首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of subcutaneous administration of beta-endorphin on forced extinction (FE) of an inhibitory avoidance behavior has been studied in rats. Animals subjected to FE displayed significantly shorter retention latencies than those of the corresponding control group, not subjected to FE. Subcutaneous administration of 0.1, 1 and 10 micrograms/kg of beta-endorphin 10 min before or immediately after FE session, delayed extinction of the inhibitory avoidance behavior in an inverted U-shaped dependent manner. The opiate antagonist naloxone (NX) administered subcutaneously (0.4 mg/kg) did not influence extinction behavior. However, the same dose of NX, when injected previously to the administration of beta-endorphin (1 microgram/kg), prevented the effect on extinction induced by the opioid. Our results suggest that beta-endorphin may be involved in modulating forced extinction of a recently acquired information, likely influencing relearning phenomena associated with this particular way of forgetting.  相似文献   

2.
Prolonged keeping of rats in darkness significantly activated them. This effect manifested itself in shortening of conditioned avoidance latency in the Y-maze against the background of relearning improvement in young (8-9 weeks) animals and its deterioration in mature (18-20 weeks) ones. In animals of various age groups the share of active swimming and the number of active attempts to leave the vessel increased with a decrease of the duration of immobilization in the structure of forced swimming. A significant increase of the number of immobilization short cycles (up to 6 s) on the actogram and a reduction in the number of more protracted immobility periods were noticed. Participation is suggested in such effect realization of biologically active pineal gland factors.  相似文献   

3.
Trace rhythm recruitment (TRR)--CR analogue to time was studied appearing in response to prolonged electrocutaneous stimulation of the forelimb of the alert rabbit with the frequency 0.5-1-2 Hz. The activity was recorded of 180 cells of the sensorimotor cortex before (80) and after (100) periodical stimulation during 10-20 min. The first series of rhythmic stimulation led to a short-term TRR of the stimulation frequency, the following series formed a clear TRR, preserved for several days. The possibility was revealed of "relearning" of neurones at stimulation rhythm change. The ability of TRR phenomenon of extinguishment, prolonged preservation and reproduction of traces, "relearning" brings it nearer to the processes, analogous to the temporal connection. The ability to reveal distinctly and to quantitatively estimate the characteristics of the applied stimulus fixated by the neurones, makes this model perspective for comparable study of the memory traces at the neuronal level in the animals of various ages.  相似文献   

4.
Levels of c-fos mRNA expression in mouse cerebral cortex and hippocampus at different stages of footshock escape and avoidance learning were studied by Northern hydridization. In the first series of experiments a mouse was presented with 30 electric footshock daily in a chamber where it could escape from the floor by jumping on the safe platform attached to the wall. A large increase in c-fos mRNA level in the cerebral cortex and hippocampus was observed during the first day of training. Mice that were trained for 9 consecutive days and acquired a footshock escape reaction showed no elevation of c-fos expression in the brain as compared to the quiet control group. In the second series of experiments the levels of c-fos expression were compared in individual mice trained to avoid the footshock by jumping on the platform in response to an auditory conditioned stimulus. Mice which acquired avoidance behavior more rapidly had lower c-fos mRNA levels than slow learners. There was no such to difference between the corresponding yoked control groups which consisted of animals matched the rapid and slow learners by the number of footshocks received. It is concluded that achievement of adaptive results in the course of learning leads to a suppression of further c-fos induction by motivational excitation.  相似文献   

5.
A morphological and functional characterization of the four-vessel occlusion model of transient (30 min) forebrain ischemia has been carried out. The rats were classified as fully ischemic when an isoelectric pattern of electroencephalographic activity was present within 5 min of the occlusion of carotid arteries. Otherwise they were considered as partially ischemic rats. The modifications of cerebral blood content during and after the ischemic insult were assessed by a histochemical method which visualizes red blood cells in cerebral vessels. The periods of increase and decrease of red blood cell content were found to correspond to previous reports of post-ischemic hyper- and hypoperfusion. Neuronal damage was assessed by a quantitative analysis of Nissl stained preparations of cingulate cortex, dorsal hippocampus and striatum. The signs of morphological damage were quantified by means of computer-assisted image analysis of Nissl preparations. The highest vulnerability to the ischemic insult was demonstrated in the pyramidal layer of the hippocampal CA1 field and in the lateral striatum. Arterial blood pressure measurements were performed during the ischemic and post-ischemic periods, demonstrating a peak increase of arterial blood pressure within 2 min after carotid artery occlusion, followed by a slow decrease towards basal levels during the ischemic period and a full recovery within 15 min of reperfusion. Ischemic rats were tested in a neurological test battery and in a passive avoidance task. While a full recovery of the relatively simple tasks of the neurological test battery was attained within 14 days of reperfusion, a highly significant impairment of passive avoidance behavior was still present 15 days after the ischemic insult. Finally, a discriminant analysis was applied to separate, on the basis of non-invasive techniques (neurological tests and hot plate), the group of completely ischemic rats from that of partially ischemic rats.  相似文献   

6.
The purpose of this study was to determine whether mild hypobaric hypoxic preconditioning provides protection against learning deficit caused by subsequent more severe hypoxia insult. Learning was examined using a passive avoidance task. Three groups of Wistar male rats: the intact and exposed to either severe hypoxia (160 Torr, exposition 3 h) or mild hypobaric hypoxic preconditioning (360 Torr, exposition 2 h, repeated three or six times daily) followed by severe hypoxia, were included in this study. In experiment 1 a passive avoidance response was acquired in 15 min immediately after hypoxia. In experiment 2 rats were exposed to hypoxia in 60 min after the acquisition of passive avoidance response. The mild hypobaric hypoxic preconditioning significantly attenuated the hypoxia-induced learning deficit in rats in Experiments 1 and 2. In experiment 1 the mild hypobaric hypoxic preconditioning repeated six times was more effective in protection against learning deficit in hypoxia exposed rats than in the case of triple mild hypobaric hypoxic preconditioning. The amount of rats suffered irreversible respiratory arrest was also assessed in this study. It was found that 50% of rats exposed to severe hypoxia died in consequence of this pathology, whereas in rats preconditioned before the severe hypoxia only 15% died for this reason. The overall results indicate that the mild hypobaric hypoxic preconditioning significantly increases CNS resistance to severe hypoxia in rats.  相似文献   

7.
Young rats, 13, 16, and 20 days of age, underwent discrete bilateral electrolytic lesions of the posteroventral hippocampo-subiculo-entorhinal area, and were trained on a cool-draft-stimulus passive avoidance task 20 min later. Significant deficits in passive avoidance learning were observed at all ages studied following either small or more extended damage as compared to performance of sham-lesioned animals. The impairment was dependent upon the size of the lesion. Extended bilateral lesions of the parietal cortex overlying hippocampus induced no deficit. These results confirm that this part of the hippocampal complex plays a role in passive avoidance learning in the rat. They also show that this control of behavior is already established by the second week of life, thus supporting our previous experiments that demonstrate a cholinergic nicotinic involvement of this region in acquisition of passive avoidance as early as the 11th day of age.  相似文献   

8.
The motor system demonstrates an exquisite ability to adapt to changes in the environment and to quickly reset when these changes prove transient. If similar environmental changes are encountered in the future, learning may be faster, a phenomenon known as savings. In studies of sensorimotor learning, a central component of savings is attributed to the explicit recall of the task structure and appropriate compensatory strategies. Whether implicit adaptation also contributes to savings remains subject to debate. We tackled this question by measuring, in parallel, explicit and implicit adaptive responses in a visuomotor rotation task, employing a protocol that typically elicits savings. While the initial rate of learning was faster in the second exposure to the perturbation, an analysis decomposing the 2 processes showed the benefit to be solely associated with explicit re-aiming. Surprisingly, we found a significant decrease after relearning in aftereffect magnitudes during no-feedback trials, a direct measure of implicit adaptation. In a second experiment, we isolated implicit adaptation using clamped visual feedback, a method known to eliminate the contribution of explicit learning processes. Consistent with the results of the first experiment, participants exhibited a marked reduction in the adaptation function, as well as an attenuated aftereffect when relearning from the clamped feedback. Motivated by these results, we reanalyzed data from prior studies and observed a consistent, yet unappreciated pattern of attenuation of implicit adaptation during relearning. These results indicate that explicit and implicit sensorimotor processes exhibit opposite effects upon relearning: Explicit learning shows savings, while implicit adaptation becomes attenuated

Humans learning a new motor task typically improve with repeated practice due to the faster expression of more effective explicit strategies; this study reveals that when motor learning occurs without awareness, performance deteriorates upon relearning.  相似文献   

9.
The current prevalence of diet-induced overweight and obesity in adolescents and adults is continuously growing. Although the detrimental biochemical and metabolic consequences of obesity are widely studied, its impact on stress-coping behavior and its interaction with specific exercise doses (in terms of intensity, duration and frequency) need further investigation. To this aim, we fed adolescent rats either an obesogenic diet (cafeteria diet, CAF) or standard chow (ST). Each group was subdivided into four subgroups according to the type of treadmill intervention as follows: a sedentary group receiving no manipulation; a control group exposed to a stationary treadmill; a low-intensity treadmill group trained at 12 m/min; and a higher intensity treadmill group trained at 17 m/min. Both the diet and treadmill interventions started at weaning and lasted for 8 weeks. Subjects were tested for anxiety-like behavior in the open field test and for coping strategies in the two-way active avoidance paradigm at week 7 and were sacrificed at week 8 for biometric and metabolic characterization. CAF feeding increased the weight gain, relative retroperitoneal white adipose tissue (RWAT %), and plasma levels of glucose, insulin, triglycerides and leptin and decreased the insulin sensitivity. Treadmill intervention partially reversed the RWAT% and triglyceride alterations; at higher intensity, it decreased the leptin levels of CAF-fed animals. CAF feeding decreased the motor activity and impaired the performance in a two-way active avoidance assessment. Treadmill intervention reduced defecation in the shuttle box, suggesting diminished anxiety. CAF feeding combined with treadmill training at 17 m/min increased the time spent in the center of the open field and more importantly, partially reversed the two-way active avoidance deficit. In conclusion, this study demonstrates that at doses that decreased anxiety-like behavior, treadmill exercise partially improved the coping strategy in terms of active avoidance behavior in the CAF-fed animals. This effect was not observed at lower doses of treadmill training.  相似文献   

10.
Factors affecting the cryosurvival of mouse two-cell embryos   总被引:1,自引:0,他引:1  
A series of 4 experiments was conducted to examine factors affecting the survival of frozen-thawed 2-cell mouse embryos. Rapid addition of 1.5 M-DMSO (20 min equilibration at 25 degrees C) and immediate, rapid removal using 0.5 M-sucrose did not alter the frequency (mean +/- s.e.m.) of blastocyst development in vitro when compared to untreated controls (90.5 +/- 2.7% vs 95.3 +/- 2.8%). There was an interaction between the temperature at which slow cooling was terminated and thawing rate. Termination of slow cooling (-0.3 degrees C/min) at -40 degrees C with subsequent rapid thawing (approximately 1500 degrees C/min) resulted in a lower frequency of blastocyst development than did termination of slow cooling at -80 degrees C with subsequent slow thawing (+8 degrees C/min) (36.8 +/- 5.6% vs 63.9 +/- 5.7%). When slow cooling was terminated between -40 and -60 degrees C, higher survival rates were achieved with rapid thawing. When slow cooling was terminated below -60 degrees C, higher survival rates were obtained with slow thawing rates. In these comparisons absolute survival rates were highest among embryos cooled below -60 degrees C and thawed slowly. However, when slow cooling was terminated at -32 degrees C, with subsequent rapid warming, survival rates were not different from those obtained when embryos were cooled to -80 degrees C and thawed slowly (52.4 +/- 9.5%, 59.5 +/- 8.6%). These results suggest that optimal cryosurvival rates may be obtained from 2-cell mouse embryos by a rapid or slow thawing procedure, as has been found for mouse preimplantation embryos at later stages.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Previous investigations have suggested a neuroleptic-like action of cholecystokinin-octapeptide (CCK8) on conditioned-avoidance behavior. This study was initiated to test tolerance to this effect. Rats were trained to avoid electric shock in a shuttle box under a free-operant (Sidman) avoidance paradigm. Each shuttle response postponed a 0.2 sec, 1 mA shock for 20 sec. If the rat failed to respond, shock was delivered every 5 sec until a response occurred. After avoidance training, half of the rats received two daily injections of CCK8 (0.320 mg/kg, IP) and half received saline for 7 days. Rats were then tested on the Sidman avoidance 1 min after receiving CCK8 (0.640 mg/kg, IP) or saline. CCK8 depressed avoidance responding if rats received saline for 7 days prior to the test. Rats pretreated with CCK8 for 7 days were not significantly affected by CCK8 during the avoidance test. Thus, repeated injections of CCK8 result in tolerance to its anti-avoidance properties.  相似文献   

12.
Two groups of 15 larve were trained to go consistently to oneside of a T-maze, using escape from light as a reinforcer forcorrect performance. Two yoked control groups received non-responsecontingent reinforcement on trials when individuals in the experimentalgroups were reinforced. A third control group received non-responsecontingent reinforcement on every trial, and a fourth controlgroup was left untrained. After metamorphosis, one experimentalgroup was trained to turn in the same direction as in originallearning (relearning), while the other experimental group wasnamed to turn in the opposite direction (rexersal learning).All the control groups were also trained as adults. In the experimentalgroups, relearning occurred significanty faster and reversallearning occurred significantly slower than learning in anyof the control conditions. These findings are interpreted asprovinding evidence of retention of leirning through metamorphosis.  相似文献   

13.
Abstract. Drought avoidance due to cuticular control increases with leaf number to a maximum in the intermediate leaves, decreasing to a minimum in the upper leaves. Dehydrated intermediate leaves do not rehydrate detectably when floated on water for several days. Excision of their petioles when submerged, permits full rehydration, presumably via the xylem. Stressing the plant by withholding water for 1–3 weeks fails to increase this already high resistance to water movement through the leaf surface. It does, however, markedly decrease the loss of water from the fully rehydrated (100% RWC) leaves during the first hour of dehydration, presumably due to a more rapid stomatal closure than in the non-stressed leaves. Dehydration tolerance increases with leaf number, without an intermediate maximum. The intermediate and upper leaves were markedly more tolerant of dehydration after drought-induced stress than when non-stressed. Dehydration tolerance in some cases, was inversely proportional to dehydration rate. It was possible, however, to equalize the rates of dehydration of drought-stressed and non-drought-stressed leaves without affecting the greater tolerance of the drought-stressed leaves. Dehydration avoidance by osmotic adjustment was markedly developed in the slowly dehydrated attached leaves of drought-stressed plants, but not in the rapidly dehydrated excised leaves. This is evidence of drought acclimation. It must, therefore, be concluded that the slow dehydration of the drought-stressed plants also leads to the increase in dehydration tolerance by permitting drought-induced acclimation. The overall drought resistance of cabbage leaves depends on the three components: drought avoidance, dehydration avoidance and dehydration tolerance. The latter two increase during acclimation but the cuticular control of drought avoidance does not.  相似文献   

14.
Large brains (relative to body size) might confer fitness benefits to animals. Although the putative costs of well‐developed brains can constrain the majority of species to modest brain sizes, these costs are still poorly understood. Given that the neural tissue is energetically expensive and demands antioxidants, one potential cost of developing and maintaining large brains is increased oxidative stress (‘oxidation exposure’ hypothesis). Alternatively, because large‐brained species exhibit slow‐paced life histories, they are expected to invest more into self‐maintenance such as an efficacious antioxidative defence machinery (‘oxidation avoidance’ hypothesis). We predict decreased antioxidant levels and/or increased oxidative damage in large‐brained species in case of oxidation exposure, and the contrary in case of oxidation avoidance. We address these contrasting hypotheses for the first time by means of a phylogenetic comparative approach based on an unprecedented data set of four redox state markers from 85 European bird species. Large‐brained birds suffered less oxidative damage to lipids (measured as malondialdehyde levels) and exhibited higher total nonenzymatic antioxidant capacity than small‐brained birds, whereas uric acid and glutathione levels were independent of brain size. These results were not altered by potentially confounding variables and did not depend on how relative brain size was quantified. Our findings partially support the ‘oxidation avoidance’ hypothesis and provide a physiological explanation for the linkage of large brains with slow‐paced life histories: reduced oxidative stress of large‐brained birds can secure brain functionality and healthy life span, which are integral to their lifetime fitness and slow‐paced life history.  相似文献   

15.
We determined the relationship of diaphragmatic contraction rate to diaphragmatic blood flow (Qdi), metabolism, and contractility in nine open-chested mechanically ventilated newborn lambs. The diaphragm was paced for 15 min at slow (20/min) and fast (100/min) contraction rates each followed by a 30-min rest period. There was a mild reduction in transdiaphragmatic pressure (Pdi) during the slow contraction period accompanied by a shift to the right of the curve relating stimulation frequency (10-100 Hz) to Pdi. Pdi returned to control at the start of the fast contraction period, but then fell by 30% within 2 min with continued fast contraction rates. The frequency-Pdi curve was significantly shifted to the right. Qdi, O2 transport, and O2 consumption increased during slow contraction and to an even greater extent during fast contraction. Fractional O2 extraction reached an apparent maximum during slow contraction. Lactate efflux from the right phrenic vein during slow contraction remained unchanged from control. During fast contraction lactate efflux rose proportionately more than did O2 consumption. We conclude that the energy demands at fast rates of diaphragmatic contraction in newborn lambs cannot be met by aerobic metabolism alone despite increasing O2 transport to the diaphragm.  相似文献   

16.
Babesia rodhaini parasites in murine blood containing 1.5 m DMSO were frozen at two rates, as judged by the duration of the “freezing plateau”, then cooled to ?196 °C and rewarmed at two rates to detect interactions between the duration of the plateau and rates of subsequent cooling and rewarming. Infectivity tests showed that fast and slow freezing (plateau times of about 1 sec and 30 sec, respectively) had similar effects on parasite survival when cooling was at 130 °C/min and warming was at 800 °C/min. However, when either the cooling rate was increased to 3500 °C/min or the warming rate was decreased to 2.3 °C/min, fast freezing decreased parasite survival more than did slow freezing. It is suggested that fast freezing accentuated the damaging effects of fast cooling and slow warming by increasing intracellular ice formation.  相似文献   

17.
It is well known that chronic treatment with lithium gives cytoprotection from ischemia and neurodegeneration. Despite the clinical relevance, the potential effects of acute lithium treatment just before and during early stages of ischemia are not well known. Brain impedance was measured in an experimental global ischemia model, to determine these potential effects and their time course,as measured in minutes. Thiobarbital anesthetized (60 mg·kg(-1), intraperitoneal injection) male Sprague-Dawley rats were infused intravenously (i.v.) with isovolumetric amounts of ringer (n = 10 rats) or lithium (Li(2)CO(3); 10; 30; 100 mg·kg(-1); n = 6 rats per dose tested). Cortico-subcortical impedance was recorded before (20 min) and after (20 min) the infusion, and during global cerebral ischemia (20 min) induced by cardiopulmonary arrest due to the administration of D-tubocurarine. Lithium did not change tissue impedance in normoxid animals. In the ringer-infused group, global cerebral ischemia first (9 min) shows a fast voltage decay rate (-7.08%·min(-1)), followed by a slow one (-0.94%·min(-1)) for the last 11 min of the recording. Lithium, at any dose tested, induced a strong reduction in voltage decay for both fast (-3.7%·min(-1)) and slow (-5.2%·min(-1)) phases, although the reduction was more intense in the first phase (>58%, Mann-Whitney Z = 2.02; P < 0.043). The reduction was more effective at 10 mg (Li?CO?)·kg(-1) than at 30 or 100 mg·kg(-1). The time course of brain edema was defined by curve fitting for ringer- (time constant λ = 512.9 s) or lithium-infused animals (λ = 302.0 s). These results suggest that acute lithium infusion 20 min prior to global ischemia, strongly reduces cerebral impedance by reducing the decay rate and the duration of the fast decay phase, and increasing time constant decay during ischemia.  相似文献   

18.
Ćulić  M.  Šaponjić  J.  Janković  B.  Kalauzi  A.  Jovanović  A. 《Neurophysiology》2001,33(1):48-52
In anesthetized Wistar rats, we studied the effect of electrical stimulation of the locus coeruleus (LC) on the firing rates of Purkinje cells using spectral analysis. The frequency of extracellularly recorded activity of Purkinje cells was measured before and during the 1st, 5th, 6th, and 11th min after cessation of 10-sec-long LC stimulations. Spectral analysis of the Purkinje cell firing rates (imp./bin, the bin duration was 2-8 sec) for 60- to 120-sec-long intervals was performed using fast Fourier transformation after digital conversion of unitary spikes. Mean power spectra of the Purkinje cell firing rates (derived from 8-sec-long consecutive epochs at a sampling rate of 256 sec-1) showed an increase in the slow frequency range (0.1-1.0 Hz) after LC stimulation, particularly due to the slowest components (below 0.5 Hz). This effect lasted more than 1 min and usually less than 6 min after cessation of LC stimulation and could be interpreted as the development of slow oscillations in the Purkinje cell firing. Our results suggest that slow oscillations of the firing rate of cerebellar output neurons, induced by LC stimulation, reflect a specific coordination of the cerebellar neuronal activities (important for a central norepinephrine influence) in regulation of different pathological states.  相似文献   

19.
A reconstitution system allowed us to measure the ATPase activity of specific isoforms of the plasma membrane Ca(2+) pump continuously, and to measure the effects of adding or removing calmodulin. The rate of activation by calmodulin of isoform 4b was found to be very slow, with a half-time (at 235 nM calmodulin and 0.5 microM free Ca(2+)) of about 1 min. The rate of inactivation of isoform 4b when calmodulin was removed was even slower, with a half-time of about 20 min. Isoform 4a has a lower apparent affinity for calmodulin than 4b, but its activation rate was surprisingly faster (half time about 20 s). This was coupled with a much faster inactivation rate, consistent with its low affinity. A truncated mutant of isoform 4b also had a more rapid activation rate, indicating that the downstream inhibitory region of full-length 4b contributed to its slow activation. The results indicate that the slow activation is due to occlusion of the calmodulin-binding domain of 4b, caused by its strong interaction with the catalytic core. Since the activation of 4b occurs on a time scale comparable to that of many Ca(2+) spikes, this phenomenon is important to the function of the pump in living cells. The slow response of 4b indicates that this isoform may be the appropriate one for cells which respond slowly to Ca(2+) signals.  相似文献   

20.
The electrical activity of the duodenum and proximal jejunum was studied in conscious healthy dogs implanted with unipolar silver electrodes. A computerized method was used for the calculation of the mean frequency of the slow wave for each consecutive minute of the electromyographic signal. A "slow wave frequency complex" was identified in the fasted animals. It was characterized by an increase of the mean frequency of the slow wave which ranged, from one dog to another, between 1 and 3 cycles/min. The complex lasted about 30 min. It consisted of two distinct phases: a phase of increasing frequency of the slow wave which lasted about one-third of the total duration of the complex and a phase of progressive return of the frequency to its precomplex value. Each phase III of the migrating myoelectric complex occurring in both the duodenum and the jejunum was associated with one slow wave frequency complex. The phase III began a few minutes before the start of the slow wave frequency complex and ended a few minutes before the slow wave frequency reached its maximum. Ectopic phase IIIs which occurred in the jejunum but not in the duodenum were not associated with slow wave frequency complexes. The slow wave frequency complex was never seen in the fed dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号