首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genome-mismatch scanning (GMS) is a new method of linkage analysis that rapidly isolates regions of identity between two genomes. DNA molecules from regions of identity by descent from two relatives are isolated based on their ability to form extended mismatch-free heteroduplexes. We have applied this rapid technology to identify the chromosomal region shared by two fifth-degree cousins with autosomal dominant iridogoniodysgenesis anomaly (IGDA), a rare ocular neurocristopathy. Markers on the short arm of human chromosome 6p were recovered, consistent with the results of conventional linkage analysis conducted in parallel, indicating linkage of IGDA to 6p25. Control markers tested on a second human chromosome were not recovered. A GMS error rate of approximately 11% was observed, well within an acceptable range for a rapid, first screening approach, especially since GMS results would be confirmed by family analysis with selected markers from the putative region of identity by descent. These results demonstrate not only the value of this technique in the rapid mapping of human genetic traits, but the first application of GMS to a multicellular organism.  相似文献   

2.
Glaucoma is a group of ocular disorders leading to reduced visual capabilities and sometimes blindness. The biochemical defect is unknown but it is shown that reduced drainage of the aqueous humour from the anterior chamber may lead to increased intraocular pressure and gradual atrophy of the optic neurons. Families with various forms of autosomal dominant (AD) glaucoma have been linked to 1q21-31, 2cen-q13, 4q25-27, and 13q14 and autosomal recessive congenital glaucoma have been localized to chromosome 1p36 and 2p21. Recently, a locus for AD iridogoniodysgenesis anomaly (IGDA) was mapped to chromosome 6p25. This study refines the localization of IGDA to an approximately 6–cM interval between D6S1600 and D6S1617/D6S1713 at 6p25-tel, based on recombinations in affected individuals with AD juvenile-onset glaucoma and concomitant iridogoniodysgenesis. Received: 5 May 1997 / Accepted: 15 June 1997  相似文献   

3.
4.
Familial glaucoma iridogoniodysplasia (FGI) is a form of open-angle glaucoma in which developmental anomalies of the iris and irido-corneal angle are associated with a juvenile-onset glaucoma transmitted as an autosomal dominant trait. A single large family with this disorder was examined for genetic linkage to microsatellite markers. A peak LOD score of 11.63 at a recombination fraction of 0 was obtained with marker D6S967 mapping to chromosome 6p25. Haplotype analysis places the disease gene in a 6.4-cM interval between the markers D6S1713 and D6S1600. Two novel clinical appearances extend the phenotypic range and provide evidence of variable expressivity. The chromosome 6p25 region is now implicated in FGI, primary congenital glaucoma, and iridogoniodysgenesis anomaly. This may indicate the presence of a common causative gene or, alternatively, a cluster of genes involved in eye development/function.  相似文献   

5.
The autosomal recessive disorder primary congenital glaucoma (PCG) is caused by unknown developmental defect(s) of the trabecular meshwork and anterior chamber angle of the eye. Homozygosity mapping with a DNA pooling strategy in three large consanguineous Saudi PCG families identified the GLC3A locus on chromosome 2p21 in a region tightly linked to PCG in another population. Formal linkage analysis in 25 Saudi PCG families confirmed both significant linkage to polymorphic markers in this region and incomplete penetrance, but it showed no evidence of genetic heterogeneity. For these 25 families, the maximum combined two-point LOD score was 15.76 at a recombination fraction of .021, with the polymorphic marker D2S177. Both haplotype analysis and homozygosity mapping in these families localized GLC3A to a 5-cM critical interval delineated by markers D2S2186 and D2S1356. Sequence analysis of the coding exons for cytochrome P4501B1 (CYP1B1) in these 25 families revealed three distinctive mutations that segregate with the phenotype in 24 families. Additional clinical and molecular data on some mildly affected relatives showed variable expressivity of PCG in this population. These results should stimulate a study of the genetic and environmental events that modify the effects of CYP1B1 mutations in ocular development. Furthermore, the small number of PCG mutations identified in this Saudi population makes both neonatal and population screening attractive public health measures.  相似文献   

6.
No genes influencing oculometric phenotypes have yet been identified, despite it being well known that eye morphometry is involved in refraction and that genetics may play an important role. We have therefore performed a heritability analysis and genome-wide search (GWS) of biometric ocular traits in an isolated Sardinian population, assessing the genetic contribution and identifying the associated genetic loci. A complete eye examination including refraction and ocular biometry measurements such as axial length (AL), anterior chamber depth (ACD) and corneal curvature (CC), was performed on 789 subjects. Heritability analysis was carried out by means of parent–offspring regression and variance component models. Univariate and bivariate linkage analysis was performed by using 654 microsatellite markers spanning the genome. CC showed a mean heritability of 57%. AL and ACD were found to have significantly different variances (P<0.01) in males and females, so that heritability was calculated separately for each sex. AL had an estimated heritability in females of 31% and in males of 60%, whereas ACD had an estimated heritability of 47% in females and of 44% in males. In the GWS, the most suggestive evidence of linkage was identified on chromosome 2 for AL (LOD 2.64), on chromosome 1 for ACD (LOD 2.32) and on chromosomes 7, 2 and 3 for CC (LOD 2.50, 2.44 and 2.34, respectively). High heritability of eye morphometry traits was thus revealed. The identified loci are the first linkage signals available in ocular biometry. Notably, the observed significant differences in parental transmission deserve further study.The authors Ginevra Biino and Maria Antonietta Palmas contributed equally to this work  相似文献   

7.
Myopia is a common, complex trait with considerable economic and social impact and, in highly affected individuals, ocular morbidity. We performed a classic twin study of 506 unselected twin pairs and inferred the heritability of refractive error to be 0.89 (95% confidence interval 0.86-0.91). A genomewide scan of 221 dizygotic twin pairs, analyzed by use of optimal Haseman-Elston regression methods implemented by use of generalized linear modeling, showed significant linkage (LOD >3.2) to refractive error at four loci, with a maximum LOD score of 6.1 at 40 cM on chromome 11p13. Evidence of linkage at this locus, as well as at the other linkage peaks at chromosomes 3q26 (LOD 3.7), 8p23 (LOD 4.1), and 4q12 (LOD 3.3), remained the same or became stronger after model fit was checked and outliers were downweighted. Examination of potential candidate genes showed the PAX6 gene directly below the highest peak at the 11p13 locus. PAX6 is fundamental to identity and growth of the eye, but reported mutations usually result in catastrophic congenital phenotypes such as aniridia. Haplotype tagging of 17 single-nucleotide polymorphisms (SNPs), which covered the PAX6 gene and had common minor allele frequencies, identified 5 SNPs that explained 0.999 of the haplotype diversity. Linkage and association analysis of the tagging SNPs showed strong evidence of linkage for all markers with a minimum chi 21 of 7.5 (P=.006) but no association. This suggests that PAX6 may play a role in myopia development, possibly because of genetic variation in an upstream promoter or regulator, although no definite association between PAX6 common variants and myopia was demonstrated in this study.  相似文献   

8.
9.
Congenital multiple ocular defects (MOD) in Japanese black cattle is a hereditary ocular disorder with an autosomal recessive manner of inheritance, showing developmental defects of the lens, retina, and iris, persistent embryonic eye vascularization, and microphthalmia. In the present study, we mapped the locus responsible for the disorder by linkage analysis using 240 microsatellite markers covering the entire bovine genome and an inbred pedigree obtained from commercial herds. The linkage analysis demonstrated a significant linkage between the disorder locus and markers on the proximal region of bovine Chromosome (BTA) 18 with the maximum LOD score of 5.1. Homozygosity mapping using the haplotype of the linked markers further refined the critical region. The results revealed the localization of the locus responsible for MOD in an approximately 6.6-cM region of BTA18. Comparison of published linkage and radiation hybrid (RH) maps of BTA18 with its evolutionary ortholog, human Chromosome (HSA) 16, revealed several potential candidate genes for the disorder including the MAF and FOXC2 genes.  相似文献   

10.
The development of refractive error is mediated by both environmental and genetic factors. We performed regression-based quantitative trait locus (QTL) linkage analysis on Ashkenazi Jewish families to identify regions in the genome responsible for ocular refraction. We measured refractive error on individuals in 49 multi-generational American families of Ashkenazi Jewish descent. The average family size was 11.1 individuals and was composed of 2.7 generations. Recruitment criteria specified that each family contain at least two myopic members. The mean spherical equivalent refractive error in the sample was −3.46D (SD=3.29) and 87% of individuals were myopic. Microsatellite genotyping with 387 markers was performed on 411 individuals. We performed multipoint regression-based linkage analysis for ocular refraction and a log transformation of the trait using the statistical package Merlin-Regress. Empirical genomewide significance levels were estimated through gene-dropping simulations by generating random genotypes at each of the 387 markers in 200 replicates of our pedigrees. Maximum LOD scores of 9.5 for ocular refraction and 8.7 for log-transformed refraction (LTR) were observed at 49.1 cM on chromosome 1p36 between markers D1S552 and D1S1622. The empirical genomewide significance levels were P=0.065 for ocular refraction and P<0.005 for LTR, providing strong evidence for linkage of refraction to this locus. The inter-marker region containing the peak spans 11 Mb and contains approximately 189 genes. Conclusion: We found genomewide significant evidence for linkage of refractive error to a novel QTL on chromosome 1p36 in an Ashkenazi Jewish population.  相似文献   

11.
Xiao X  Li S  Guo X  Zhang Q 《Human genetics》2012,131(5):697-702
Congenital motor nystagmus (CMN) is characterized by bilateral involuntary ocular oscillation without any other underlying ocular or systemic diseases. An autosomal dominant CMN was identified in a large Chinese family where all patients had nystagmus since infancy. The nystagmus in the family is independent of any known ocular or systemic diseases. After exclusion of known CMN loci, a genome-wide scan was performed by genotyping microsatellite markers at about 10 cM intervals, together with two-point linkage analysis. Exome sequencing was used to screen coding exons of well-annotated genes. Sanger-dideoxy sequencing was used to verify candidate variations inside the linkage interval. Congenital motor nystagmus in this family shows linkage to markers in a 11.39 Mb (12.1 cM) region on chromosome 1q31-q32.2 between D1S2816 and D1S2692. All nine markers in the linkage interval gave positive lod scores, with D1S2655 and D1S2636 yielding lod scores of 5.16 and 5.18, respectively, at θ = 0. No causative mutation in the linkage interval was identified by exome sequencing of gDNA from four patients. A linkage study of additional families and further analysis of candidate genes may ultimately lead to identification of the gene responsible for dominantly inherited CMN.  相似文献   

12.
Although the role of genetic factors in the origin of Parkinson disease has long been disputed, several genes involved in autosomal dominant and recessive forms of the disease have been localized. Mutations associated with early-onset autosomal recessive parkinsonism have been identified in the Parkin gene, and recently a second gene, PARK6, involved in early-onset recessive parkinsonism was localized on chromosome 1p35-36. We identified a family segregating early-onset parkinsonism with multiple consanguinity loops in a genetically isolated population. Homozygosity mapping resulted in significant evidence for linkage on chromosome 1p36. Multipoint linkage analysis using MAPMAKER-HOMOZ generated a maximum LOD-score of 4.3, with nine markers spanning a disease haplotype of 16 cM. On the basis of several recombination events, the region defining the disease haplotype can be clearly separated, by > or =25 cM, from the more centromeric PARK6 locus on chromosome 1p35-36. Therefore, we conclude that we have identified on chromosome 1 a second locus, PARK7, involved in autosomal recessive, early-onset parkinsonism.  相似文献   

13.
14.
A second locus for familial high myopia maps to chromosome 12q.   总被引:30,自引:0,他引:30       下载免费PDF全文
Myopia, or nearsightedness, is the most common eye disorder worldwide. "Pathologic" high myopia, or myopia of <=-6.00 diopters, predisposes individuals to retinal detachment, macular degeneration, cataract, or glaucoma. A locus for autosomal dominant pathologic high myopia has been mapped to 18p11.31. We now report significant linkage of high myopia to a second locus at the 12q21-23 region in a large German/Italian family. The family had no clinical evidence of connective-tissue abnormalities or glaucoma. The average age at diagnosis of myopia was 5.9 years. The average spherical-component refractive error for the affected individuals was -9.47 diopters. Markers flanking or intragenic to the genes for the 18p locus, Stickler syndromes type I and II (12q13.1-q13.3 and 6p21.3), Marfan syndrome (15q21.1), and juvenile glaucoma (chromosome 1q21-q31) showed no linkage to the myopia in this family. The maximum LOD score with two-point linkage analysis in this pedigree was 3.85 at a recombination fraction of .0010, for markers D12S1706 and D12S327. Recombination events identified markers D12S1684 and D12S1605 as flanking markers that define a 30.1-cM interval on chromosome 12q21-23, for the second myopia gene. These results confirm genetic heterogeneity of myopia. The identification of this gene may provide insight into the pathophysiology of myopia and eye development.  相似文献   

15.
OBJECTIVES: The rarity of familial neuroblastoma (NB) has allowed only a few linkage studies, most of which did not show any evidence of linkage to regions involved in somatic alterations or to genes implicated in other neurocristopathies seldom associated with NB. We screened a highly informative family with recurrent NB by genome-wide linkage analysis aimed at identifying chromosomal regions for NB predisposing genes. METHODS: A genome-wide screen was performed using 382 microsatellite markers. Multipoint model-based linkage analysis was carried out under a dominant mode of inheritance for the disease using the 'affected only' approach. RESULTS: Our analysis identified two haplotypes co-segregating with the disease on chromosomes 2p and 12p, and yielded maximum lod-score values of 3.01 (p < 0.0001) for markers on both intervals. CONCLUSIONS: Evidence of linkage was reported at 16p in North American families, whereas our studies excluded this interval and indicated other loci for disease predisposition, thus confirming the remarkable genetic heterogeneity of NB. These results suggest an oligogenic inheritance in NB involving more loci in genetic determination of the disease.  相似文献   

16.
Congenital motor nystagmus linked to Xq26-q27.   总被引:5,自引:0,他引:5       下载免费PDF全文
Congenital motor nystagmus (CMN) is a hereditary disorder characterized by bilateral ocular oscillations that begin in the first 6 mo of life. It must be distinguished from those genetic disorders-such as ocular albinism (OA), congenital stationary night blindness (CSNB), and blue-cone monochromatism (BCM)-in which nystagmus accompanies a clinically apparent defect in the visual sensory system. Although CMN is presumed to arise from a neurological abnormality of fixation, it is not known whether the molecular defect is located in the eye or in the brain. It may be inherited in an autosomal dominant, autosomal recessive, or X-linked pattern. Three families with CMN inherited in an X-linked, irregularly dominant pattern were investigated with linkage and candidate gene analysis. The penetrance among obligate female carriers was 54%. Evaluation of markers in the region of the genes for X-linked OA, CSNB, and BCM revealed no evidence of linkage, supporting the hypothesis that CMN represents a distinct entity. The gene was mapped to chromosome Xq26-q27 with the following markers: GATA172D05 (LOD score 3.164; recombination fraction [theta] = 0.156), DXS1047 (LOD score 10.296; theta = 0), DXS1192 (LOD score 8.174; theta = 0.027), DXS1232 (LOD score 6.015; theta = 0.036), DXS984 (LOD score 6.695; theta = 0), and GATA31E08 (LOD score 4.940; theta = 0.083). Assessment of haplotypes and multipoint linkage analysis, which gave a maximum LOD score of 10.790 with the 1-LOD-unit support interval spanning approximately 7 cM, place the gene in a region between GATA172D05 and DXS1192. Evaluation of candidate genes CDR1 and SOX3 did not reveal mutations in affected male subjects.  相似文献   

17.
18.
High myopia, defined as a refractive error inferior to -6 diopters, often appears as a familial disease. In order to precise its genetic background, we performed a segregation analysis on 32 French families (320 subjects including 120 individuals with clinical data) containing at least one high myopic person in their genealogy. Under the assumption of a two-alleles single gene model, the autosomal dominant transmission mode showed a much greater likelihood than the autosomal recessive mode, which therefore was rejected. From the segregation model obtained, a two-point linkage analysis was made on 18 families (107 subjects), among the 32 used for the segregation analysis. Different candidate loci were tested: collagen genes including Stickler syndrome types 1 and 2, proteoglycan genes, Marfan 1 syndrome and a Marfan like disorder localised in 3p24.2-p25. No evidence of linkage was found with any of the studied markers. In addition, the absence of linkage with chromosome 18p11.31 markers, a locus linked to familial high myopia in 6 North American families and 1 family of Chinese descent, demonstrated the genetic heterogeneity of the disease.  相似文献   

19.
Congenital nystagmus is an idiopathic disorder characterized by bilateral ocular oscillations usually manifest during infancy. Vision is typically decreased due to slippage of images across the fovea. As such, visual acuity correlates with nystagmus intensity, which is the amplitude and frequency of eye movements at a given position of gaze. X-linked, autosomal dominant, and autosomal recessive pedigrees have been described, but no mapping studies have been published. We recently described a large pedigree with autosomal dominant congenital nystagmus. A genome-wide search resulted in six markers on 6p linked by two-point analysis at θ = 0 (D6S459, D6S452, D6S465, FTHP1, D6S257, D6S430). Haplotype analysis localizes the gene for autosomal dominant congenital motor nystagmus to an 18-cM region between D6S271 and D6S455.  相似文献   

20.

Objective

Monogenic congenital cataract is one of the most genetically heterogeneous ocular conditions with almost 30 different genes involved in its etiology. In adult patients, genotype–phenotype correlations are troubled by eye surgery during infancy and/or long-term ocular complications. Here, we describe the molecular diagnosis of GALK1 deficiency as the cause of autosomal recessive congenital cataract in a family from Costa Rica.

Methods

Four affected siblings were included in the study. All of them underwent eye surgery during the first decade but medical records were not available. Congenital cataract was diagnosed by report. Molecular analysis included genome wide homozygosity mapping using a 250 K SNP Affymetrix microarray followed by PCR amplification and direct nucleotide sequencing of candidate gene.

Results

Genome wide homozygosity mapping revealed a 6 Mb region of homozygosity shared by two affected siblings at 17q25. The GALK1 gene was included in this interval and direct sequencing of this gene revealed a homozygous c.1144C>T mutation (p.Q382*) in all four affected subjects.

Conclusions

This work demonstrates the utility of homozygosity mapping in the retrospective diagnosis of a family with congenital cataracts in which ocular surgery at early age, the lack of medical records, and the presence of long term eye complications, impeded a clear clinical diagnosis during the initial phases of evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号