首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Fish of the family Mormyridae emit weak, pulse-like electric organ discharges (EODs). The discharge rhythm is variable, but the waveform of the EOD is constant for each fish, with species- and individual characteristics. The ability of Pollimyrus isidori and Gnathonemus petersii (Mormyridae) to discriminate between different EOD waveforms was tested using a differential conditioning procedure. Fish were first trained to respond to a reference signal in swimming to a dish to receive a bloodworm (food reward). The reference signal consisted of a 10-Hz train of the digitally recorded EOD of a conspecific. Second, an alternative signal (10-Hz train of a different EOD, either from another species, or from a conspecific of the other sex) was associated with air bubbles as punishment. The two signals were played at successive trials in random order. On each trial the latency was measured between the onset of the signal and the response. 7 out of the 8 P. isidori tested and both of the two G. petersii tested associated the reference EOD with food. Among these, five P. isidori and two G. petersii responded differentially (p < 0.01) to EODs of different species. P. isidori similarly discriminated between conspecific EODs of different sexes. The quantity of different alternative EODs which could be tested was limited when fish eventually habituated to the punishment. Even when the amplitude of the EODs was randomly changed at each trial, two out of two G. petersii differentiated between EODs of the two species, and three out of three P. isidori tested differentiated between EODs within their own species. Response latencies to the rewarded signal during the basic training and during discrimination (when it had to be distinguished from the S-) were similar. G. petersii showed differential responses for S+ and S- also in the rhythm of discharge exhibited during playback, after five EOD pulses for one fish, and after a single pulse for the other. Mormyrids may therefore distinguish between conspecifics and members of other species, and even between individual conspecifics, by their EOD waveform.  相似文献   

2.
Electroreceptive afferents from A- and B-electroreceptor cells of mormyromasts and Knollenorgans were tested for their sensitivity to different stimulus waveforms in the weakly electric fish Gnathonemus petersii. Both A- and B-mormyromast cells had their lowest sensitivity to a waveform similar to the self-generated electric organ discharge (EOD) (around 0° phase-shift). Highest sensitivities, i.e. lowest response thresholds, in both A- and B-cells were measured at phase shifts of +135°. Thus, both cell types were inversely waveform tuned. The sensitivity of B-cells increased sharply with increasing waveform distortions. Their tuning curves had a sharp minimum of sensitivity at +7° phase shift. A-cells had a much broader waveform tuning with a plateau level of low sensitivity from +24° to −15°. Across a 360° cycle of phase-shifts, the range of thresholds was 16 dB for individual B-cells and 4.5 dB for individual A-cells. Knollenorgan afferents were tuned to 0° phase-shifted EODs and had a dynamic range of 12 dB. Lowest sensitivities were measured at a phase shift of +165°. Experiments with computer-generated stimuli revealed that the strong sensitivity of mormyromast B-cells of EOD waveform distortions cannot be attributed to any of the seven waveform parameters tested. In addition, EOD stimuli must have the correct duration for B-cells to respond to waveform distortions. Thus, waveform tuning appears to be based on the specific combination of several waveform parameters that occur only with natural EODs. Accepted: 28 April 1997  相似文献   

3.
The dwarf stonebasher sibling species Pollimyrus castelnaui and P. marianne use differences in the electric organ discharges (EODs) for species recognition. As EOD waveforms are affected by water conductivity changes, the reliability of species recognition might be impeded due to natural variability in the environment. EODs of P. castelnaui (N = 8) and P. marianne (N = 8) under high (250 muS/cm) and low (25 muS/cm) conductivity were recorded and compared. Local peaks of the EODs of both species were significantly and predictably modified due to the conductivity change but species-specific differences were always recognizable. The duration of the EODs was not influenced by the conductivity change. Temperature alterations modified the duration in a linear relationship, allowing the determination of Q (10) values (1.6 for P. castelnaui's and 1.7 for P. marianne's EODs). As the species-specific differences are not masked by conductivity effects, EOD discrimination seems to be a reliable species recognition mechanism under natural circumstances.  相似文献   

4.
In part I (. Biophys. J. 75:1712-1726), we presented a cellular model of the A- and B-electroreceptors of the weakly electric fish Gnathonemus petersii. The model made clear the cellular origin of the differences in the response functions of A- and B-receptors, which sensitively code the intensity of the fish's own electric organ discharge (EOD) and the variations in the EOD waveform, respectively. The main purpose of the present paper is to clarify the cellular origin of the inverse waveform tuning of the B-receptors by using the receptor model. Inverse waveform tuning means that B-receptors respond more sensitively to the 180 degrees inverted EOD than to undistorted or less distorted EODs. We investigated how the A- and B-receptor models respond to EODs with various waveforms, which are the phase-shifted EODs, whose shift angle is varied from -1 degrees to -180 degrees, and single-period sine wave stimuli of various frequencies. We show that the tuning properties of the B-receptors arise mainly from the combination of two attributes: 1) The waveform of the stimuli (Bstim) effectively sensed by the B-receptor cells. This consists of a first smaller and a second larger positive peak, even though in the original phase-shifted EOD stimuli, the amplitudes of the two positive peaks are reversed. 2) The effective time constant of dynamical response of the receptor cells. It is on the order of the duration of a single EOD pulse. We also calculated the response properties of the A- and B-receptor models when stimulated with natural EODs distorted by various capacitive and resistive objects. Furthermore, we investigated the effect of EOD amplitude on the receptor responses to capacitive and resistive objects. The models presented can systematically reproduce the experimentally observed response properties of natural A- and B-receptor cells. The mechanism producing these properties can be reasonably explained by the variation in the stimulus waveforms effectively sensed by the A- and B-receptor cells and by time constants.  相似文献   

5.
Striking trait polymorphisms are worthy of study in natural populations because they can often shed light on processes of phenotypic divergence and specialization, adaptive evolution, and (in some cases) the early stages of speciation. We examined patterns of genetic variation within and between populations of mormyrid fishes that are morphologically cryptic in sympatry but produce alternate types of electric organ discharge (EOD). Other species in a large group containing a clade of these morphologically cryptic EOD types produce stereotyped, species-typical EOD waveforms thought to function in mate recognition. First, for six populations from Gabon's Brienomyrus species flock, we confirm that forms of electric fish that exhibit distinctive morphologies and unique EOD waveforms (i.e., good reference species) are reproductively isolated from coexisting congeners. These sympatric species deviate from genetic panmixia across five microsatellite loci. Given this result, we examined three focal pairs of syntopic and morphologically cryptic EOD waveform types that are notable exceptions to the pattern of robust genetic partitioning among unique waveform classes within assemblages. These exceptional pairs constitute a monophyletic group within the Brienomyrus flock known as the magnostipes complex. One member of each pair (type I) produces a head-negative EOD, while the other member (either type II or type III, depending on location) produces a longer duration EOD differing in waveform from type I. We show that signal development in these pairs begins with juveniles of all magnostipes-complex morphs emitting head-positive EODs resembling those of type II adults. Divergence of EOD waveforms occurs with growth such that there are two discrete and fixed signal types in morphologically indistinguishable adults at each of several localities. Strong microsatellite partitioning between allopatric samples of any of these morphologically cryptic signal types suggests that geographically isolated populations are genetically decoupled from one another. By contrast, sympatric morphs appear genetically identical across microsatellite loci in Mouvanga Creek and the Okano River and only very weakly diverged, if at all, in the Ivindo River. Our results for the magnostipes complex fail to detect species boundaries between the focal morphs and are, instead, fully consistent with the existence of relatively stable signal dimorphisms at each of several different localities. No mechanism for the maintenance of this electrical polymorphism is suggested by the known natural history of the magnostipes complex. Despite a lack of evidence for genetic differentiation, the possibility of incipient sympatric speciation between morphs (especially type I and type II within the Ivindo River) merits further testing due to behavioral and neurobiological lines of evidence implying a general role for stereotyped EOD waveforms in species recognition. We discuss alternative hypotheses concerning the origins, stability, and evolutionary significance of these intriguing electrical morphs in light of geographical patterns of population structure and signal variation.  相似文献   

6.
Summary Members of the family of African electric fish, Mormyridae, exhibit a novelty response, consisting of an acceleration in the rate of electric organ discharges (EODs), when faced with changes in feedback arising from their EODs. In this study, the novelty responses of three different species of mormyrids to shunts with different electrical characteristics were noted. The three species differed in the frequency contents of their EODs: two species had relatively high spectral frequencies in their EODs (>10 kHz), while the third species had only lower spectral frequencies (< 10 kHz). Primarily resistive shunts elicited novelty response accelerations in all three species, and the magnitudes of these responses, when normalized to the responses obtained for a shunt with no introduced resistance, were comparable for all three species. For primarily capacitive shunts, however, the magnitudes of the normalized responses were different for the three species: the two species with high spectral frequencies in their EODs showed larger normalized responses than the third species which had only low EOD spectral frequencies.The differences in species responses for capacitive shunts, and the similarities in species responses for resistive shunts, suggest that electric fish detect the complex impedance of objects in their near field environment: a circuit model consisting of a fish emitting discharges into the surrounding water, which can be shunted by a variable complex impedance, conforms well to the data. Thus, electrolocation is a frequency dependent sensory process, and this frequency dependency should be considered in any speculation about the adaptive value of different EOD waveforms.Abbreviation EOD electric organ discharge  相似文献   

7.
We describe patterns of geographic variation in electric signal waveforms among populations of the mormyrid electric fish species Paramormyrops kingsleyae. This analysis includes study of electric organs and electric organ discharge (EOD) signals from 553 specimens collected from 12 localities in Gabon, West-Central Africa from 1998 to 2009. We measured time, slope, and voltage values from nine defined EOD “landmarks” and determined peak spectral frequencies from each waveform; these data were subjected to principal components analysis. The majority of variation in EODs is explained by two factors: the first related to EOD duration, the second related to the magnitude of the weak head-negative pre-potential, P0. Both factors varied clinally across Gabon. EODs are shorter in eastern Gabon and longer in western Gabon. Peak P0 is slightly larger in northern Gabon and smaller in southern Gabon. P0 in the EOD is due to the presence of penetrating-stalked (Pa) electrocytes in the electric organ while absence is due to the presence of non-penetrating stalked electrocytes (NPp). Across Gabon, the majority of P. kingsleyae populations surveyed have only individuals with P0-present EODs and Pa electrocytes. We discovered two geographically distinct populations, isolated from others by barriers to migration, where all individuals have P0-absent EODs with NPp electrocytes. At two sites along a boundary between P0-absent and P0-present populations, P0-absent and P0-present individuals were found in sympatry; specimens collected there had electric organs of intermediate morphology. This pattern of geographic variation in EODs is considered in the context of current phylogenetic work. Multiple independent paedomorphic losses of penetrating stalked electrocytes have occurred within five Paramormyrops species and seven genera of mormyrids. We suggest that this key anatomical feature in EOD signal evolution may be under a simple mechanism of genetic control, and may be easily influenced by selection or drift throughout the evolutionary history of mormyrids.  相似文献   

8.
9.
Electric signals of mormyrid fishes have recently been described from several regions of Africa. Members of the Mormyridae produce weak electric organ discharges (EODs) as part of a specialized electrosensory communication and orientation system. Sympatric species often express distinctive EODs, which may contribute to species recognition during mate choice in some lineages. Striking examples of interspecific EOD variation within assemblages have been reported for two monophyletic radiations: the Paramormyrops of Gabon and the Campylomormyrus of Lower Congo. Here, we describe a speciose assemblage of Petrocephalus in the Lékoli River system of Odzala National Park, Republic of Congo. This widespread genus comprises the subfamily (Petrocephalinae) that is the sister group to all other mormyrids (Mormyrinae). Eleven Petrocephalus species were collected in Odzala, five of which are not described taxonomically. We quantify EOD variation within this assemblage and show that all eleven species produce EOD waveforms of brief duration (species means range from 144 to 663 μs) compared to many other mormyrids. We also present reconstructed phylogenetic relationships among species based on cytochrome b sequences. Discovery of the Odzala assemblage greatly increases the number of Petrocephalus species for which EODs and DNA sequence data are available, permitting a first qualitative comparison between mormyrid subfamilies of the divergence patterns that have been described within lineages. We find that the Petrocephalus assemblage in Odzala is not a monophyletic radiation. Genetic divergence among Petrocephalus species often appears higher than among Paramormyrops or Campylomormyrus species. In contrast, results of this study and others suggest that Petrocephalus may generally exhibit less interspecific EOD divergence, as well as smaller sex differences in EOD waveforms, compared to Paramormyrops and Campylomormyrus. We discuss possible causes and consequences of EOD diversification patterns observed within mormyrid subfamilies as a framework for future comparative studies of signal evolution using this emerging model system.  相似文献   

10.
A cytogenetic study of 62 populations of Santolina pectinata in Spain shows the existence of two ploidy levels. The diploid cytotypes with 2 n  = 18 occupy the eastern Betic mountains, and the tetraploid cytotypes with 2 n  = 36 are located on the spurs of the Iberian System. The former show a much wider ecological spectrum than the latter. Mixed cytotypes were observed in two diploid populations, with one tetraploid in each, showing different karyotypes. Three trisomic individuals were detected, one in a diploid population and the other two in a tetraploid population. Also, three hypotetraploid individuals were detected in a tetraploid population. Polyploidy is shown to be spontaneous and recurrent, promoting partial sterility in the pollen. Structural chromosomal changes, principally translocations, and local speciation through autopolyploidy are the principal factors in the evolution and diversification of this species.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 156 , 657–667.  相似文献   

11.
This study explores the evolutionary origins of waveform complexity in electric organ discharges (EODs) of weakly electric fish. I attempt to answer the basic question of what selective forces led to the transition from the simplest signal to the second simplest signal in the gymnotiform electric fishes. The simplest electric signal is a monophasic pulse and the second simplest is a biphasic pulse. I consider five adaptive hypotheses for the evolutionary transition from a monophasic to a biphasic EOD: (i) electrolocation, (ii) sexual selection, (iii) species isolation, (iv) territory defense, (v) crypsis from electroreceptive predators. Evaluating these hypotheses with data drawn largely from the literature, I find best support for predation. Predation is typically viewed as a restraining force on evolution of communication signals, but among the electric fishes, predation appears to have served as a creative catalyst. In suppressing spectral energy in the sensitivity range of predators (a spectral simplification), the EOD waveforms have become more complex in their time domain structure. Complexity in the time domain is readily discernable by the high frequency electroreceptor systems of gymnotiform and mormyrid electric fish. The addition of phases to the EOD can cloak the EOD from predators, but also provides a substrate for subsequent modification by sexual selection. But, while juveniles and females remain protected from predators, breeding males modify their EODs in ways that enhance their conspicuousness to predators.  相似文献   

12.
The pacemaker nucleus of Gymnotus carapo contains two types of neurons: pacemaker cells which set up the frequency of the electric organ discharge (EOD) and relay cells which convey the command signal to the spinal cord. Direct activation of a single relay cell provides enough excitation to discharge a pool of spinal electromotor neurons and electrocytes, generating a small EOD (unit EOD). Different relay cells generate unit EODs of variable size and waveform, indicating the involvement of different groups of electrocytes. A special technique of EOD recording (multiple air-gap) was combined with intracellular stimulation of relay cells to study the spatial distribution within the electric organ (EO) of the command signal arising from different relay cells. Three types of relay cells could be identified: type I commanding the rostral 10% of the EO, type II which distribute their command all along the EO and type III driving the caudal 30%. Waveform analysis of unit EODs indicates that doubly innervated electrocytes which are the most relevant for attaining the specific EOD waveform, receive a favored command from the pacemaker nucleus.Abbreviations CV conduction velocity - EMF electromotive force - EMN electromotor neuron - EO electric organ - EOD electric organ discharge - PN pacemaker nucleus - uEOD unit electric organ discharge  相似文献   

13.
Sixteen species of Jaborosa (Solanaceae), including eight endemic to Argentina, were studied karyologically. The numbers n  = 12 and/or 2n  = 24 were found in all species, the majority of the cases being new reports. Mitotic chromosomes were small- to medium-sized, the average length varying from 2.95 to 4.93 µm. All species had one to three chromosome pairs with satellites. The karyotypes, obtained for 13 species, were slightly asymmetrical: A 1 ranged from 0.228 to 0.483, A 2 ranged from 0.095 to 0.182, and Paszko's asymmetry index ranged from 0.84 to 3.47. In all species, metacentric chromosomes were the most common, followed by submetacentrics, but subtelocentrics were rare. Morphological similarities and sectional arrangements were not reflected in either a principal components analysis plot or asymmetry index plot, but the species could be singled out by their karyotype formulae and the different karyotype parameters taken. In Jaborosa , a notably diversified genus, exo-morphological evolution has taken place, together with evident chromosome rearrangements, whose disposition is different and not as clear as in related genera.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 156 , 467–478.  相似文献   

14.
The genus Prosopis is an important member of arid and semiarid environments around the world. To study Prosopis diversification and evolution, a combined approach including molecular phylogeny, molecular dating, and character optimization analysis was applied. Phylogenetic relationships were inferred from five different molecular markers ( mat K- trn K, trn L- trn F, trn S- psb C, G3pdh, NIA). Taxon sampling involved a total of 30 Prosopis species that represented all Sections and Series and the complete geographical range of the genus. The results suggest that Prosopis is not a natural group. Molecular dating analysis indicates that the divergence between Section Strombocarpa and Section Algarobia plus Section Monilicarpa occurred in the Oligocene, contrasting with a much recent diversification (Late Miocene) within each of these groups. The diversification of the group formed by species of Series Chilenses, Pallidae, and Ruscifoliae is inferred to have started in the Pliocene, showing a high diversification rate. The moment of diversification within the major lineages of American species of Prosopis is coincident with the spreading of arid areas in the Americas, suggesting a climatic control for diversification of the group. Optimization of habitat parameters suggests an ancient occupation of arid environments by Prosopis species.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 621–640.  相似文献   

15.
A new species of Cryptolepis is described from Kenya and Tanzania. It is a tropical forest climber and its unique second corona whorl of deeply cleft lobes distinguishes it from all other Cryptolepis species.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 157 , 343–346.  相似文献   

16.
The emergence and development of the electric-organ discharge (EOD) in larvae and juvenile bulldog Marcusenius macrolepidotus was investigated. Larvae hatched 4–5 days after spawning, and the first EODs were recorded on days 9 and 10 at a standard length ( L S) of c. 6·5 mm. The larval EOD waveform was virtually monopolar, with a strong head-positive phase followed by a weak head-negative phase of long duration. A small separate potential preceded the EOD by c. 1·6 ms (believed to represent postsynaptic potential from electrocyte stalks). In contrast to previous reports on Pollimyrus adspersus with its distinct larval and adult EODs, in M. macrolepidotus there was a gradual transformation of the larval into the adult EOD waveform. The transformation started at an L S of c. 17 mm (at an age of c. 40 days), first indications being a decrease in duration of the head-negative phase, and an increase of its peak amplitude relative to that of the head-positive phase. Still later, the weak postpotential of the adult EOD emerged on the rising edge of the head-negative phase. The transformation was nearly completed at an L S of c. 30 mm (at an age of c. 60 days). Evolutionary and behavioural consequences of this alternative path of EOD ontogeny are discussed.  相似文献   

17.
During the preparation of a World Rubiaceae Checklist , numerous unplaced taxa were encountered, including illegitimate and invalid names, and species for which generic placement is uncertain. In this contribution, 35 new combinations and 20 new names are proposed, and the names of three taxa are validated.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 157 , 115–124.  相似文献   

18.
A palynological study of the genus Mentha L. (Lamiaceae)   总被引:1,自引:0,他引:1  
The pollen morphology and exine structure of 10 Mentha L . species were investigated using light microscopy and scanning electron microscopy. The pollen grains of all 11 species were hexazonocolpate with granular membranes and a circular amb, varying in shape from prolate-spheroidal to suboblate. Different colpus shapes were recognized in M . ×  dumetorum . The exine was bireticulate in section Pulegium , and reticulate in section Menthae . A correlation was found between pollen size and chromosome number. The results indicate that the pollen characters of the genus Mentha are valuable for taxonomic applications and may be useful for classification.  © 2008 Uludag University. Journal compilation © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 157 , 141–154.  相似文献   

19.
20.
Based on multivariate analyses, a new dioecious species of Poa from the Puneña and Altoandina phytogeographical provinces of Argentina is described. This species is most similar to Poa calchaquiensis of Poa section Dioicopoa . The ligule length, plant size, and glabrous pistillate anthoecia distinguish Poa nubensis . A key for identification and illustrations are also included.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 157 , 239–248.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号