (2.008 µmol.mg protein −1.min−1) similar to those of the commercial enzyme with p-NPP as the substrate. The recombinant enzyme was stable at 60°C, but lost 80% (P<0.05) of its activity after exposure to heat ≥60°C for 20 min. The codon optimization increased opPPL yield for ca 4 folds (146 mg.L−1 vs 36 mg.L−1) and total enzyme activity increased about 5 folds (1900 IU.L−1 vs 367 IU.L−1) compared with those native naPPL/pPICZαΑ tranformant. Comparison of gene copies and mRNA profiles between the two strains indicated the increased rePPL yields may partly be ascribed to the increased protein translational efficiency after codon optimization. In conclusion, we successfully optimized 5-terminal of porcine pancreatic lipase encoding gene and over-expressed the gene in P. pastoris as an extracellular, functional enzyme. The recombination enzyme demonstrates a potential for future use as an animal feed additive for animal improvement.  相似文献   

2.
A β-class carbonic anhydrase (CA, EC 4.2.1.1) was cloned from the genome of the Monogenean platyhelminth Gyrodactylus salaris, a parasite of Atlantic salmon. The new enzyme, GsaCAβ has a significant catalytic activity for the physiological reaction, CO2 + H2O ⇋ HCO3 + H+ with a kcat of 1.1 × 105 s−1 and a kcat/Km of 7.58 × 106 M−1 × s−1. This activity was inhibited by acetazolamide (KI of 0.46 µM), a sulphonamide in clinical use, as well as by selected inorganic anions and small molecules. Most tested anions inhibited GsaCAβ at millimolar concentrations, but sulfamide (KI of 81 µM), N,N-diethyldithiocarbamate (KI of 67 µM) and sulphamic acid (KI of 6.2 µM) showed a rather efficient inhibitory action. There are currently very few non-toxic agents effective in combating this parasite. GsaCAβ is subsequently proposed as a new drug target for which effective inhibitors can be designed.  相似文献   

3.
We have previously reported that a psychrotrophic bacterium, Pseudomonas sp. strain KB700A, which displays sigmoidal growth even at −5°C, produced a lipase. A genomic DNA library of strain KB700A was introduced into Escherichia coli TG1, and screening on tributyrin-containing agar plates led to the isolation of the lipase gene. Sequence analysis revealed an open reading frame (KB-lip) consisting of 1,422 nucleotides that encoded a protein (KB-Lip) of 474 amino acids with a molecular mass of 49,924 Da. KB-Lip showed 90% identity with the lipase from Pseudomonas fluorescens and was found to be a member of Subfamily I.3 lipase. Gene expression and purification of the recombinant protein were performed. KB-Lip displayed high lipase activity in the presence of Ca2+. Addition of EDTA completely abolished lipase activity, indicating that KB-Lip was a Ca2+-dependent lipase. Addition of Mn2+ and Sr2+ also led to enhancement of lipase activity but to a much lower extent than that produced by Ca2+. The optimal pH of KB-Lip was 8 to 8.5. The addition of detergents enhanced the enzyme activity. When p-nitrophenyl esters and triglyceride substrates of various chain-lengths were examined, the lipase displayed highest activity towards C10 acyl groups. We also determined the positional specificity and found that the activity was 20-fold higher toward the 1(3) position than toward the 2 position. The optimal temperature for KB-Lip was 35°C, lower than that for any previously reported Subfamily I.3 lipase. The enzyme was also thermolabile compared to these lipases. Furthermore, KB-Lip displayed higher levels of activity at low temperatures than did other enzymes from Subfamily I.3, indicating that KB-Lip has evolved to function in cold environments, in accordance with the temperature range for growth of its psychrotrophic host, strain KB700A.  相似文献   

4.
Burkholderia territorii, a Gram-negative bacterium, encodes for the ι-class carbonic anhydrase (CA, EC 4.2.1.1) BteCAι, which was recently characterised. It acts as a good catalyst for the hydration of CO2 to bicarbonate and protons, with a kcat value of 3.0 × 105 s−1 and kcat/KM value of 3.9 × 107 M−1 s−1. No inhibition data on this new class of enzymes are available to date. We report here an anion and small molecules inhibition study of BteCAι, which we prove to be a zinc(II)- and not manganese(II)-containing enzyme, as reported for diatom ι-CAs. The best inhibitors were sulphamic acid, stannate, phenylarsonic acid, phenylboronic acid and sulfamide (KI values of 6.2–94 µM), whereas diethyldithiocarbamate, tellurate, selenate, bicarbonate and cyanate were submillimolar inhibitors (KI values of 0.71–0.94 mM). The halides (except iodide), thiocyanate, nitrite, nitrate, carbonate, bisulphite, sulphate, hydrogensulfide, peroxydisulfate, selenocyanate, fluorosulfonate and trithiocarbonate showed KI values in the range of 3.1–9.3 mM.  相似文献   

5.
A psychrotrophic bacterium producing a cold-adapted lipase upon growth at low temperatures was isolated from Alaskan soil and identified as a Pseudomonas strain. The lipase gene (lipP) was cloned from the strain and sequenced. The amino acid sequence deduced from the nucleotide sequence of the gene (924 bp) corresponded to a protein of 308 amino acid residues with a molecular weight of 33,714. LipP also has consensus motifs conserved in other cold-adapted lipases, i.e., Lipase 2 from Antarctic Moraxella TA144 (G. Feller, M. Thiry, J. L. Arpigny, and C. Gerday, DNA Cell Biol. 10:381–388, 1991) and the mammalian hormone-sensitive lipase (D. Langin, H. Laurell, L. S. Holst, P. Belfrage, and C. Holm, Proc. Natl. Acad. Sci. USA 90:4897–4901, 1993): a pentapeptide, GDSAG, containing the putative active-site serine and an HG dipeptide. LipP was purified from an extract of recombinant Escherichia coli C600 cells harboring a plasmid coding for the lipP gene. The enzyme showed a 1,3-positional specificity toward triolein. p-Nitrophenyl esters of fatty acids with short to medium chains (C4 and C6) served as good substrates. The enzyme was stable between pH 6 and 9, and the optimal pH for the enzymatic hydrolysis of tributyrin was around 8. The activation energies for the hydrolysis of p-nitrophenyl butyrate and p-nitrophenyl laurate were determined to be 11.2 and 7.7 kcal/mol, respectively, in the temperature range 5 to 35°C. The enzyme was unstable at temperatures higher than 45°C. The Km of the enzyme for p-nitrophenyl butyrate increased with increases in the assay temperature. The enzyme was strongly inhibited by Zn2+, Cu2+, Fe3+, and Hg2+ but was not affected by phenylmethylsulfonyl fluoride and bis-nitrophenyl phosphate. Various water-miscible organic solvents, such as methanol and dimethyl sulfoxide, at concentrations of 0 to 30% (vol/vol) activated the enzyme.  相似文献   

6.
The kinetics of photodegradation of moxifloxacin (MF) in aqueous solution (pH 2.0–12.0), and organic solvents has been studied. MF photodegradation is a specific acid-base catalyzed reaction and follows first-order kinetics. The apparent first-order rate constants (kobs) for the photodegradation of MF range from 0.69 × 10−4 (pH 7.5) to 19.50 × 10−4 min−1 (pH 12.0), and in organic solvents from 1.24 × 10−4 (1-butanol) to 2.04 × 10−4 min−1 (acetonitrile). The second-order rate constant (k2) for the [H+]-catalyzed and [OH]-catalyzed reactions are 6.61 × 10−2 and 19.20 × 10−2 M−1 min−1, respectively. This indicates that the specific base-catalyzed reaction is about three-fold faster than that of the specific acid-catalyzed reaction probably as a result of the rapid cleavage of diazabicyclononane side chain in the molecule. The kobs-pH profile for the degradation reactions is a V-shaped curve indicating specific acid-base catalysis. The minimum rate of photodegradation at pH 7–8 is due to the presence of zwitterionic species. There is a linear relation between kobs and the dielectric constant and an inverse relation between kobs and the viscosity of the solvent. Some photodegraded products of MF have been identified and pathways proposed for their formation in acid and alkaline solutions.KEY WORDS: acid-base catalysis, kinetics, moxifloxacin, photodegradation, rate–pH profile, solvent effect  相似文献   

7.
Retinol-binding protein (RBP), retinol, and modified-relative-dose response (MRDR) are used to assess vitamin A status. We describe vitamin A status in Ugandan children and women using dried blood spot (DBS) RBP, serum RBP, plasma retinol, and MRDR and compare DBS-RBP, serum RBP, and plasma retinol. Blood was collected from 39 children aged 12–23 months and 28 non-pregnant mothers aged 15–49 years as a subsample from a survey in Amuria district, Uganda, in 2016. DBS RBP was assessed using a commercial enzyme immunoassay kit, serum RBP using an in-house sandwich enzyme-linked immunosorbent assay, and plasma retinol/MRDR test using high-performance liquid chromatography. We examined (a) median concentration or value (Q1, Q3); (b) R2 between DBS-RBP, serum RBP, and plasma retinol; and (c) Bland-Altman plots. Median (Q1, Q3) for children and mothers, respectively, were as follows: DBS-RBP 1.15 µmol/L (0.97, 1.42) and 1.73 (1.52, 1.96), serum RBP 0.95 µmol/L (0.78, 1.18) and 1.47 µmol/L (1.30, 1.79), plasma retinol 0.82 µmol/L (0.67, 0.99) and 1.33 µmol/L (1.22, 1.58), and MRDR 0.025 (0.014, 0.042) and 0.014 (0.009, 0.019). DBS RBP-serum RBP R2 was 0.09 for both children and mothers. The mean biases were −0.19 µmol/L (95% limits of agreement [LOA] 0.62, −0.99) for children and −0.01 µmol/L (95% LOA −1.11, −1.31) for mothers. DBS RBP-plasma retinol R2 was 0.11 for children and 0.13 for mothers. Mean biases were 0.33 µmol/L (95% LOA −0.37, 1.03) for children, and 0.29 µmol/L (95% LOA −0.69, 1.27) for mothers. Serum RBP-plasma retinol R2 was 0.75 for children and 0.55 for mothers, with mean biases of 0.13 µmol/L (95% LOA −0.23, 0.49) for children and 0.18 µmol/L (95% LOA −0.61, 0.96) for mothers. Results varied by indicator and matrix. The serum RBP-retinol R2 for children was moderate (0.75), but poor for other comparisons. Understanding the relationships among vitamin A indicators across contexts and population groups is needed.  相似文献   

8.
α-Amylase produced by Bacillus licheniformis CUMC305 was purified 212-fold with a 42% yield through a series of four steps. The purified enzyme was homogeneous as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and discontinuous gel electrophoresis. The purified enzyme showed maximal activity at 90°C and pH 9.0, and 91% of this activity remained at 100°C. The enzyme retained 91, 79, and 71% maximal activity after 3 h of treatment at 60°C, 3 h at 70°C, and 90 min at 80°C, respectively, in the absence of substrate. On the contrary, in the presence of substrate (soluble starch), the α-amylase enzyme was fully stable after a 4-h incubation at 100°C. The enzyme showed 100% stability in the pH range 7 to 9; 95% stability at pH 10; and 84, 74, 68, and 50% stability at pH values of 6, 5, 4, and 3, respectively, after 18 h of treatment. The activation energy for this enzyme was calculated as 5.1 × 105 J/mol. The molecular weight was estimated to be 28,000 by sodium dodecyl sulfate-gel electrophoresis. The relative rates of hydrolysis of soluble starch, amylose, amylopectin, and glycogen were 1.27, 1.8, 1.94, and 2.28 mg/ml, respectively. Vmax values for hydrolysis of these substrates were calculated as 0.738, 1.08, 0.8, and 0.5 mg of maltose/ml per min, respectively. Of the cations, Na+, Ca2+, and Mg2+, showed stimulatory effect, whereas Hg2+, Cu2+, Ni2+, Zn2+, Ag+, Fe2+, Co2+, Cd2+, Al3+, and Mn2+ were inhibitory. Of the anions, azide, F, SO32−, SO43−, S2O32−, MoO42−, and Wo42− showed an excitant effect. p-Chloromercuribenzoic acid and sodium iodoacetate were inhibitory, whereas cysteine, reduced glutathione, thiourea, β-mercaptoethanol, and sodium glycerophosphate afforded protection to enzyme activity. α-Amylase was fairly resistant to EDTA treatment at 30°C, but heating at 90°C in presence of EDTA resulted in the complete loss of enzyme activity, which could be recovered partially by the addition of Cu2+ and Fe2+ but not by the addition of Ca2+ or any other divalent ions.  相似文献   

9.
The noncharacterized protein CLOSCI_02528 from Clostridium scindens ATCC 35704 was characterized as D-psicose 3-epimerase. The enzyme showed maximum activity at pH 7.5 and 60°C. The half-life of the enzyme at 50°C was 108 min, suggesting the enzyme was relatively thermostable. It was strictly metal-dependent and required Mn2+ as optimum cofactor for activity. In addition, Mn2+ improved the structural stability during both heat- and urea-induced unfolding. Using circular dichroism measurements, the apparent melting temperature (T m) and the urea midtransition concentration (C m) of metal-free enzyme were 64.4°C and 2.68 M. By comparison, the Mn2+-bound enzyme showed higher T m and C m with 67.3°C and 5.09 M. The Michaelis-Menten constant (K m), turnover number (k cat), and catalytic efficiency (k cat/K m) values for substrate D-psicose were estimated to be 28.3 mM, 1826.8 s−1, and 64.5 mM−1 s−1, respectively. The enzyme could effectively produce D-psicose from D-fructose with the turnover ratio of 28%.  相似文献   

10.
Agro-industrial residues and cow dung were used as the substrate for the production of alkaline protease by Bacillus cereus strain AT. The bacterial strain Bacillus cereus strain AT produced a high level of protease using cow dung substrate (4813 ± 62 U g−1). Physiological fermentation factors such as the incubation time (72 h), the pH (9), the moisture content (120%), and the inoculum level (6%) played a vital role in the enzyme bioprocess. The enzyme production improved with the supplementation of maltose and yeast extract as carbon and nitrogen sources, respectively. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis and zymogram analysis of the purified protease indicated an estimated molecular mass of 46 kDa. The protease enzyme was stable over a temperature range of 40–50 °C and pH 6–9, with maximum activity at 50 °C and pH 8. Among the divalent ions tested, Ca2+, Na+ and Mg2+ showed activities of 107 ± 0.7%, 103.5 ± 1.3%, and 104.6 ± 0.9, respectively. The enzyme showed stability in the presence of surfactants such as sodium dodecyl sulfate and on various commercially available detergents. The crude enzyme effectively de-haired goat hides within 18 h of incubation at 30 °C. The enzymatic properties of this protease suggest its suitable application as an additive in detergent formulation and also in leather processing. Based on the laboratory results, the use of cow dung for producing and extracting enzyme is not cumbersome and is easy to scale up. Considering its cheap cost and availability, cow dung is an ideal substrate for enzyme bioprocess in an industrial point of view.  相似文献   

11.
Alpha-glucan phosphorylase catalyzes the reversible cleavage of α-1-4-linked glucose polymers into α-D-glucose-1-phosphate. We report the recombinant production of an α-glucan/maltodextrin phosphorylase (PF1535) from a hyperthermophilic archaeon, Pyrococcus furiosus, and the first detailed biochemical characterization of this enzyme from any archaeal source using a mass-spectrometry-based assay. The apparent 98 kDa recombinant enzyme was active over a broad range of temperatures and pH, with optimal activity at 80 °C and pH 6.5–7. This archaeal protein retained its complete activity after 24 h at 80 °C in Tris-HCl buffer. Unlike other previously reported phosphorylases, the Ni-affinity column purified enzyme showed broad substrate specificity in both the synthesis and degradation of maltooligosaccharides. In the synthetic direction of the enzymatic reaction, the lowest oligosaccharide required for the chain elongation was maltose. In the degradative direction, the archaeal enzyme can produce glucose-1-phosphate from maltotriose or longer maltooligosaccharides including both glycogen and starch. The specific activity of the enzyme at 80 °C in the presence of 10 mM maltoheptaose and at 10 mg ml–1 glycogen concentration was 52 U mg–1 and 31 U mg–1, respectively. The apparent Michaelis constant and maximum velocity for inorganic phosphate were 31 ± 2 mM and 0.60 ± 0.02 mM min–1 µg–1, respectively. An initial velocity study of the enzymatic reaction indicated a sequential bi-bi catalytic mechanism. Unlike the more widely studied mammalian glycogen phosphorylase, the Pyrococcus enzyme is active in the absence of added AMP.  相似文献   

12.
With the consumption of energy and the spread of COVID-19, the demand for ethanol production is increasing in the world. The industrial ethanol fermentation microbes cannot metabolize the alginate component of macro algae, which affects the ethanol yield. In this research, the ethanol production process from macro algae by an alginate fermentation yeast Meyerozyma guilliermondii, especially the pretreatment process of Colpomenia sinuosa, was studied. At the same time, the experimental design of Box-Behnken was carried out to achieve the optimum fermentation performance. The concentration of KH2PO4 (A: 2–6 g.L−1), pH (B: 4–7), reaction time (C: 60–120 h) and temperature (D: 24–34 °C) were variable input parameters. During the ethanol production process, the algae powder was firstly mixed with water at 90 °C for 0.5 h. Later the fermentation culture medium was prepared and then it was fermented by the yeast Meyerozyma guilliermondii to produce ethanol. And the optimal fermentation parameters were as follows: fermentation temperature of 28 °C, KH2PO4 dosage of 4.7 g.L−1, initial pH of 6, and fermentation time of 99 h. The ethanol yield reached 0.268 g.g−1 (ethanol to algae), close to the predicted value of model. The generation of alginate lyase during the fermentation of algae was also examined. The highest alginate lyase activity reached 46.42 U.mL−1.  相似文献   

13.
Asparaginase is an important antileukemic agent extensively used worldwide but the intrinsic glutaminase activity of this enzymatic drug is responsible for serious life threatening side effects. Hence, glutaminase free asparaginase is much needed for upgradation of therapeutic index of asparaginase therapy. In the present study, glutaminase free asparaginase produced from Enterobacter cloacae was purified to apparent homogeneity. The purified enzyme was found to be homodimer of approximately 106 kDa with monomeric size of approximately 52 kDa and pI 4.5. Purified enzyme showed optimum activity between pH 7–8 and temperature 35–40°C, which is close to the internal environment of human body. Monovalent cations such as Na+ and K+ enhanced asparaginase activity whereas divalent and trivalent cations, Ca2+, Mg2+, Zn2+, Mn2+, and Fe3+ inhibited the enzyme activity. Kinetic parameters Km, Vmax and Kcat of purified enzyme were found to be 1.58×10−3 M, 2.22 IU μg-1 and 5.3 × 104 S-1, respectively. Purified enzyme showed prolonged in vitro serum (T1/2 = ~ 39 h) and trypsin (T1/2 = ~ 32 min) half life, which is therapeutically remarkable feature. The cytotoxic activity of enzyme was examined against a panel of human cancer cell lines, HL-60, MOLT-4, MDA-MB-231 and T47D, and highest cytotoxicity observed against HL-60 cells (IC50 ~ 3.1 IU ml-1), which was comparable to commercial asparaginase. Cell and nuclear morphological studies of HL-60 cells showed that on treatment with purified asparaginase symptoms of apoptosis were increased in dose dependent manner. Cell cycle progression analysis indicates that enzyme induces apoptosis by cell cycle arrest in G0/G1 phase. Mitochondrial membrane potential loss showed that enzyme also triggers the mitochondrial pathway of apoptosis. Furthermore, the enzyme was found to be nontoxic for human noncancerous cells FR-2 and nonhemolytic for human erythrocytes.  相似文献   

14.
Anaerobic oxidation of ammonium (anammox) is recognized as an important process for nitrogen (N) cycling, yet its role in agricultural ecosystems, which are intensively fertilized, remains unclear. In this study, we investigated the presence, activity, functional gene abundance and role of anammox bacteria in rhizosphere and non-rhizosphere paddy soils using catalyzed reporter deposition–fluorescence in situ hybridization, isotope-tracing technique, quantitative PCR assay and 16S rRNA gene clone libraries. Results showed that rhizosphere anammox contributed to 31–41% N2 production with activities of 0.33–0.64 nmol N2 g−1 soil h−1, whereas the non-rhizosphere anammox bacteria contributed to only 2–3% N2 production with lower activities of 0.08–0.26 nmol N2 g−1 soil h−1. Higher anammox bacterial cells were observed (0.75–1.4 × 107 copies g−1 soil) in the rhizosphere, which were twofold higher compared with the non-rhizosphere soil (3.7–5.9 × 106 copies g−1 soil). Phylogenetic analysis of the anammox bacterial 16S rRNA genes indicated that two genera of ‘Candidatus Kuenenia'' and ‘Candidatus Brocadia'' and the family of Planctomycetaceae were identified. We suggest the rhizosphere provides a favorable niche for anammox bacteria, which are important to N cycling, but were previously largely overlooked.  相似文献   

15.
IntroductionAlthough obesity is a risk factor for hip osteoarthritis (OA), the role of body composition, if any, is unclear. This study examines whether the body mass index (BMI) and body composition are associated with hip cartilage changes using magnetic resonance imaging (MRI) in community-based adults.Methods141 community-based participants with no clinical hip disease, including OA, had BMI and body composition (fat mass and fat free mass) measured at baseline (1990 to 1994), and BMI measured and 3.0 T MRI performed at follow-up (2009–2010). Femoral head cartilage volume was measured and femoral head cartilage defects were scored in the different hip regions.ResultsFor females, baseline BMI (β = −26 mm3, 95% Confidence interval (CI) -47 to −6 mm3, p = 0.01) and fat mass (β = −11 mm3, 95% CI −21 to −1 mm3, p = 0.03) were negatively associated with femoral head cartilage volume. Also, while increased baseline fat mass was associated with an increased risk of cartilage defects in the central superolateral region of the femoral head (Odds Ratio (OR) = 1.08, 95% CI 1.00–1.15, p = 0.04), increased baseline fat free mass was associated with a reduced risk of cartilage defects in this region (OR = 0.82, 95% CI 0.67–0.99; p = 0.04). For males, baseline fat free mass was associated with increased femoral head cartilage volume (β = 40 mm3, 95% CI 6 to 74 mm3, p = 0.02).ConclusionsIncreased fat mass was associated with adverse hip cartilage changes for females, while increased fat free mass was associated with beneficial cartilage changes for both genders. Further work is required to determine whether modifying body composition alters the development of hip OA.  相似文献   

16.
A novel phosphodiesterase (PdeA) was purified from Delftia acidovorans, the gene encoding the enzyme was cloned and expressed in Escherichia coli, and the recombinant enzyme was purified to apparent homogeneity and characterized. PdeA is an 85-kDa trimer that exhibits maximal activity at 65°C and pH 10 even though it was isolated from a mesophilic bacterium. Although PdeA exhibited both mono- and diesterase activity, it was most active on the phosphodiester bis(p-nitrophenyl)phosphate with a Km of 2.9 ± 0.1 mM and a kcat of 879 ± 73 min−1. The enzyme showed sequence similarity to cyclic AMP (cAMP) phosphodiesterase and cyclic nucleotide phosphodiesterases and exhibited activity on cAMP in vivo when the gene was expressed in E. coli. The IS1071 transposon insertion sequence was found downstream of pdeA.  相似文献   

17.
Comparison of pig heart aconitase (Kennedy et al., 1972) with yeast (Candida lipolytica) aconitase (Suzuki et al., 1973) reveals similarities in molecular weight and iron content but not in sulphide content. Comparison with the Mildvan & Villafranca (1971) pig heart aconitase preparation reveals differences in iron ligands, specific activity and other properties; these differences possibly arise from protein association as pig heart protein associates under a variety of conditions. The electron spin resonance spectrum, g 4.25, and the low molar relaxivity, 473m−1·s−1, of water H+ suggest the presence of high-spin Fe(III) unco-ordinated to water in the enzyme. The iron chromophore on acid titration at 320nm gives a curve with an inflexion at pH4.2. Ten of 16 expected thiol equivalents are titrated with p-hydroxymercuribenzoate suggesting the presence of cystine as well as cysteine residues. Inhibition of the activation of inactive (activatable) enzyme is sigmoidally related to the molar ratio, p-hydroxymercuribenzoate/enzyme with 10–11mol of mercurial compound causing complete inhibition. Active enzyme, free from activating reagents, requires high molar ratios of mercurial compound for rapid inhibition. In terms of p-hydroxymercuribenzoate the enzyme then lacks an essential thiol group.  相似文献   

18.
A new set of 4,6,7,8-tetrahydroquinolin-5(1H)-ones were designed as cytotoxic agents against breast cancer cell line (MCF-7) and synthesised under ultrasonic irradiation using chitosan decorated copper nanoparticles (CS/CuNPs) catalyst. The new compounds 4b, 4j, 4k, and 4e exhibited the most potent cytotoxic activity of IC50 values (0.002 − 0.004 µM) comparing to Staurosporine of IC50; 0.005 μM. The latter derivatives exhibited a promising safety profile against the normal human WI38 cells of IC50 range 0.0149 − 0.048 µM. Furthermore, the most promising cytotoxic compounds 4b, 4j were evaluated as multi-targeting agents against the RTK protein kinases; EGFR, HER-2, PDGFR-β, and VEGFR-2. Compound 4j showed promising inhibitory activity against HER-2 and PDGFR-β of IC50 values 0.17 × 10−3, 0.07 × 10−3 µM in comparison with the reference drug sorafenib of IC50; 0.28 × 10−3, 0.13 × 10−3 µM, respectively. In addition, 4j induced apoptotic effect and cell cycle arrest at G2/M phase preventing the mitotic cycle in MCF-7 cells.  相似文献   

19.
A new ketoreductase useful for asymmetric synthesis of chiral alcohols was identified in the cyanobacterium Synechococcus sp. strain PCC 7942. Mass spectrometry of trypsin-digested peptides identified the protein as 3-ketoacyl-[acyl-carrier-protein] reductase (KR) (EC 1.1.1.100). The gene, referred to as fabG, was cloned, functionally expressed in Escherichia coli, and subsequently purified to homogeneity. The enzyme displayed a temperature optimum at 44°C and a broad pH optimum between pH 7 and pH 9. The NADPH-dependent KR was able to asymmetrically reduce a variety of prochiral ketones with good to excellent enantioselectivities (>99.8%). The KR showed particular high specific activity for asymmetric reduction of ethyl 4-chloroacetoacetate (38.29 ± 2.15 U mg−1) and 2′,3′,4′,5′,6′-pentafluoroacetophenone (8.57 ± 0.49 U mg−1) to the corresponding (S)-alcohols. In comparison with an established industrial enzyme like the alcohol dehydrogenase from Lactobacillus brevis, the KR showed seven-times-higher activity toward 2′,3′,4′,5′,6′-pentafluoroacetophenone, with a remarkably higher enantiomeric excess (>99.8% [S] versus 43.3% [S]).  相似文献   

20.
A novel gene (designated as cen219) encoding endoglucanase was isolated from a Bursaphelenchus xylophilus metagenomic library by functional screening. Sequence analysis revealed that cen219 encoded a protein of 367 amino acids. SDS-PAGE analysis of purified endoglucanase suggested that Cen219 was a monomeric enzyme with a molecular mass of 40 kDa. The optimum temperature and pH for endoglucanase activity of Cen219 was separately 50°C and 6.0. It was stable from 30 to 50°C, and from pH 4.0 to 7.0. The activity was significantly enhanced by Mn2+ and dramatically reduced by detergent SDS and metals Fe3+, Cu2+ or Hg2+. The enzyme hydrolyzed a wide range of β-1, 3-, and β-1, 4-linked polysaccharides, with varying activities. Activities towards microcrystalline cellulose and filter paper were relatively high, while the highest activity was towards oat gum. The Km and Vmax of Cen219 towards CMC was 17.37 mg/ml and 333.33 U/mg, respectively. The findings have an insight into understanding the molecular basis of host–parasite interactions in B. xylophilus species. The properties also make Cen219 an interesting enzyme for biotechnological application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号