首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The history of eutrophication of the Loosdrecht Lakes system and the differences in trophic state of the compartments of this system are described from a hydrological point of view. Groundwater movement was found to be of paramount importance. This groundwater transport induced a horizontal surface water transport with concomitant biomass from Loosdrecht Lakes to Lake Breukeleveen, which explains partly the more eutrophic situation in the latter lake. The article summarizes several internal WOL-reports (ENGELEN and KAL, 1985; HETTLING, 1985a, b; KUHNEL, 1985; TEUNISSEN, 1985).  相似文献   

2.
Primary production in the various parts of Loosdrecht Lakes   总被引:2,自引:0,他引:2  
The primary production of the Loosdrecht Lakes, L. Breukeleveen and L. Vuntus is described. A comparison is made between the values found in 1983 (a year with a considerable inlet of phosphorus-rich water, and those of 1984 (when the inlet water was dephosphorized). Production rates in L. Breukeleveen and L. Vuntus were significantly lower than in the Loosdrecht Lakes. This was partly ascribed to horizontal mass transport. The annual production in 1984 was not significantly lower than in 1983.  相似文献   

3.
Modelling phosphorus fluxes in the hypertrophic Loosdrecht Lakes   总被引:2,自引:0,他引:2  
A dynamic, deterministic model is presented to simulate the phosphorus cycle and plankton growth in the shallow, hypertrophic Loosdrecht Lakes (The Netherlands) before and after restoration measures. Besides inorganic phosphorus (SRP) in both the surface water and the interstitial water, the model comprises three algal groups, zooplankton, fish, detritus, zoobenthos and upper sediment (all modelled both in carbon and in phosphorus). Within the model system, the phosphorus cycle is completely closed. Carbon and phosphorus are described independently, so that the dynamics of the P/C ratios can be modelled. Sediment processes are described in a simplified form.Simulated values are largely within the range of observed ones. The detrital fraction of the seston (=phytoplankton+detritus) varies from 50–60% in summer to about 90% in winter. SRP in the surface water is very low during most of the year. Sensitivity for external phosphorus input is larger for algal and detrital P than for algal and detrital C and chlorophyll-a. So the P/C ratio of the seston decreases following restoration measures, as is observed in the lakes, while the much higher P/C ratios of zooplankton and fish remain constant. Phosphorus mobilisation from the sediment decreases with decreasing external input. Adaptation of the model system to the reduced loading takes place within about two years.Sources of uncertainty in the model include the limited knowledge on selective grazing as well as on mortality and mineralisation processes.  相似文献   

4.
Water quality modelling in the framework of the Water Quality Research Loosdrecht Lakes requires mass balances covering periods of one month or less for at least three of the lake compartments of the Loosdrecht Lakes system: the Loosdrecht Lakes, L. Vuntus and L. Breukeleveen. The hydrological system of the Loosdrecht area underlying these mass balances is described. Data available on the various mass balance items are surveyed, as well as the methods considered to calculate those items that do not lend themselves to direct measurement.The system will be modelled by means of a series of interdependent spreadsheets. Calibration of this model to the 1983–1986 data set should render it suitable to calculate the mass balances retrospectively,i.e. in the period 1975–1982. The model in its present form cannot be used to predict mass balances.Masses of Cl, P and N stored in the three main lake compartments of interest at consecutive sampling dates in 1983 and 1984 are graphically presented and compared with roughly estimated biannual balances of the same substances for the aggregate of the three lake compartments.Not unexpectedly, the distribution within the system of the conservative substance Cl is a function of the differences between the lake compartments in mixing ratios of high-Cl to low-Cl inputs.The amounts of the nutrients P and N stored in the lake water follow a rather erratic course. Though it is possible to idealize this to a seasonal cycle, the two-year period dealt with by this study is too short to identify such a cycle with certainty. From the large residual terms of the biannual nutrient balances it is obvious that the not directly quantifiable processes like sedimentation, release from the sediment and (presumably) denitrification that are lumped into those residual terms, are of major importance to the amounts of nutrients in the lake water.  相似文献   

5.
Phytoplankton growth in the shallow, turbid Lake Loosdrecht (The Netherlands) is importantly influenced by light availability, and thus the concentrations of the various light-attenuating materials. The system is highly eutrophic and supports an algal biomass of ca. 160 mg Chl m–3. A model is proposed here which predicts algal growth in the lake as a function of the light received and subsequent attenuation in the water column by phytoplankton, tripton and background colour. The model is based on an energy balance which relates growth rate to the true growth yield on light energy and the energy demand for cell maintenance. The coefficients for energy conversion (Y = 0.002 gDW kJ–1) and cell maintenance (µe = 0.031 day–1) were determined from steady state growth kinetics of Prochlorothrix hollandica in light-limited laboratory flow systems with the same depth as the lake and receiving summer average conditions of irradiance. Light attenuation by phytoplankton and tripton were quantified using specific attenuation coefficients: 0.011 m2 mg–1 Chl for the phytoplankton and 0.23 m2 g–1 DW for tripton.The growth studies demonstrated that Lake Loosdrecht can support a much higher algal biomass in the absence of non-algal particulate matter. The proposed model is used to predict chlorophyll a concentrations in dependence on growth rate and levels of tripton. Since approximately 75% of the sestonic dry weight in Lake Loosdrecht may be attributed to tripton, it is concluded that the algal biomass is markedly lowered by the abundance of tripton in the water column. A knowledge of the sources and fate of tripton in the lake is thus of fundamental importance in modelling phytoplankton dynamics.  相似文献   

6.
A reduction in external phosphorus loading since 1984 to Loosdrecht lakes system by the dephosphorization of the inlet water, yielded only minor effects in Lake Loosdrecht. This reduction measure turned out to have decreased the loading only by a factor of two. A conceptual model was constructed based on laboratory measurements to describe phosphorus flow in the lake ecosystem for the summer of 1987. The role of zooplankton and fish was more important in phosphorus recycling than diffusion at the sediment-water interface. The input and output of phosphorus of the lake were at equilibrium and therefore, further reduction in external loading was needed for recovery. The results of the conceptual model agreed well with the output of the mathematical model PCLOOS. Additional measures such as dredging, flushing, chemomanipulation, or biomanipulation would be ineffective at the present level of external loading. Only a significant further reduction in external input will restore Lake Loosdrecht's water quality over a long period of time.  相似文献   

7.
External phosphorus loads to three shallow lakes in the Netherlands were reduced by eliminating waste-water discharge and by dephosphorization of the supply water, with which water level is controlled. Concentrations of total-phosphorus and chlorophyll a were significantly reduced during 1980–1986 in L. Breukeleveen, but not in L. Vuntus and L. Loosdrecht. In 1983–1986 the phosphorus flow through several trophic levels was determined. Changes over these years were not significant. External input to the lakes still contributes substantially to the phosphorus input. Release from the sediments also contributed to the cycling of the phosphorus. Excretion by large crustacean zooplankters was important in phosphorus recycling, and delivered 20–30% of the daily phytoplankton phosphorus demand. A similar contribution is expected from fish. If one wants recovery of the lakes to be accelerated, additional measures are needed.  相似文献   

8.
Van Donk  E.  Grimm  M. P.  Gulati  R. D.  Heuts  P. G. M.  de Kloet  W. A.  van Liere  L. 《Hydrobiologia》1990,200(1):291-301
Lake Breukeleveen (180 ha, mean depth 1.45 m), a compartment of the eutrophic Loosdrecht lakes system, was selected to study the effects of whole-lake foodweb manipulation on a large scale. In Lake Loosdrecht (dominated by filamentous cyanobacteria), due to water management measures taken from 1970–1984 (sewerage systems, dephosphorization) the external P load has been reduced from 1.2 g m−2 y−1 to 0.35 g m−2 y−1. The water transparency (Secchi-depthca. 30 cm), however, has not improved. The aim of the food-web manipulation in Lake Breukeleveen was not only to improve the light climate of the lake, but also to study if the successfull effects observed in small lakes (a few ha) can be upscaled. In March 1989 the standing crop of planktivorous and bentivorous fish populations was reduced by intensive fishery, fromca. 150 kg ha−1 toca. 57 kg ha−1. The lake was made unaccessible to fish migrating from the other lakes and it was stocked with large-sized daphnids and 0+ pike. However, water transparency did not increase in the following summer and autumn 1989, which is in contrast with great improvement in the light conditions previously observed in smaller lakes. The main explanations for the negative outcome in Lake Breukeleveen are: 1) the rapid increase of the planktivorous fish biomass and carnivorous cladocerans, predating on the zooplankton community; 2) suppression of the large daphnids by the high concentrations of filamentous cyanobacteria; 3) high turbidity of the lake due to resuspension of bottom material induced by wind, unlike in smaller lakes, and thus inability of submerged macrophytes to develop and to stabilize the ecosystem.  相似文献   

9.
惠州西湖磷模型的初级研究   总被引:1,自引:0,他引:1  
应文晔  钟萍  刘正文 《生态科学》2005,24(4):373-375
国家4A旅游景区之一的惠州西湖地处亚热带地区,属于典型的浅水型城市湖泊.在西湖水体完全混合的假设和西湖实地调查和2003年~2005年监测数据的基础上,对惠州西湖建立了零维总磷模型.文中对总磷模型进行了参数的率定、校正,并用模型对2003年10月到2004年9月一周年进行总磷浓度的模拟预测,从而验证了该模型在惠州西湖水质预测中的适用性和可行性.根据西湖底泥磷释放率的特征提出修正模型,大大降低了原模型模拟误差,更精确拟合惠州西湖的总磷浓度的动态变化,有助于西湖的长期预测工作的进一步开展.  相似文献   

10.
An oscillating steady state is described of phytoplankton, dominated by Prochlorothrix hollandica and Oscillatoria limnetica, and sestonic detritus in shallow, eutrophic Lake Loosdrecht (The Netherlands). A steady-state model for the coupling of the phytoplankton and detritus is discussed in relation to field and experimental data on phytoplankton growth and decomposition. According to model predictions, the phytoplankton to detritus ratio decreases hyperbolically at increasing phytoplankton growth rate and is independent of a lake's trophic state. The seston in L. Loosdrecht contains more detritus than phytoplankton as will apply to many other lakes. The model provides a basis for estimating the loss rate of the detritus, including decomposition, sedimentation and hydraulic loss. In a shallow lake like L. Loosdrecht detritus will continue to influence the water quality for years.  相似文献   

11.
The state of the environment of the Loosdrecht lakes   总被引:6,自引:6,他引:0  
The Loosdrecht lakes are a system of shallow, interconnected, peat lakes in the centre of The Netherlands. The main environmental functions of the Loosdrecht lakes are nature and recreation. From the point of view of the Dutch policy, a Specific Environmental Quality (Bijzondere Milieukwaliteit) should be set for these lakes.The most serious environmental problem of the area is eutrophication. The Loosdrecht lakes have, by increasing external phosphorus loading, changed, from clear lakes with few macrophytes, followed by a period of abundant characean growth, to turbid lakes dominated by cyanobacteria and detrital matter. Eutrophication was counteracted by use of sewerage systems and dephosporization of the supply water. The resultant decrease in external phosphorus loading did not result in a decrease of turbidity by suspended particles.The eutrophication of the lake ecosystems was described as a series of phases. One of those phases, the status around 1940, has been used as an ecological reference system.By means of a graphical presentation technique, the so-called AMOEBE-approach, the state of the environment of the Loosdrecht lakes has been visualized. Thirty-two ecological parameters, including both biotic and abiotic factors, have been selected and quantified. Concrete target values for these parameters have been derived from historical reports and from Lake Western Loenderveen, located close to the Loosdrecht lakes, but less eutrophic.The general conclusion is that the state of the environment of the Loosdrecht lakes is far from what is required with respect to a Specific Environmental Quality, as many of the selected parameters, like water transparency, total phosphorus, mineral nitrogen, cyanobacteria, bream, pike, macrophytes, birds and otter, deviate by over an order of magnitude from their desired levels.  相似文献   

12.
城市化背景下白洋淀入湖营养盐负荷模拟研究   总被引:1,自引:0,他引:1  
张笑欣  易雨君  刘泓汐  杨志峰 《生态学报》2021,41(19):7521-7529
过量的营养盐输入导致白洋淀富营养化程度较高。雄安新区建设伴随着快速城镇化进程,将可能进一步增加入湖营养盐负荷。为摸清新区建设背景下白洋淀入湖营养盐负荷的变化趋势及削减量,基于入湖营养盐负荷模型计算了历史不同时期(1995-2015年)白洋淀入湖营养盐盐负荷,预测了土地利用、农业管理和污水处理系统变化下入湖营养盐负荷的变化趋势。结果表明,白洋淀历史时期入湖总氮和总磷年平均负荷分别为2018 t和313 t,主要来源分别是耕地和畜禽粪便排放。就土地利用变化而言,以2010年为基准,2050年白洋淀入湖总氮和总磷负荷在建设用地快速增长(RAP)情景下增长率最高,分别增长了56%和60%,主要原因在于城镇人口增加,从而增加了畜禽需求量和生活污水排放。就农业管理而言,削减化肥使用有利于降低入湖总氮负荷,控制畜禽粪便排放更有利于入湖总磷负荷的降低。2050年,生活污水将成为白洋淀入湖营养盐的重要来源,因此,在制定未来社会经济发展路径时,应重点提高农村地区生活污水收集率和处理效率。PCLake模型对不同入湖负荷下湖泊营养状态演变的模拟发现,削减入湖总磷负荷是白洋淀水质恢复的关键。白洋淀水质达到III类和IV类标准时,入湖总磷负荷阈值分别为2.1和2.6 mg P m-2 d-1。在建设用地快速增长情景下,若使白洋淀水质达到III类标准,入湖总磷负荷应减少131 t。  相似文献   

13.
有机磷农药对滇池微囊藻生长和摄磷效应的影响   总被引:2,自引:0,他引:2  
采集滇池水体作为铜绿微囊藻培养基,研究了两种有机磷农药(甲胺磷和辛硫磷)对微囊藻生长和摄磷效应的动力学规律。结果表明,在滇池水体中添加较低浓度的甲胺磷(0.8、1.6、3.2mg/L)和辛硫磷(0.02、0.06、0.1mg/L)均能不同程度地促进微囊藻的生长,且在HGZ培养基中抑制微囊藻生长的浓度在滇池水体中却能促进微囊藻的生长。微囊藻的生长取决于细胞内磷的浓度且对磷的吸收利用存在积累性,在微囊藻生长初期,摄取各形态磷的速率较快;随后微囊藻摄取各形态磷的速率较慢。总溶解磷(TSP)和溶解反应磷(SRP)是微囊藻优先摄取的磷形态,在生长过程中微囊藻利用了大量的溶解有机磷(DOP)作为磷源加速生长。这一特点对于微囊藻成为淡水湖泊富营养化发展过程中的一种重要优势种具有极为重要的作用。  相似文献   

14.
H. W. Kroes 《Hydrobiologia》1992,233(1-3):165-170
The Project on the Water Quality Research in the Loosdrecht Lakes (WQL) has come up to the expectations of the Netherlands Environment Ministry. The results reaffirm the main lines of national eutrophication policy drawn up in 1979 (Policy Document on Phosphates) and further developed in the eighties. Interesting new insights have been gained, for example into the role of sediment and seston as well as into the relative importance of trophic levels. It is not possible, however, to definitely establish the effect of WQL on eutrophication policy.The Loosdrecht project is an example of genuine ecological research, incorporating several disciplines, placing the object of research into its surroundings, emphasising the relation nature-culture and committing itself to certain value judgements and policy choices. As a consequence, there is a striking resemblance between the evolution of the project itself and that of ecosystems.All in all the Loosdrecht project should be regarded as a paradigm for future ecosystem studies.  相似文献   

15.
This study examined the influence of water-level fluctuation (WLF) on sediment–water nutrient exchange in the Laurentian Great Lakes. Water levels in the Laurentian Great Lakes have been below the long-term mean for the past 15 years, causing the exposure of sediments that previously have been either continuously inundated or periodically exposed. The magnitude, duration, and frequency of WLF, as well as land-use history, each can influence the amount and type of sediment–water nutrient exchange. We collected sediment cores from relatively pristine coastal wetlands located on Beaver and Garden Islands in northern Lake Michigan. Sediment cores were taken from different water depths to simulate WLF magnitude; desiccation time was experimentally manipulated to simulate WLF duration. At these relatively pristine wetlands, desiccation time and water depth significantly influenced flux. However, nutrient exchange did not behave in a consistent fashion; phosphorus, nitrate, ammonium, and sulfate flux varied based on sediment exposure history and desiccation time. Sediment–water nutrient exchange rates also were compared to prior measurements taken from more impacted coastal wetlands in southern Lake Michigan and Saginaw Bay in Lake Huron. This comparison revealed a stronger influence of anthropogenic stress than desiccation time, with impacted wetland sediments releasing more soluble reactive phosphorus, sulfate, and ammonium, and retaining more nitrate, than pristine wetlands. Our results indicate that WLFs have the potential to influence sediment–water nutrient exchange, which may influence system productivity, but environmental context can override this influence.  相似文献   

16.
Elucidating patterns and mechanisms that shape phytoplankton assemblages is a popular area of research for empirical and theoretical ecologists. Despite the daunting complexity of phytoplankton dynamics, much of our current understanding has been based on simple models describing food-web interactions with few differential equations. Skeptical views in the literature raise concerns about the increasing model complexity and advice to seek parsimony rather than simplicity. To address this controversy (simple versus complex models), we propose the introduction of an extra layer of causality into plankton models by connecting algal processes (maximum growth rates, nutrient kinetics, settling velocities, metabolic rates) with species-specific morphological features (cell volume, surface-to-volume ratio, shape). In this study, we demonstrate the capacity of a size-based plankton model to reproduce observed water quality patterns (phosphate, total phosphorus, nitrate, total ammonia, total nitrogen, chlorophyll a, and total zooplankton biomass) in the Hamilton Harbour, Ontario. Consistent with empirical evidence, our modeling analysis showed that small algal species have a distinct competitive advantage in summer epilimnetic environments across the range of cell volume and nutrient loading conditions examined; especially, when they are characterized by higher optimal temperature for growth. Strong top-down pressure mediated by high zooplankton abundance effectively controls the standing biomass of phytoplankton species that can otherwise realize high growth rates under the conditions typically prevailing in the end-of-summer epilimnetic environments (e.g., higher temperature optima, higher tolerance in low water clarity). Under high zooplankton control, the secondary variations of phytoplankton are modulated by the ambient phosphorus levels and the size-based strategies for resources procurement, such as the regulation of nutrient transport kinetics. By contrast, when the summer algal assemblage is released by the zooplankton grazing, the exceedance of critical phytoplankton biomass levels and the likelihood of harmful algal blooms are determined by the multitude of factors that shape inter-specific competition patterns (e.g., relative abundance of competing species, nutrient uptake kinetics). Our study evaluates the strengths and weaknesses of this approach and identifies future directions that would provide operational models founded upon concepts of allometry.  相似文献   

17.
The Bitter Lakes are the most significant water bodies of the Suez Canal, comprising 85% of the water volume, but spreading over only 24% of the length of the canal. The present study aims at investigation of the trophic status of the Bitter Lakes employing various trophic state indices, biotic and abiotic parameters, thus reporting the health of the Lake ecosystem according to the internationally accepted classification criteria’s. The composition and abundance of phytoplankton with a dominance of diatoms and a decreased population density of 4315–7376?ind. l?1 reflect the oligotrophic nature of this water body. The intense growth of diatoms in the Bitter Lakes depends on silicate availability, in addition to nitrate and phosphate. If the trophic state index (TSI) is applied to the lakes under study it records that the Bitter Lakes have an index under 40. Moreover, in the total chlorophyll-a measurements of 0.35–0.96?µg?l?1 there are more indicative of little algal biomass and lower biological productivity. At 0.76–2.3?µg?l?1, meanwhile, the low quantity of Phosphorus is a further measure of low biological productivity. In the Bitter Lakes, TN/TP ratios are high and recorded 147.4, and 184.7 for minimum and maximum ratios, respectively. These values indicate that in Bitter lakes, the limiting nutrient is phosphorus and confirm the oligotrophic status of the Bitter Lakes. The latter conclusion is supported by Secchi disc water clarity measurements, showing that light can penetrate, and thus algae can photosynthesize, as deep as >13?m. This study, therefore, showed that the Bitter Lakes of the Suez Canal exhibit oligotrophic conditions with clear water, low productivity and with no algal blooming.  相似文献   

18.
The fish community in the Loosdrecht lakes is dominated by bream, pikeperch and smelt and is characteristic of shallow eutrophic lakes in The Netherlands. The biomasses of the respective fish species amount to ca. 250, 25 and 10 kg ha–1 and correspond to those in Tjeukemeer, another lake in The Netherlands. The average size of bream, however, is much smaller in the Loosdrecht lakes as a consequence of poorer feeding conditions. The zooplankton community in the Loosdrecht lakes is predominantly composed of relatively small species such as Daphnia cucullata, Bosmina coregoni and cyclopoid copepods, whereas in Tjeukemeer, Daphnia hyalina is permanently present in relatively high densities and the other species show a larger mean length. In the Loosdrecht lakes, the absence of D. hyalina and the smaller sizes of the other zooplankton species could be the consequence of a higher predation pressure, in combination with unfavourable feeding conditions for the zooplankton including the low density of green algae and the high density of filamentous cyanobacteria. A biomanipulation experiment in Lake Breukeleveen, one of the Loosdrecht lakes, indicated that feeding conditions were too unfavourable for large zooplankton to develop in spring, when the reduced fish biomass was not yet supplemented by natural recruitment and immigration.  相似文献   

19.
Internal phosphorus recycling (IPR) is an important nutrient source driving algal growth and eutrophication in lakes. The complexity of eutrophication behaviours caused by high IPR complicates lake management and undermines restoration efforts. Hence, knowledge about the possible types of bifurcation behaviours caused by high IPR is essential for effective and sustainable lake eutrophication management. For this purpose, numerical bifurcation analysis is performed on an algae‑phosphorus model to investigate how IPR drives complex and rich eutrophication behaviours in two tropical and two subtropical lakes. The two tropical lakes are Tasik Harapan and Sunway Lagoon in Malaysia, while the two subtropical lakes are Lake Fuxian and Lake Taihu in China. For each specified level of IPR, co-dimension one bifurcation analysis is performed by means of XPPAUT. Co-dimension two bifurcation analysis is then carried out by means of MatCont. At low IPR, Lake Fuxian exhibits reversible behaviour, accompanied by higher external phosphorus loading (EPL) thresholds. Lake Fuxian is also more conducive to stable equilibrium and its lake dynamics are easily predictable. At moderate IPR, Sunway Lagoon is likely to exhibit stable equilibrium, accompanied by possible shifting between two stable steady states (hysteresis behaviour) and oscillations. With higher IPR, Lake Taihu and Tasik Harapan are prone to irreversibility, accompanied by lower EPL thresholds. Because of increased complexity in lake dynamics in Lake Taihu and Tasik Harapan, small changes in EPL or in algal mortality rates could trigger various transitions in lake dynamics. Overall, high IPR can trigger unexpected sharp increases in algal concentration and can reduce the resilience of an oligotrophic lake. For shallow lakes, high IPR would cause unexpected sharp increases in algal concentrations, undermine resilience of lakes, complicate lake management, and delay lake recovery process.  相似文献   

20.
1. Two experiments in the Experimental Lakes Area (ELA) in north-western Ontario, Canada examined the effects of light and two key elements on the net accumulation and elemental composition of epilithon. In Lake (L) 224, benthic algae were grown under different light intensity and phosphorus supply, while in L302S we provided three levels of two different carbon sources (bicarbonate and glucose) to algae colonizing nutrient-diffusing substrata. After 1 month of accumulation, we sampled biofilms for chlorophyll (chl), carbon (C), phosphorus (P) and algal C.
2. Increased C supply did not significantly affect algal growth (C or chl) or elemental composition (C/P ratios) in L302S. However, P enrichment increased chl and algal C, dramatically reduced the C/P ratio of epilithon, and did not affect total organic C in L224. Phosphorus enrichment also increased the proportion of algal material in the total particulate organic matter and altered the taxonomic composition of algae in L224 biofilms. Shading had no significant effect on the C/P ratio and total organic C in epilithon from the L224 experiment.
3. Our results demonstrate that P supply affects the elemental composition of organic matter that collects on rock substrata. It thus appears that low availability of P relative to C and light drives the formation and retention of high C/P organic matter on rock surfaces in oligotrophic boreal lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号