首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
B-cells, triggered via their surface B-cell receptor (BcR), start an apoptotic program known as activation-induced cell death (AICD), and it is widely believed that this phenomenon plays a role in the restriction and focusing of the immune response. Although both ceramide and caspases have been proposed to be involved in AICD, the contribution of either and the exact molecular events through which AICD commences are still unknown. Here we show that in Ramos B-cells, BcR-triggered cell death is associated with an early rise of C16 ceramide that derives from activation of the de novo pathway, as demonstrated using a specific inhibitor of ceramide synthase, fumonisin B1 (FB1), and using pulse labeling with the metabolic sphingolipid precursor, palmitate. There was no evidence for activation of sphingomyelinases or hydrolysis of sphingomyelin. Importantly, FB1 inhibited several specific apoptotic hallmarks such as poly(A)DP-ribose polymerase cleavage and DNA fragmentation. Electron microscopy revealed morphological evidence of mitochondrial damage, suggesting the involvement of mitochondria in BcR-triggered apoptosis, and this was inhibited by FB1. Moreover, a loss of mitochondrial membrane potential was observed in Ramos cells after BcR cross-linking, which was inhibited by the addition of FB1. Interestingly, benzyloxycarbonyl-Val-Ala-dl-Asp, a broad spectrum caspase inhibitor did not inhibit BcR-induced mitochondrial membrane permeability transition but did block DNA fragmentation. These results suggest a crucial role for de novo generated C16 ceramide in the execution of AICD, and they further suggest an ordered and more specific sequence of biochemical events in which de novo generated C16 ceramide is involved in mitochondrial damage resulting in a downstream activation of caspases and apoptosis.  相似文献   

2.
Lawrence CP  Chow SC 《FEBS letters》2005,579(28):6465-6472
Activation-induced cell death (AICD) in activated T lymphocytes is largely mediated by Fas/Fas ligand (FasL) interaction. The cytoplasmic adaptor molecule Fas-associated death domain protein (FADD) plays an essential role in the apoptotic signalling of the Fas death pathway. In the present study, we observed that FADD deficient (FADD(-/-)) Jurkat T cells undergo AICD to a similar extent as wild-type cells. AICD in wild-type Jurkat T cells is via apoptosis, whereas it is non-apoptotic in FADD(-/-) cells. The latter took up propidium iodide, exhibit a loss in mitochondrial membrane potential and have no detectable cleavage products of caspase-8 or -3 activation, suggesting that these cells die by necrosis. Wild-type Jurkat T cells undergo apoptosis when incubated with recombinant FasL and Trail but not with TNF-alpha. In contrast, FADD(-/-) Jurkat T cells are resistant to FasL and Trail but die of necrosis when incubated with TNF-alpha. We showed that neutralising anti-TNF-alpha blocked AICD as well as TNF-alpha-induced necrosis in FADD(-/-) Jurkat T cells. Furthermore, down regulating the receptor interacting protein, RIP, with geldanamycin treatment, which is essential for TNF-alpha signalling, markedly inhibited AICD in FADD(-/-) Jurkat T cells. In addition, caspase-8-deficient Jurkat T cells are resistant to Fas- and TNF-alpha-induced cell death. Taken together, our results suggest that a deficiency in FADD and not caspase-8 or the inhibition of the Fas signalling pathway sensitises Jurkat T cells to TNF-alpha-dependent necrosis during AICD.  相似文献   

3.
Regulation of activation-induced cell death of mature T-lymphocyte populations   总被引:11,自引:0,他引:11  
Resting mature T lymphocytes are activated when triggered via their antigen-specific T-cell receptor (TCR) to elicit an appropriate immune response. In contrast, preactivated T cells may undergo activation-induced cell death (AICD) in response to the same signals. along with cell death induced by growth factor deprivation, AICD followed by the elimination of useless or potentially harmful cells preserves homeostasis, leads to the termination of cellular immune responses and ensures peripheral tolerance. T-cell apoptosis and AICD are controlled by survival cytokines such as interleukin-2 (IL-2) and by death factors such as tumor necrosis factor (TNF) and CD95 ligand (CD95L). In AICD-sensitive T cells, stimulation upregulates expression of one or several death factors, which in turn engage specific death receptors on the same or a neighboring cell. Death receptors are activated by oligomerization to rapidly assemble a number of adapter proteins and enzymes to result in an irreversible activation of proteases and nucleases that culminates in cell death by apoptosis. Increased knowledge of the molecular mechanisms that regulate AICD of lymphocytes opens new immunotherapeutic perspectives for the treatment of certain autoimmune diseases, and has implications in other areas such as transplantation medicine and AIDS research.  相似文献   

4.
Short-term culture of activated T cells with IL-2 renders them highly susceptible to apoptotic death triggered by TCR cross-linking. Activation-induced apoptosis is contingent upon caspase activation and this is mediated primarily by Fas/Fas ligand (FasL) interactions that, in turn, are optimized by p38 mitogen-activated protein kinase (MAPK)-regulated signals. Although T cells from mice bearing mutations in Fas (lpr) or FasL (gld) are more resistant to activation-induced cell death (AICD) than normal T cells, a significant proportion of CD8(+) T cells and to a lesser extent CD4(+) T cells from mutant mice die after TCR religation. Little is known about this Fas-independent death process. In this study, we demonstrate that AICD in lpr and gld CD4(+) and CD8(+) T cells occurs predominantly by a novel mechanism that is TNF-alpha-, caspase-, and p38 MAPK-independent and has morphologic features more consistent with oncosis/primary necrosis than apoptosis. A related Fas- and caspase-independent, nonapoptotic death process is revealed in wild-type (WT) CD8(+) T cell blasts following TCR ligation and treatment with caspase inhibitors, the p38 MAPK inhibitor, SB203580, or neutralizing anti-FasL mAb. In parallel studies with WT CD4(+) T cells, two minor pathways leading to nonapoptotic, caspase-independent AICD were identified, one contingent upon Fas ligation and p38 MAPK activation and the other Fas- and p38 MAPK-independent. These data indicate that TCR ligation can activate nonapoptotic death programs in WT CD8(+) and CD8(+) T blasts that normally are masked by Fas-mediated caspase activation. Selective use of potentially proinflammatory oncotic death programs by activated lpr and gld T cells may be an etiologic factor in autosensitization.  相似文献   

5.
We investigated the mechanisms of anti-IgM antibody-induced cell death in a recently established human surface IgM+ IgD+ B lymphoma cell line, B104, the growth of which is irreversibly inhibited by anti-IgM antibody but not by anti-IgD antibody, and compared it with the cell death of T cells via TCR/CD3 complex and with the cell death of a murine anti-IgM antibody-sensitive B lymphoma cell line, WEHI-231. The rapid time course of B104 cell death and its requirements for de novo macromolecular synthesis and Ca2+ influx suggest that anti-IgM antibody-induced B104 cell death is an active Ca(2+)-dependent programmed cell death. Moreover, cyclosporin A rescued B104 cells from this lethal signal, via surface IgM, suggesting that the intracellular mechanisms involved are quite similar to those of T cell death. DNA fragmentation, which has been reported in TCR/CD3 complex-mediated T cell death, apoptosis, was not involved in the B104 cell death process, but the possible involvement of DNA single-strand breaks was suggested. Observations under light microscopy and transmission electron microscopy indicated that the morphologic features of dying B104 cells resembled necrosis rather than apoptosis. B104 cell death was shown to be quite distinct from that of WEHI-231 in cell death kinetics, the mode of cell death, and the response to cyclosporin A. These data collectively indicate that the death of B104 cells resulting from surface IgM cross-linking represents a hitherto undefined mode of programmed cell death.  相似文献   

6.
Sepsis induces extensive apoptosis in T and B cells suggesting that the loss of immune effector cells could be one explanation for the profound immunosuppression observed in this disorder. Unfortunately, the mechanisms responsible for lymphocyte apoptosis in sepsis remain unknown. In T cells, apoptosis can occur through activation-induced cell death (AICD) in which engagement of the Ag receptors by cognate Ag or polyclonal activators such as bacteria-derived superantigens induces activation, proliferation, and apoptosis. We examined whether proliferation and AICD are necessary for apoptotic cell death in sepsis using normal and TCR transgenic mice. Results show that although sepsis resulted in activation of a small percentage of T cells, no proliferation was detected during the first 48 h following onset, a time when extensive apoptosis is observed. We also observed that T cells do not enter the cell cycle, and stimulation via the TCR in TCR transgenic animals does not enhance or decrease cell death in sepsis. Interestingly, T cells recovered from septic mice retained their ability to proliferate and synthesize cytokines albeit at reduced levels. With the exception of IL-10, which was increased in lymphocytes from mice with sepsis, sepsis caused a decrease in the production of both proinflammatory and anti-inflammatory cytokines. We conclude that lymphocyte apoptosis in sepsis does not require proliferation, TCR engagement, or AICD. Thus the immunosuppression observed in sepsis cannot be the result of T cell deletion via the TCR.  相似文献   

7.
IL-2-dependent, activation-induced T cell death (AICD) plays an important role in peripheral tolerance. Using CD8+ TCR-transgenic lymphocytes (2C), we investigated the mechanisms by which IL-2 prepares CD8+ T cells for AICD. We found that both Fas and TNFR death pathways mediate the AICD of 2C cells. Neutralizing IL-2, IL-2R alpha, or IL-2R beta inhibited AICD. In contrast, blocking the common cytokine receptor gamma-chain (gamma c) prevented Bcl-2 induction and augmented AICD. IL-2 up-regulated Fas ligand (FasL) and down-regulated gamma c expression on activated 2C cells in vitro and in vivo. Adult IL-2 gene-knockout mice displayed exaggerated gamma c expression on their CD8+, but not on their CD4+, T cells. IL-4, IL-7, and IL-15, which do not promote AICD, did not influence FasL or gamma c expression. These data provide evidence that IL-2 prepares CD8+ T lymphocytes for AICD by at least two mechanisms: 1) by up-regulating a pro-apoptotic molecule, FasL, and 2) by down-regulating a survival molecule, gamma c.  相似文献   

8.
9.
Activated T cells undergo apoptosis when the Fas-antigen (APO-1, CD95) is ligated by Fas Ligand (FasL) or agonistic anti-Fas antibodies. Repeated stimulation of T lymphocytes via the TCR/CD3-complex induces activation-induced cell death (AICD) associated with FasL surface expression. FasL binding to Fas molecules triggers the Fas-dependent death signaling cascade. Since it is still controversial whether Fas-induced cell death is associated with tyrosine kinase activity, we investigated the tyrosine kinase activation requirements in anti-Fas antibody-induced cell death and AICD in human T cell clones. We report that cell death triggered by anti-Fas antibody is not accompanied by an increase in tyrosine phosphorylation and cannot be blocked by inhibitors of protein tyrosine kinases (PTK). Under the same conditions, AICD of T cell clones is clearly associated with tyrosine kinase activation. In fact, semiquantitative RT-PCR analysis of FasL mRNA expression triggered in T cell clones via the TCR/CD3-complex revealed that tyrosine phosphorylation is required for functional FasL mRNA and surface expression.  相似文献   

10.
Mauro Corrado 《Autophagy》2016,12(12):2496-2497
Mitochondrial structural and functional changes and the autophagy pathway crosstalk under several stress conditions. However, their interplay under physiological cell death stimulation has been unclear. In our recent report, we show that during activation-induced cell death (AICD), the T-cell receptor (TCR)-dependent pathway that controls immune tolerance, autophagy is inhibited at an early stage. Further, we found that this inhibition is coupled with mitochondria fragmentation and cristae remodeling to unleash the apoptotic program. Last, we dissected the role of macroautophagy/autophagy versus mitophagy in the context of this physiological cell death, and bulk autophagy turned out to be able to remove dysfunctional and depolarized mitochondria. Our data suggest new possible approaches to modulate the immune function in the context of autoimmunity or immunotherapy.  相似文献   

11.
Repeated ligation of the TCR results in apoptosis (activation-induced cell death; AICD). Superantigens such as Staphylococcal enterotoxin B (SEB) are particularly efficient at inducing AICD in T cells. We investigated whether apoptosis in human T cell subsets was due to fratricide (killing of neighboring cells) or suicide (cell autonomous death). AICD of Th1, Th2, Tc1, and Tc2 effector cells was dramatically enhanced at low cell densities and could be observed in single cell microcultures. AICD was unaffected by adhesion molecules or neighboring cells undergoing AICD, confirming the predominance of a suicidal mechanism. However, SEB was able to induce fratricidal apoptosis of type 1, but not type 2 cells. Fratricide was also observed when unstimulated T cells were exposed to activated Tc1 effector cells. Thus, AICD is tightly regulated to allow clonal T cell expansion and memory cell generation, but superantigens may subvert this process by allowing T cell fratricide.  相似文献   

12.
Activation-induced cell death (AICD) of T cells is one of the major mechanisms of peripheral tolerance. The regulation of AICD by IL-4 is poorly understood. In this study, we report that AICD in IL-4-deficient T cells is significantly reduced compared with that in wild-type T cells. This impaired AICD correlates with the failure to induce degradation of cellular FLIP. IL-4-mediated enhancement of AICD and cellular FLIP degradation requires a Janus kinase/STAT-6 signaling pathway. Unexpectedly, these effects of IL-4 could be blocked by a neutralizing anti-IL-2 Ab, and addition of rIL-2 could completely restore the defective AICD in IL-4-deficient T cells. Furthermore, IL-4 regulates the T cell thresholds for IL-2 signaling during AICD. These data suggest that IL-4 promotes AICD via an IL-2-dependent mechanism.  相似文献   

13.
14.
T cells can undergo activation-induced cell death (AICD) upon stimulation of the T cell receptor-CD3 complex. We found that the extracellular signal-regulated kinase (ERK) pathway is activated during AICD. Transient transfection of a dominant interfering mutant of mitogen-activated/extracellular signal-regulated receptor protein kinase kinase (MEK1) demonstrated that down-regulation of the ERK pathway inhibited FasL expression during AICD, whereas activation of the ERK pathway with a constitutively active MEK1 resulted in increased expression of FasL. We also found that pretreatment with the specific MEK1 inhibitor PD98059 prevented the induction of FasL expression during AICD and inhibited AICD. However, PD98059 had no effect on other apoptotic stimuli. We found only very weak ERK activity during Fas-mediated apoptosis (induced by Fas cross-linking). Furthermore, preincubation with the MEK1 inhibitor did not inhibit Fas-mediated apoptosis. Finally, we also demonstrated that pretreatment with the MEK1 inhibitor could delay and decrease the expression of the orphan nuclear steroid receptor Nur77, which has been shown to be essential for AICD. In conclusion, this study demonstrates that the ERK pathway is required for AICD of T cells and appears to regulate the induction of Nur77 and FasL expression during AICD.  相似文献   

15.
Some thymocytes, upon activation via the TCR complex in vitro, undergo apoptotic cell death. In this report, we examine the cell death induced in the thymus after administration of anti-CD3 or anti-TCR antibodies. We found that shortly after antibody injection, cortical thymocytes undergo apoptosis as characterized by morphologic changes and DNA fragmentation. Anti-CD3 administration led to depletion of nearly all CD4+CD8+ thymocytes, and approximately 50% of CD4+CD8- thymocytes. This depletion predominantly affected cells bearing low levels of CD3, although some depletion also occurred among cells expressing intermediate and high levels. Administration of an anti-TCR antibody also induced apoptosis, but affected significantly fewer thymocytes than anti-CD3. This effect was probably not due to different binding affinities for the two antibodies, because both antibodies show similar dose response effects in an in vitro model of activation-induced apoptosis. This work demonstrates that findings on activation-induced apoptosis in vitro can be extended to the in vivo situation, and further, that the activation of cortical thymocytes, in situ, results in apoptosis and removal of the activated cells. The possible relationships between this activation-induced cell death in immature thymocytes and the process of negative selection of autoreactive T cells is discussed.  相似文献   

16.
Survivin reduces activation-induced T cell death in G1 phase   总被引:4,自引:0,他引:4  
A process termed activation-induced cell death (AICD) is responsible for peripheral T cell tolerance after negative selection of self-reactive T cells, and deletion of hyperactivated T cells following the immune response. Cells in G1 phase of the cell cycle are most susceptible to AICD. We have investigated the relationship between the induction of AICD by phorbol 12-myristate 13-acetate plus ionomycin during the cell cycle and the expression of survivin, an inhibitor of the apoptosis protein (LAP) family. AICD was highly induced in cells of the human T cell line Jurkat E6.1 arrested in G1 phase, whereas survivin was hardly expressed in G1 and instead it was highly expressed in G2/M. Moreover, transient over-expression of survivin in G1 partially blocked the induction of AICD. These results suggest that survivin inhibits the induction of AICD, especially in G1 phase.  相似文献   

17.
IL-17-secreting CD4+ T cells (Th17 cells) play a critical role in immune responses to certain infections and in the development of many autoimmune disorders. The mechanisms controlling homeostasis in this cell population are largely unknown. In this study, we show that murine Th17 cells undergo rapid apoptosis in vitro upon restimulation through the TCR. This activation-induced cell death (AICD), a common mechanism for elimination of activated T cells, required the Fas and FasL interaction: Fas was stably expressed, while FasL was up-regulated upon TCR reactivation of Th17 cells; Ab ligation of Fas induced Th17 cell death; and AICD was completely absent in Th17 cells differentiated from gld/gld CD4+ T cells. Thus, the Fas/FasL pathway is essential in regulating the AICD of Th17 cells. Interestingly, IFN-gamma, a cytokine previously found to be important for the AICD of T cells, did not affect Th17 cell apoptosis. Furthermore, Th17 cells derived from mice deficient in IFN-gamma receptor 1 (IFN-gammaR1-/-) underwent AICD similar to wild-type cells. Thus, AICD of Th17 cells occurs via the Fas pathway, but is independent of IFN-gamma.  相似文献   

18.
19.
One of the mechanisms by which activated T cells die is activation-induced cell death (AICD). This pathway requires persistent stimulation via the TCR and engagement of death receptors. We found that TCR stimulation led to transient nuclear accumulation of the NF-kappaB component p65/RelA. In contrast, nuclear c-Rel levels remained high even after extended periods of activation. Loss of nuclear p65/RelA correlated with the onset of AICD, suggesting that p65/RelA target genes may maintain cell viability. Quantitative RNA analyses showed that three of several putative NF-kappaB-dependent antiapoptotic genes were expressed with kinetics that paralleled nuclear expression of p65/RelA. Of these three, ectopic expression only of Gadd45beta protected significantly against AICD, whereas IEX-1 and Bcl-x(L) were much less effective. We propose that the timing of AICD, and thus the length of the effector phase, are regulated by transient expression of a subset of p65/RelA-dependent antiapoptotic genes.  相似文献   

20.
Prolyl endopeptidase (PEP) is widely distributed and thought to play an important role in the degradation of peptide hormones and neuropeptides, but its biological role is totally unknown. In this study, we examined PEP activity in subpopulations of murine T cells and found that PEP activity was significantly higher in immature thymocytes than in mature thymocytes or in peripheral T cells. Stimulation of murine peripheral T cells time-dependently increased PEP activity. Although murine T cell hybridomas exhibited high PEP activity, the PEP activity was fully inhibited by treatment with PEP inhibitor. The pretreated T cells were found to be resistant to activation-induced cell death (AICD). Similar results were obtained in murine thymocytes as well as in activated peripheral T cells. PEP activity in T cell hybridomas remained unchanged during AICD. These results suggest that T cells expressing high PEP activity are susceptible to ACID.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号