首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fifty-d-old poplar (Populus deltoides L.) plants were irrigated with 50-200 mM NaCl. 100 and 200 mM NaCl significantly reduced net photosynthetic rate, chlorophyll and carotenoid contents, leaf area, dry matter accumulation, and harvest index (HI) in all tested poplar clones (Bahar, S7C15, and WSL22). Clone S7C15 was more tolerant to salinity than the other clones. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Complement receptor type 2 (CR2, CD21) is a cell surface protein that links the innate and adaptive immune response during the activation of B-cells through its binding to C3d, a cleavage fragment of the major complement component C3. The extracellular portion of CR2 comprises 15 or 16 short complement regulator (SCR) domains in a partially folded-back but flexible structure. Here, the effect of C3d binding to CR2 was determined by analytical ultracentrifugation and X-ray scattering. The sedimentation coefficient of unbound CR2 is 4.03 S in 50 mM NaCl. Because this agrees well with a value of 3.93 S in 137 mM NaCl, the overall CR2 structure is unaffected by change in ionic strength. Unbound C3d exists in monomer-dimer and monomer-trimer equilibria in 50 mM NaCl, but as a monomer only in 137 mM NaCl. In c(s) size-distribution analyses, an equimolar mixture of the CR2-C3d complex in 50 mM NaCl revealed a single peak shifted to 4.52 S when compared to unbound CR2 at 4.03 S to show that the complex had formed. The CR2-C3d complex in 137 mM NaCl showed two peaks at 2.52 S and 4.07 S to show that this had dissociated. Solution structural models for the CR2 SCR-1/2 complex with C3d and CR2 SCR-1/15 were superimposed. These gave an average sedimentation coefficient of 4.57 S for the complex, in good agreement with the observed value of 4.52 S. It is concluded that CR2 does not detectably change conformation when C3d is bound to it. Consistent with previous analyses, its C3d complex is not formed in physiological salt conditions. The implications of these solution results for its immune role are discussed. To our knowledge, this is the first solution structural study of a large multidomain SCR protein CR2 bound to its physiological ligand C3d.  相似文献   

3.
Suaeda salsa L., a C3 euhalophytic herb, is native to saline soils, demonstrates high resistance to salinity stress. The effect of chilling stress on S. salsa under high salinity, particularly the change in unsaturated fatty acid content within membrane lipids, has not been investigated. After a 12 h chilling treatment (4 °C) performed under low irradiance (100 μmol m?2 s?1), the chlorophyll contents, maximal photochemical efficiency of photosystem II (F v/F m) and actual PSII efficiency (ΦPSII) were determined. These measurements were significantly decreased in S. salsa leaves in the absence of salt treatment yet there were no significant changes with a 200 mM NaCl treatment. Chlorophyll contents, F v/F m and ΦPSII in S. salsa under 200 mM NaCl were higher than those without salt treatment. The unsaturated fatty acid content and the double bond index (DBI) of major membrane lipids of monogalactosyldiacylglycerols, digalactosyldiacylglycerols (DGDG), sulphoquinovosyldiacylglycerols and phosphatidylglycerols (PG) significantly increased following the chilling treatment (4 °C) (with 12 h of low irradiance and 200 mM of NaCl). The DBI of DGDG and PG was decreased in the absence of the salt treatment. These results suggest that in the euhalophyte S. salsa, a 200 mM NaCl treatment increases chilling tolerance under conditions of low irradiance (100 μmol m?2 s?1).  相似文献   

4.
Effects of salinity on growth, protein content, proline, catalase and antioxidant enzyme activity in callus of three halophytes of the Thar Desert; Salsola baryosma, Trianthema triquetra and Zygophyllum simplex were evaluated. Callus tissues were cultured on Murashige and Skoog’s medium containing different concentrations of NaCl (50, 100 and 200 mM). Increase in dry weight and soluble proteins were observed in the callus exposed to lower salinity (50 and 100 mM NaCl) in all the three species, whereas on the medium containing 200 mM NaCl, significant decrease in these two growth parameters was recorded. Under the salinity stress maximum proline accumulation was found in S. baryosma with parallel increase in soluble sugars. Among the three species, T. triquetra callus showed maximum CAT activity with 50 and 100 mM NaCl treatment, whereas the enzyme activity decreased at 200 mM NaCl treatment in all three species. The antioxidant potential steadily elevated under salt treatment in all the above three species using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant potential (FRAP) assay. Whereas, superoxide dismutase (SOD) quenching were recorded maximum at low (50 and 100 mM) concentrations in all the three species. However, T. triquetra callus showed maximum total phenolic content (TPC) 15 mg GAE g?1 with the elevated concentration of NaCl up to 200 mM, and S. baryosma callus showed lower TPC as compared to both species. A significant correlation between antioxidant capacity and TPC was observed indicating that phenolic compounds are the major contributors to the antioxidant potential in these halophyte species. FRAP and DPPH activity of Z. simplex showed maximum correlation (R = 0.992), as compared to other two species. We can conclude that all the three species exhibit a protection mechanism by sustaining growth parameters and antioxidant capacity. Due to high antioxidant property of all these species, the plant extracts may be included in nutraceutical formulations.  相似文献   

5.
The role of spore associated bacteria of arbuscular mycorrhizal fungi (AMF) in improving plant growth and alleviating salt stress is a potential area to explore. In the present study, 22 bacteria isolated from the spore walls of AMF were identified to contain 1-aminocyclopropane-1-carboxylate deaminase. These were tested for their ability to improve seed germination and alleviate salt stress in the early growth of maize. Among the isolates, 19 bacteria that were able to grow at 4?% NaCl were used for germination assay. Two bacteria and seven bacteria significantly improved maize seed germination at 100 mM NaCl and 200 mM NaCl, respectively. Based on the presence of plant growth promoting (PGP) characters and the ability to improve seed germination, five strains were chosen for further experiments. At 0 mM NaCl, all the strains were able to increase maize shoot and root growth significantly. At 25 mM NaCl, except for Bacillus aryabhattai S210B15, all the strains were able to increase shoot and root growth significantly. At 50 mM NaCl, Bacillus aryabhattai S110B3 and B. aryabhattai S210B15 significantly improved shoot length, whereas, Pseudomonas koreensis S2CB35 and B. aryabhattai S210B15 significantly increased root length. Although salinity increased ethylene production in maize, bacterial inoculation significantly reduced the ethylene level at 0, 25 and 50 mM NaCl. Among the five strains, only P. koreensis S2CB35 showed the presence of PGP functional traits of nifH, acdS and nodA genes.  相似文献   

6.
We evaluated survival percentage under salt stress in 46 diploid and tetraploid clones of rhodesgrass (Chloris gayana K.) with the aim of obtaining salt tolerant clones. Fifteen clones were selected at 600 mM NaCl under hydroponic conditions. Survival percentage of the selected clones ranged between 50–100% and 50–75% for diploid and tetraploid clones, respectively. Genetic diversity among the 15 salt-tolerant clones was assessed using amplified fragment length polymorphism (AFLP). All tetraploid clones showed genetic diversity, whereas the diploid group included some genetically related clones. Clones tolerant at 600 mM NaCl and showed genetic diversity are proposed as parents for new synthetic varieties of each rhodesgrass ploidy.  相似文献   

7.
8.
9.
The effects of salt stress on dry mass, lipid peroxidation, polyphenol and hydrogen peroxide content and activities of antioxidative enzymes were investigated in seedlings of Salicornia persica and S. europaea grown in vitro. Seeds were germinated under a broad range of NaCl concentrations (0, 100, 200, and 300 mM) on Murashige and Skoog medium for 45 d. Dry mass of both species increased at low (100 mM) salinity but decreased at higher NaCl concentrations. Malondialdehyde (MDA) content decreased at low salinity, whereas increased at 200 and 300 mM NaCl. H2O2 content in S. europaea was considerably enhanced by salinity, but it was not significantly affected in S. persica. The salt stress progressively enhanced the polyphenol content in S. persica, whereas in S. europaea, it increased with respect to the control only at higher salinities. In both species, the salinity progressively enhanced the superoxide dismutase (SOD) and peroxidase (POD) activities, whereas the CAT activity was only registered at the low salinity and the APX activity decreaseed in both species. The results indicate that S. persica exhibited a better protection mechanism against oxidative damage and it is more salt-tolerant than S. europaea.  相似文献   

10.
Thermopsis turcica is distributed naturally in saline soils. Interestingly, how T. turcica can live in harsh salt conditions is unknown. To study its defense responses under salinity, T. turcica was grown in a medium containing 100 and 200 mM NaCl for 7 and 14 days. Physiological parameters, ion contents, reactive oxygen species accumulation, activities of antioxidant enzymes/isozymes, NADPH oxidase enzyme/isozyme, lipid peroxidation (TBARS) and osmolyte contents were investigated. Stress caused a rapid decline in relative growth rate, relative water content and chlorophyll fluorescence (F v/F m) under both NaCl treatments. These traits were more suppressed at 200 mM NaCl. The decline in osmotic potential (Ψ Π) with salinity increased the gradient for water flux into the cell and assisted in turgor maintenance. The increased membrane permeability under stress caused the entrance of excess Na+ and K+ into the cell. Stress decreased superoxide dismutase, catalase and peroxidase after 14 days of growth in 200 mM NaCl, whereas glutathione reductase (GR) increased throughout the experiment. While ascorbate peroxidase (APX) increased by 44 % at 7 days, it decreased after 14 days exposure to 200 mM NaCl. 200 mM NaCl caused the highest increase in TBARS at 14 days, indicating a decrease in OH· scavenging activity. Increasing concentrations of salinity caused an increase in glycine betaine (GB) and choline (Cho), though an increase in proline was only observed at 200 mM NaCl for 14 days. Briefly, H2O2 was more efficiently eliminated in 100 mM-treated plants by the ascorbate–glutathione cycle in which APX acts a strong catalyst together with GR. Also, Cho and GB help to maintain osmotic adjustment and cytoplasmic function.  相似文献   

11.
Two freshwater microalgae including Chlamydomonas mexicana and Scenedesmus obliquus were grown on Bold Basal Medium (BBM) with different levels of salinity up to 100 mM NaCl. The dry biomass and lipid content of microalgae were improved as the concentration of NaCl increased from 0 to 25 mM. Highest dry weight (0.8 and 0.65 g/L) and lipid content (37 and 34 %) of C. mexicana and S. obliquus, respectively, were obtained in BBM amended with 25 mM NaCl. The fatty acid composition of the investigated species was also improved by the increased NaCl concentration. At 50 mM, NaCl palmitic acid (35 %) and linoleic acid (41 %) were the dominant fatty acids in C. mexicana, while oleic acid (41 %) and α-linolenic acid (20 %) were the major fractions found in S. obliquus.  相似文献   

12.
2'-O-Methyl-3'-O-phosphoramidite building blocks of 6-oxocytidine 6 and its 5-methyl derivative 7, respectively, were synthesized and incorporated via phosphoramidite chemistry in 15 mer oligodeoxynucleotides [d(T72T7), S2; d(T73T7), S3] to obtain potential Py.Pu.Py triplex forming homopyrimidine strands. UV thermal denaturation studies and CD spectroscopy of 1:1 mixtures of these oligomers and a 21 mer target duplex [d(C3A7GA7C3)-d(G3T7CT7G3), D1] with a complementary purine tract showed a nearly pH-independent (6.0-8.0) triple helix formation with melting temperatures of 21-19 degrees C and 18.5-17.5 degrees C, respectively (buffer system: 50 mM sodium cacodylate, 100 mM NaCl, 20 mM MgCl2). In contrast, with the corresponding 15mer deoxy-C-containing oligonucleotide [d(T(7)1T7), S1] triplex formation was observed only below pH 6.6. Specificity for the recognition of Watson-Crick GC-base pairs was observed by pairing the modified C-bases of the 15mers with all other possible Watson-Crick-base compositions in the target duplex [d(C3A7XA7C3)-d(G3T7YT7G3), X = A,C,T; Y = T,G,A, D2-4]. Additionally, the Watson-Crick-pairing of the modified oligomers S2 and S3 was studied.  相似文献   

13.
In the presence of high concentrations of the nonspecific polymer polyethylene glycol (PEG), intermolecular cohesive-end ligation with the DNA ligase from Escherichia coli was stimulated by high salt concentrations: 200 mM NaCl or 300 mM KCl in 10% (w/v) PEG 6000 solutions, and 100-200 mM NaCl or 150-300 mM KCl in 15% PEG 6000 solutions. Intermolecular blunt-end ligation with this ligase was also stimulated at 100-150 mM NaCl or 150-250 mM KCl in 15% PEG 6000 solutions. The extent of such intermolecular ligation increased and the salt concentrations at which ligation was stimulated extended to lower concentrations when we raised the temperature from 10 to 37 degrees C.  相似文献   

14.
Sarcobatus vermiculatus (Hook) Torrey is a leaf succulent, sodium-accumulating shrub usually found in saline substrates of the Great Basin desert, Utah, USA. Laboratory experiments were conducted to determine the effect of salinity (0, 200, 400, 600, 800 and 1000 mM NaCl) and temperature (day/night: 5/15, 10/20, 15/25, 20/30, and 25/35°C) on seed germination. S. vermiculatus showed 100% germination in non-saline controls, at all thermoperiods. Percentage and rate of germination decreased with increases in salinity and few seeds germinated at even 1000 mM NaCl. High salinity exposure caused the loss of viability at higher temperature regimes, while some recovery was recorded in low salinity treatments.  相似文献   

15.
To explore the possible physiological mechanism of salt tolerance in peanut, we investigated the effect of salinity on antioxidant enzyme activity, fatty acid composition, and chlorophyll fluorescence parameters. Seedlings at the initial growth stage had been treated with 0, 100, 150, 200, 250, and 300 mM NaCl for 7 days. Results showed that fresh mass and dry mass decreased with the rise of the NaCl concentration. They decreased significantly when the NaCl concentration was more than 200 mM. The PSII’s highest photochemical efficiency (F v/F m) was not affected before treating 250 mM NaCl. However, the PSII (ΦPSII)’s actual photochemical efficiency of decreased after treating 200 mM NaCl. Both the initial fluorescence (F o) and non-photochemical quenching (NPQ) increased after 200 mM NaCl treatment. PSI oxidoreductive activity (ΔI/I o) was not affected before 200 mM NaCl. The malondialdehyde (MDA) content increased with the rise of the NaCl concentration. The activities of ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities increased first and then decreased, while the content of H2O2 and O 2 decreased first and then increased. Treated with 150 mM NaCl, the linolenic acid (18:3) and linoleic acid (18:2) of monogalactosyldiacylglycerols (MGDG), digalactosyldiacylglycerols (DGDG), sulphoquinovosyldiacylglycerols (SQDG) as well as phosphatidylglycerols (PG), the ratio of DGDG/MGDG increased, and the opposite results were obtained with 300 mM NaCl. The double bond index (DBI) of MGDG, DGDG, SQDG, and PG also increased after treating 150 mM NaCl. These conclusions verified that increased unsaturated fatty acid content in membrane lipid of peanut leaves could improve salt tolerance by alleviating photoinhibition of PSII and PSI.  相似文献   

16.
Germination responses of Diplotaxis harra to temperature and salinity   总被引:1,自引:1,他引:0  
Diplotaxis harra (Forssk.) Boiss, an annual herb in the family of Brassicaceae, is widely distributed in many sandy and gypseous areas in southern Tunisia. Laboratory experiments were carried out to assess the effects of temperature and salinity on seed germination and recovery responses after seed transfer to distilled water. The germination responses of the seeds in complete darkness were determined over a wide range of temperatures (5, 10, 15, 20, 25 and 30 °C) and salinities (0, 50, 100, 150 and 200 mM NaCl). Germination was inhibited by either an increase or decrease in temperature from the optimal temperature (15 °C). Highest germination percentages were obtained under non-saline conditions and an increase in NaCl concentrations progressively inhibited seed germination. Rate of germination decreased with an increase in salinity at all temperatures but comparatively higher rates were obtained at 15 °C. Salt stress decreased both the percentage and the rate of germination. An interaction between salinity and temperature yielded no germination at 200 mM NaCl. Seeds were transferred from salt solution to distilled water after 20 days, and those from low salinities recovered at all temperatures. At NaCl concentration of 200 mM, the recovery of germination was completely inhibited.  相似文献   

17.

Background and aims

Salinity is an increasing problem for agricultural production worldwide. Understanding how Na+ enters plants is important if reducing Na+ influx, a key component of the regulation of Na+ accumulation in plants and improving salt tolerance of crop plants, is to be achieved. Our previous work indicated that two distinct low-affinity Na+ uptake pathways exist in the halophyte Suaeda maritima. Here, we report the external NaCl concentration at which uptake switches from pathway 1 to pathway 2 and the kinetics of the interaction between external K+ concentration and Na+ uptake and accumulation in S. maritima in order to determine the roles of K+ transporters or channels in low-affinity Na+ uptake.

Methods

Na+ influx, Na+ and K+ accumulations in S. maritima exposed to various concentrations of NaCl (0–200 mM) were analyzed in the absence and presence of the inhibitors TEA and Ba+ (5 mM TEA or 3 mM Ba2+) or KCl (0, 10 or 50 mM).

Results

Our earlier proposal was confirmed and extended that there are two distinct low-affinity Na+ uptake pathways in S. maritima: pathway 1 might be mediated by a HKT-type transporter under low salinity conditions and pathway 2 by an AKT1-type channel or a KUP/HAK/KT type transporter under high salinity conditions. The external NaCl concentration at which two distinct low-affinity Na+ uptake switches from pathway 1 to pathway 2, the ‘turning point’, is between 90 and 95 mM. Over a short period (12 h) of Na+ and K+ treatments, a low concentration of K+ (10 mM) facilitated Na+ uptake by S. maritima under high salinity (100–200 mM NaCl), whether or not the plants had been subjected to a longer (3 d) period of K+ starvation. The kinetics suggests that low concentration of K+ (10 mM) might activate AKT1-type channels or KUP/HAK/KT-type transporters under high salinity (100–200 mM NaCl).

Conclusions

The turning-point of external NaCl concentrations for the two low-affinity Na+ uptake pathways in Suaeda maritima is between 90 and 95 mM. A low concentration of K+ (10 mM) might activate AKT1 or KUP/HAK/KT and facilitate Na+ uptake under high salinity (100–200 mM NaCl). The kinetics of K+ on Na+ uptake and accumulation in S maritima are also consistent with there being two low-affinity Na+ uptake pathways.  相似文献   

18.
In order to quickly and efficiently evaluate the salt tolerance of alfalfa, salinity tests were conducted on Medicago sativa L. var. australis, var. icon, var. loi, and var. gea, under in vitro conditions. Pregerminated seeds of four varieties were subjected to five different NaCl concentrations (0, 50, 100, 150, 200 mM). The influence of saline stress was estimated on the basis of survival percentage, growth parameters, and electrolyte leakage. The seedlings surviving on the medium enriched with salt at the highest concentration were presumed to be tolerant and represented the mother plants for the production of in vitro clones. In the following step, the clones were evaluated in vitro to confirm the salt tolerance. The influence of mild salt stress (75 mM NaCl) on the growth parameters of selected clones was examined. At the end of this trial, the proline accumulation and sodium content in alfalfa shoots were also quantified. The results suggest an increased level of proline promotes salt tolerance. Medicago sativa L. var. icon is highly tolerant in comparison with the other varieties tested. In vitro selection of M. sativa L. varieties on salt-containing media allowed us to obtain clones with increased salinity tolerance.  相似文献   

19.
Variations in growth, above- and below-ground biomass and nutrient distribution were examined in five clones (G3, G48, 65/27, D121 and S7C1) of Populus deltoides grown under agrisilviculture system in sub-humid tropics of Central India. The monoclonal blocks were planted at 4x5 m in a randomized block design with three replications. Diameter at breast height (dbh) and tree height were consistently higher in clone 65/27 and lowest in clone S7C1. Mean annual increments (MAI) in dbh and height were 1.6 and 1.3 times higher in clone 65/27 compared to clone S7C1. Total biomass varied from 48.5 to 62.2 Mg ha(-1) in six-year-old clones. In rank order, the total biomass of clones was: 65/27>D121>G48>G3>S7C1. Stem wood accounted 60.4-68.9% to total biomass followed by coarse roots (12.2-18.9%), branches (12.3-15%), leaves (3.02-6.9%) and fine roots (1.5-2.7%). Root-shoot ratio ranged from 0.2 to 0.35. It was highest in clone G48 and lowest in clone S7C1. In six-year-old clones, total N ranged from 184.3 to 266.3 kg ha(-1), P from 16.8 to 31.1 kg ha(-1) and K from 81.9 to 128.7 kg ha(-1). Total N and P were highest in clone 65/27, while K in clone G48. Nutrients were lowest in clone S7C1. In general, maximum nutrients (N, P and K) were allocated to above-ground components (leaves>stem>branches) than below-ground components. Available N, P and K in the soil improved significantly after six years of planting. It was higher in 0-20 cm and decreased with soil depth. At 0-20 cm soil depth, N increased from 14.9% to 24.1%, P from 17.2% to 23.3% and K from 3.1% to 5.1% under different clones. The yield of both soybean and wheat reduced under poplar clones. Yield losses in soybean ranged from 10.1% to 33% and wheat from 15% to 30.3% under different clones. The management strategies for reducing tree-crop competition and nutrient export from the site under P. deltoides based agrisilviculture system for achieving sustainable production are discussed.  相似文献   

20.
Responses of Atriplex portulacoides upon 40-day-long exposure to salinity (0?C1,000?mM NaCl) were investigated. Mother plants originated from a sabkha located in a semi-arid region of Tunisia. The plant relative growth rate and leaf expansion increased significantly at 200?mM NaCl but decreased at higher salinities. Interestingly, the plants survived salinity as high as 1,000?mM NaCl without displaying salt-induced toxicity symptoms. Despite significant increase in leaf Na+ and Cl? concentrations upon salt treatment, no significant effect on leaf relative water content was registered. Chlorophyll contents and the gas exchange parameters showed a significant stimulation at the optimal salinity (200?mM NaCl) followed by a decline at higher salinities. Extreme salinity hardly impacted the maximal efficiency of photosystem II photochemistry (F v/F m), but a marked decrease in the relative quantum yield of photosystem II (??PSII) was observed, along with a significant increase in non-photochemical quenching (NPQ). Leaf malondialdehyde and carotenoid contents were generally unaffected following salt exposure, whereas those of anthocyanins, polyphenols, and proline increased significantly, being maximal at 1,000?mM NaCl. Leaf superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), and glutathione reductase (EC 1.6.4.2) activities were significantly stimulated by salinity, whereas catalase (EC 1.11.1.6) activity was maximal in the 0?C400?mM NaCl range. As a whole, protecting the photosynthetic machinery from salt-induced photodamage together with the sustained antioxidant activity may account for the performance of A. portulacoides under high salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号