首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We recently identified defective monocyte accessory function as the cause of T cell unresponsiveness to the mitogenic activity of OKT3 antibody in cultures of peripheral blood mononuclear cells (PBMC) from five healthy subjects, members of one family. We now report that the underlying abnormality in nonresponders is at the level of monocyte Fc gamma receptors for murine IgG2a. T cell unresponsiveness was not restricted to the signal provided by OKT3 but occurred also for two other anti-T3 antibodies of the IgG2a subclass, in contrast to a normal proliferative response to IgG1 anti-T3 antibodies in one of the OKT3 nonresponders. By using cytofluorography, we found that monocytes from responders but not from nonresponders bound OKT3-FITC to their membrane. The binding could be blocked by mouse IgG2a and by human IgG, but not by mouse IgG1 nor by serum albumin. The data suggest that, through specific Fc gamma receptors for murine IgG2a, monocytes bind the Fc portion of OKT3 during T cell activation. The function of this Fc gamma receptor binding was further studied by culturing PBMC from nonresponders on plates coated with affinity-purified goat anti-mouse IgG antibodies as a substitute for monocyte Fc gamma receptors. The addition of OKT3 to nonresponder PBMC, cultured on such plates, resulted in T cell activation, as evidenced by thymidine incorporation, IL 2 production, and expression of IL 2 receptors. Soluble anti-mouse IgG was not able to substitute for monocyte Fc gamma receptors. The results demonstrate the existence of polymorphism in monocyte Fc gamma receptors for murine IgG2a. They also substantiate that an essential helper function of monocytes in T cell activation by anti-T3 is to provide a matrix for multimeric binding of the Fc portion of the anti-T3 antibodies in order to cross-link T3 molecules.  相似文献   

2.
OKT3 and UCHT1 monoclonal antibodies, which recognize the same human T cell surface antigen, induce proliferation in T lymphocytes. In this report, we compared the mechanism by which these antibodies trigger DNA synthesis in human peripheral blood mononuclear cell (PBMC) cultures. Whereas PBMC from all donors tested were mitogenically inducible by OKT3, cells from only 25 of 40 donors were responsive to UCHT1 . UCHT1 treatment of PBMC from responders, but not from nonresponders, resulted in the expression by T cells of membrane binding sites reactive with anti-Tac monoclonal antibody, which specifies the human interleukin 2 (IL 2) receptor. UCHT1 -induced PBMC supernatants from nonresponders, but unexpectedly, also from responders, contained no measurable IL 2 activity. In keeping with this finding, anti-Tac monoclonal antibody failed to suppress UCHT1 -triggered [3H]thymidine incorporation into PBMC from responsive donors. By contrast, OKT3 treatment of PBMC from all donors led to the emergence of IL 2 receptors, and substantial IL 2 production, and the resultant DNA synthesis was inhibitable by anti-Tac antibody. These data indicate that the interaction of OKT3 and UCHT1 monoclonal antibodies with the same T cell structure leads to the induction of proliferation via two different mechanisms: one dependent on the availability of IL 2 (OKT3) and one independent on the production and processing of this lymphokine ( UCHT1 ). PBMC unresponsiveness to UCHT1 could therefore not be related to a dysfunction in IL 2 synthesis or IL 2 receptor display.  相似文献   

3.
The antigen receptor molecules on human T lymphocytes are noncovalently associated on the cell surface with the CD3 (T3) molecular complex. Perturbation of this complex with anti-CD3 monoclonal antibodies induces T cell activation. Previous studies have demonstrated that this process requires the participation of monocytes. In the present report, we demonstrate that purified, resting (G0 phase) T cells incubated with monoclonal anti-CD3 antibodies proliferate in response to purified interleukin 2 (IL 2), in a lymphokine dose-dependent fashion. Anti-CD3 antibody or IL 2 alone did not trigger cell division. The effect was specific for anti-CD3 antibodies because monoclonal antibodies reactive with other surface molecules (OKT4, OKT8, L368) were inactive. Furthermore, the same phenomenon was observed when anti-CD3 antibody Leu-4 (IgG1) was incubated with cells of individuals whose monocytes cannot process antibodies of the IgG1 subclass (Leu-4 nonresponders). In addition, both F(ab')2 and Fab fragments of anti-CD3 antibody OKT3 were also capable of rendering T cells receptive to the IL 2 growth signal. These data indicate that neither monocytes nor CD3 receptor cross-linking are required absolutely for resting T cell activation, provided that IL 2 is supplied exogenously. T lymphocytes treated with anti-CD3 antibodies proliferated in response to both purified mitogen-induced and recombinant IL 2. Antibodies to the IL 2 receptor (anti-Tac) inhibited the proliferation. Thus, the most likely mechanism for anti-CD3 antibody-mediated triggering is induction of IL 2 receptors.  相似文献   

4.
The induction of human T cell proliferation by antibodies that cross-link T3 antigens is dependent on functional interactions of anti-T3 antibodies with monocyte Fc receptors. In this report, we used a panel of anti-T3 antibodies of differing heavy chain isotype and a variety of other monoclonal antibodies to analyze several features of the antibody-mediated interactions between T cells and monocytes that are required for mitogenesis. Whereas three IgG2a anti-T3 antibodies were mitogenic for cells from all individuals, IgM and IgG2b anti-T3 antibodies did not induce T cell proliferation in any donor and could block the proliferative responses induced by other mitogenic anti-T3 antibodies. Dose-response analyses with four IgG1 anti-T3 antibodies demonstrated donor heterogeneity as reported by other investigators. However, in contrast to these previous reports, high concentrations of IgG1 anti-T3 antibodies were found to be mitogenic for all donors, indicating that this heterogeneity is based on relative rather than absolute defects in low responder monocytes. Cell mixing experiments in which monocytes from two different low responder donors were co-cultured with T cells and IgG1 anti-T3 antibodies did not identify any complementary defects, suggesting that the low responder phenotype results from a relatively restricted polymorphism. To assess the nature of the signals required for inducing T cell proliferation, nonmitogenic anti-T3 antibodies were co-cultured with other pan-T cell antibodies having the IgG2a isotype. The combination of signals from T3 antigen cross-linkage and those independently generated by other IgG2a antibodies bound to monocyte Fc receptors did not induce T cell proliferation. Hence, it appears that the T3 antigen or closely associated structures must be clustered at the monocyte membrane for mitogenesis. Finally, in competitive inhibition experiments, the isotype specificity of monocyte Fc receptors involved in the induction of T cell proliferation was examined. Two distinct Fc receptor sites, one that binds murine IgG2a and IgG3 antibodies and a second that binds murine IgG1 antibodies, were identified. Murine IgM or IgG2b did not appear to bind either of these receptor sites. Taken together, these data indicate that human monocytes have two distinct Fc receptor sites, which must specifically and directly interact with T cell-bound anti-T3 antibodies for mitogenesis.  相似文献   

5.
Within the first minute after incubation with the mouse anti-human T cell orthoclone monoclonal antibodies OKT3, OKT4, and OKT8, and in the absence of complement, human monocytes generate a burst of highly reactive oxygen metabolites as detected by a luminol-dependent photometric chemiluminescence (CL) assay. The kinetics of the CL responses to these antibodies are identical to that induced by OKM1, the monoclonal antibody to human monocytes and granulocytes. With regard to CL response intensities, OKM1 induces the maximal response and those of OKT3, OKT4, and OKT8 closely reflect the proportion of T cell subsets recognized by these antibodies in peripheral blood. This reaction is also observed when monoclonal antibodies against mouse Lyt surface determinants (Lyt-1 and Lyt-2) and Thy-1 antigen are tested against murine spleen cells. This murine model was further used to investigate the specificity and the mechanism of this reaction. It was demonstrated that the CL response is Lyt antigen specific, occurs upon addition of monoclonal IgG but not IgM antibodies, requires the concomitant presence of CL-producing cells (CLPC) (promonocytes, monocytes, macrophages, and/or granulocytes) and of fully differentiated T cells, and lastly, is mediated via a T cell opsonization process. Selective blockade of bone marrow cell Fc receptors (FcR II) with monoclonal anti-mouse FcR II antibody inhibits the CL response to IgG2b anti-T cell antibody-coated thymocytes and thus strongly suggests that the stimulation of CLPC oxidative metabolism in this model results from the binding of opsonized T cells to plasma membrane Fc receptors. These observations lend additional support to increasing evidence that the initiation of effector functions by monoclonal anti-T cell antibodies may be strictly dependent upon the presence of monocytes and/or macrophages.  相似文献   

6.
7.
IL 2 receptor induction on human T lymphocytes: role for IL 2 and monocytes   总被引:8,自引:0,他引:8  
In this report we studied the requirements for the activation and proliferation of highly purified human T lymphocytes. Purified T cells incubated for 3 days with PHA neither proliferate nor express IL 2 receptors as detected by FACS analysis with the use of anti-Tac antibodies. However, purified T cells incubated with Con A or anti-T3 moAb do not proliferate, albeit 30 to 35% T cells express Tac epitopes. The addition of IL 2, either natural purified or recombinant, resulted in both the appearance of Tac antigen and the proliferation of PHA-activated T cells. Much to our surprise, IL 2 did not induce proliferation of Tac-positive T cells activated by Con A or soluble anti-T3 unless monocytes were added to the cultures. These data suggested that two classes of IL 2 receptors might exist on T cells, one of which was not functionally involved in T cell proliferation. In keeping with this interpretation, we have been able to demonstrate, using a radiolabeled IL 2 binding assay, that anti-T3 moAb induced almost exclusively IL 2 receptors of low affinity (Kd = 30 to 70 X 10(-9) M) and that additional signals, provided by monocytes, are required for the acquisition of high affinity receptors. IL 2 itself can induce high affinity receptors on PHA-stimulated T cells but not on cells activated by Con A or anti-T3. In this latter case the physical presence of monocytes is required and cannot be substituted by IL 1, thus indicating a previously unreported role for monocytes. It is postulated that the contact of monocytes with T cells induces a switch from an inactive low affinity conformation of the IL 2 receptor to a functional high affinity one.  相似文献   

8.
A patient and his parents, deficient for lymphocyte function associated antigen-1 (LFA-1) and Mo1 (OKM1), were studied with respect to leukocyte surface marker expression and functional properties. The patient had a history of severe recurrent bacterial infections. Two siblings had already died of bacterial infections. The patient's granulocytes, monocytes, and lymphocytes expressed low but detectable amounts (less than or equal to 10%) of LFA-1 and Mo1. Intracellularly, LFA-1 and Mo1 (OKM1) were detectable and LFA-1 expression was enhanced on patient T cells stimulated with phytohemagglutinin. Granulocytes and monocytes of both the patient's parents expressed markedly decreased amounts of LFA-1 and Mo1. Lymphocytes of the mother expressed 40 to 60% of the amount of LFA-1 expressed on control lymphocytes, but his father's lymphocytes showed a normal LFA-1 expression. Granulocytes of the patient and of his deceased sister showed normal phagocytosis, but they had a dysfunction in the activation of the oxidative metabolism. Functional activities mediated by patient T cells were all normal. Moreover, all lymphocyte functions, including killer (K), natural killer (NK), cytotoxic T cell activity, helper activity for in vitro immunoglobulin (Ig) production by normal B cells, and PHA-induced proliferation were inhibitable by anti-LFA-1 monoclonal antibodies. K and NK activity mediated by patient leukocytes was 100-fold more sensitive to the inhibiting effect of anti-LFA-1 antibody than K and NK activity of normal donor leukocytes. Thus, although the amount of LFA-1 expressed was strongly reduced, it was still sufficient and required for the functional activity exhibited by patient T cells. The major functional defect observed with leukocytes of the patient and his father was an apparent B cell defect. B cells of the father and of the patient failed to produce Ig in the pokeweed mitogen (PWM)-driven system. The B cells of patient and of his father only produced Ig when cultured with T cells of the father, and not with normal donor T cells or T cells of the mother, in the presence of exogenous interleukin 2 (IL 2). In addition, the father's B cells produced Ig when cocultivated with patient T cells in the IL 2-driven system. This restriction of helper T cell activity is noteworthy because PWM- and IL 2-driven Ig synthesis by normal lymphocytes show no histocompatibility requirements between cooperating T and non-T cell populations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The effect of exogenous recombinant interleukin-2 (IL-2) or of antibody crosslinking on the activation of human T-cell subsets by IgG2a (OKT3/BMA030), IgG1 (Leu4 and UCHT1), or IgG2b (BMA031) anti-T3 antibodies (CD3) was investigated. In so-called nonresponder cultures as well as in monocyte-depleted cell cultures addition of IL-2 increased the CD3-induced activation and proliferation of T4 and T8 cell subsets. Relatively more T8 than T4 cells were stimulated by antibody binding and IL-2. Crosslinking the cell-bound CD3 antibodies by plastic bound goat anti-mouse antibodies activated both T-cell subsets optimally and increased the IL-2 production of the IgG1-CD3 stimulated cultures. The data show that T cells (T8 greater than T4) can be stimulated by CD3 antibody binding and IL-2, but that crosslinking the cell-bound CD3 antibodies is crucial for optimal T4 cell stimulation and IL-2 production.  相似文献   

10.
Activation of human peripheral blood T cells by the anti-CD3 antibody OKT3 has been shown to require not only cross-linking of CD3 molecules with multimeric binding of the Fc part of OKT3 to a solid support, but also a second accessory cell-provided signal. Accordingly, measurement of T cell activation in cultures of highly enriched T cells with solid-phase-bound OKT3 can be used to investigate whether other agents can replace accessory cells. In this study we examined the capacity of anti-CD5 monoclonal antibodies to provide the additional activation signal. Resting T cells were prepared by isolating E rosette-positive cells, by removing OKM1(+) and HLA-DR(+) cells by panning, and by subsequent treatment of the cells with L-leucine methyl ester to kill remaining monocytes. These T cells were unresponsive to phytohemagglutinin (PHA) or to solid-phase-bound OKT3. However, when cultured in the presence of an anti-CD5 monoclonal antibody (anti-Leu-1, OKT1, or anti-T1), a proliferative response to solid-phase-bound OKT3 (but not to soluble OKT3 or to PHA) was observed. Anti-CD5 had no functional effect by itself, but in association with solid-phase-bound OKT3 it enhanced IL 2 receptor expression and IL 2 production and it initiated T cell proliferation. T cell proliferation under these conditions could be inhibited by an IL 2 receptor blocking antibody anti-Tac, thus confirming that anti-CD5 provides the second signal for an IL 2-dependent pathway of T cell proliferation. Preincubation of T cells with anti-Leu-1 or OKT1 resulted in complete loss of CD5 antigenicity, and such CD5 modulation was sufficient to induce a proliferative response to solid-phase-bound OKT3. It is concluded that in T cell activation by solid-phase-bound OKT3 the necessary additional signal can be provided by modulation of the CD5 antigen with an anti-CD5 antibody. CD5 therefore appears to be a positive signal receptor on the T cell membrane, whose physiologic ligand still has to be determined.  相似文献   

11.
The mitogenic activity of anti-CD3 mouse monoclonal antibodies (mAb) in cultures of human peripheral blood mononuclear cells (PBMC) depends on the ability of the mAb to interact with CD3 molecules on the T cells, and with Fc receptors (FcR) on monocytes. Two types of FcR with distinct specificity for murine (m) IgG subclasses are involved: a 72-kDa receptor (FcRI) binds mIgG2a and a 40-kDa receptor (FcRII) binds mIgG1. In this study we examined the mitogenic activity of mIgG3 anti-CD3 mAb RIV9. In cultures of human PBMC, the mAb induced T cell proliferation and interleukin 2 production. We found that subjects, unresponsive to mIgG2a anti-CD3 (e.g., OKT3), were also RIV9 nonresponders. In contrast, nonresponders to mIgG1 anti-CD3 (e.g., anti-Leu4) had a normal response to RIV9. Our results therefore suggested that anti-CD3 mAb of the mIgG2a and mIgG3 subclass bind to the same monocytic FcR. Human monomeric IgG, which has been shown to bind to FcRI only, blocked T cell proliferation induced by mIgG2a and mIgG3 anti-CD3, but had no effect on T cell proliferation induced by mIgG1 anti-CD3. In contrast, a mAb (IV.3) to FcRII, which blocks ligand binding of the receptor, blocked the mitogenic activity of mIgG1 anti-CD3 antibodies, but had no effect on T cell proliferation induced by mIgG3 anti-CD3 or by mIgG2a anti-CD3. Binding of RIV9 to FcR of responder monocytes could be demonstrated in immunofluorescence. Monocytes from the RIV9 nonresponder subjects however were unable to bind the Fc portion of this antibody. The binding of fluorescein (FITC)-conjugated mIgG3 or FITC-conjugated mIgG2a to responder monocytes could be inhibited by human monomeric IgG and by mIgG2a and mIgG3, but not by the mAb to FcRII. The results demonstrate that mIgG3 binds to FcRI on human monocytes and that this binding is needed for the mitogenic activity of mIgG3 anti-CD3.  相似文献   

12.
T cell activation may be triggered either through the T3-Ti antigen receptor complex or via an alternative macrophage-independent pathway involving the 50KD T11 sheep erythrocyte-binding glycoprotein. Monoclonal antibodies anti-T11(2) and anti-T11(3), directed at distinct epitopes of the T11 molecule, trigger mature T cells to proliferate and express their functional programs, and induce expression of IL 2 receptors on both T3+ and T3- thymocytes. We now show that a non-mitogenic anti-T3 antibody blocks activation via the T11 pathway of not only peripheral blood T cells, but also T3+ thymocytes. Anti-T3 does not affect surface expression of T11 or the rapid augmentation of T11(3) expression after incubation of cells with anti-T11(2). However, anti-T3 inhibits generation of IL 2 receptors and production of IL 2 by T lineage cells cultured with anti-T11(2) plus anti-T11(3). In contrast, modulation of the T11 molecule by a non-mitogenic anti-T11 antibody does not inhibit activation of T cells by a mitogenic anti-T3 antibody. The ability of anti-T3 to block expression of IL 2 receptors on both thymocytes and mature T cells activated by the T11 pathway suggests that a regulatory interaction may be important during T cell ontogeny to provide a mechanism for inhibiting expansion of autoreactive clones.  相似文献   

13.
Unfractionated human peripheral blood mononuclear cells produce a small amount of interleukin 2 (IL 2) by stimulation with a monoclonal anti-T3 antibody (OKT3) in vitro. The IL 2 production could be greatly augmented by the addition of a phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate (TPA). In the presence of TPA, the T cell enriched fraction deprived of macrophages did not produce IL 2, but the T cells pulse-incubated with OKT3 and reconstituted with macrophages efficiently produced IL 2 in subsequent culture in the presence of TPA as did T cells reconstituted with OKT3-pulse-incubated macrophages. The stimulating effect of OKT3 in the presence of macrophages was inhibited dose-dependently by the addition of immunoglobulins, particularly by mouse IgG2a which is the same isotype as that of the OKT3 antibody, showing that it inhibits by blocking the binding of OKT3 to Fc receptors on macrophages. The same extent of IL 2 production was induced in T cells when paraformaldehyde-fixed macrophages were substituted for intact macrophages. Remarkable IL 2 production was also induced by OKT3 when latex beads coated with rabbit anti-mouse IgG2a antibody and TPA were added to the culture. It was confirmed that the production induced by these stimulations was due to an increase of IL 2 mRNA. These results show that effective signals for IL 2 production are generated by efficient crosslinking of T3 molecules which results from multi-interaction of T3 molecules on the T cell membrane and anti-T3 antibody molecules on macrophage membrane or on the surface of the latex particle.  相似文献   

14.
The autologous mixed lymphocyte reaction (MLR) is thought to be part of a regulatory role of T cells on B cell function. OKT4+, but not OKT8+, cells can proliferate in response to autologous non-T cells. Moreover, the OKT4+ cell population activated early in the course of autologous MLR functioned as inducer cells for the differentiation of B cells, whereas later in the response, the activated OKT4+ cells were particularly enriched in suppressor cells. A part of the autologous MLR appears to be an important pathway for the activation of feedback suppression mechanisms among cells contained within the OKT4+ populations. Patients with systemic lupus erythematosus (SLE) were studied with regard to the following OKT4+ cell functions in vitro after activation in the autologous MLR: a) proliferative response, and b) helper and suppressor activities for differentiation of B cells. A marked reduction in the proliferative response of OKT4+ cells was observed in SLE patients. SLE OKT4+ cells activated in the autologous MLR could function as helper cells but could not exert any suppressor activity. This OKT4+ cell abnormality was present regardless of the disease activity, and occurred in the absence of autoantibodies including anti-T cell antibodies. Instead, SLE anti-T cell antibodies could preferentially eliminate cells bearing the OKT8+ phenotype characteristic of suppressor cells in populations of normal T cells. These results suggest that the defect in the suppressor circuits among OKT4+ cell populations is intrinsic to SLE lymphocytes and that the OKT8+ suppressor T cell defect is caused by antibodies produced by the B cells of SLE patients.  相似文献   

15.
The human monocyte line, U937, derived from an individual with histiocytic lymphoma, undergoes morphological and functional changes when incubated with medium conditioned by lectin-stimulated cloned human T lymphocytes. Using monoclonal antibodies and flow cytometry, we therefore analyzed alterations in surface components that might accompany these morphological changes, in comparison with components present on normal blood monocytes. The U937 cells possess three surface antigens in common with blood monocytes, detected with OKM1, 4F2, and anti-monocyte.2 (the last monocyte specific). DR antigen was not detectable on U937 cells with three anti-DR framework antibodies but was detected on blood monocytes. Unexpectedly, OKT4, a monoclonal antibody to T4 antigen previously believed to be restricted to helper T lymphocytes, also reacted with U937 cells. Six monoclonal antibodies to other epitopes on T4 also reacted with U937 cells. None of these could be inhibited by blocking of Fc receptors. T4 with its various epitopes were also expressed on normal human blood monocytes. Other lymphocyte surface markers (T3, T8, T6) and fibronectin were not detectable on U937 cells or monocytes. An individual, whose lymphocytes lacked the epitope detected with OKT4 but had epitopes detected with OKT4 A, B, C, and D, had monocytes with identical reactivity, evidence that the T4 on monocytes and lymphocytes are products of the same structural gene. Stimulation of U937 cells for 24 hours with supernatants from Con A-stimulated T lymphocyte clones caused an increase in expression of OKM1 and Fc receptor activity and a decrease in expression of T4, consistent with a more mature phenotype of blood monocytes. Although the function of the T4 molecule is unknown, it is notable that it is displayed by two cells of distinct lineage which interact in the response to soluble antigens.  相似文献   

16.
CD5 is a 67-kDa antigen that is expressed on the membrane of the majority of human T cells, and on a subset of B cells. Previous studies have demonstrated that anti-CD5 monoclonal antibodies (mAb) can provide a helper signal for T cell activation through the TCR/CD3 complex. We now demonstrate that when CD5 is crosslinked by immobilized anti-CD5 mAb in the absence of other activating stimuli, the T cells proliferate in response to recombinant interleukin 2 (rIL2) (but not to rIL4). Four different anti-CD5 mAb (anti-Leu1, 10.2, anti-T1, and OKT1) had a similar effect. IL2 responsiveness could be induced with immobilized anti-CD5 mAb in cultures of purified T cells, but was enhanced by the addition of monocytes, by monocyte culture supernatant, or by the combination of IL1 and IL6. Staining with an anti-IL2 receptor (p55) mAb demonstrated expression of IL2 receptors on about 10% of the anti-CD5-stimulated T cells. Both virgin (CD45RA+) and memory (CD45RO+) T cells were responsive. Our data provide further evidence for the involvement of CD5 in T cell activation.  相似文献   

17.
The requirements for activation of human peripheral blood T cells by the mitogenic monoclonal antibody OKT3 were examined. OKT3 binds to a T cell molecule, T3, associated with the T cell antigen receptor and involved in T cell activation. Activation of T cells by OKT3 requires signals provided by accessory cells and is IL 2 dependent. In the presence of accessory cells, OKT3 induces loss of T3 molecules from the cell surface, production of IL 2, expression of IL 2 receptors, and proliferation. Modulation of T3 molecules by OKT3 can be induced in the absence of accessory cells with anti-mouse IgG. These T cells, however, are not induced to express IL 2 receptors or secrete IL 2. The addition of IL 1 induces expression of IL 2 receptors, but does not induce IL 2 secretion or proliferation. Thus, peripheral blood T cells appear to have different requirements for activation compared with antigen-specific T cell clones that can be induced to produce IL 2 when stimulated with OKT3 and IL 1. Expression of IL 2 receptors does not require modulation of T3 molecules, because the binding of OKT3 to T cells in the presence of IL 1 alone is sufficient to induce IL 2 receptor expression. The results suggest that IL 2 secretion depends on cross-linking and modulation of T3 molecules, and additional, as yet undefined, accessory cell signals. The expression of IL 2 receptors and proliferation of T cells can be induced in the absence of these signals when exogenous IL 2 is provided.  相似文献   

18.
Human monocytes and U937 cells bear two distinct Fc receptors for IgG   总被引:33,自引:0,他引:33  
Several convergent lines of evidence have led us to propose that human monocytes and the related cell line U937 possess a second class of IgG Fc receptor (FcR) in addition to the 72-Kd high affinity FcR previously described. IgG affinity purification from detergent lysates of surface radiolabeled U937 cells has yielded both a 40-Kd IgG-binding membrane protein (p40) and the 72-Kd FcR protein. By the same procedure, only the p40 was isolated from the erythroblast cell line K562 and from the B cell lines, Daudi and Raji. Serologic cross-reactivity between the 40-Kd FcR on U937 and Daudi cells was demonstrated using a goat anti-FcR antiserum. A murine (m) monoclonal antibody, raised against the FcR of K562 cells, precipitated the 40-Kd FcR from lysates of U937 and K562 cells but not from Daudi or Raji cells. This antibody, referred to as anti-p40 (IV.3), selectively inhibited the binding of murine IgG1-coated erythrocytes to U937 cells, whereas monomeric human IgG selectively inhibited binding of human anti-Rh(D)-coated erythrocytes to U937 cells. Both Daudi and U937 cells mediated mIgG1 anti-T3 (Leu-4)-induced stimulation of T lymphocytes. In contrast, mIgG2a anti-T3 (OKT3)-induced stimulation was supported effectively by U937 cells but only modestly by Daudi cells. Intact IgG or Fab fragments of anti-p40 (IV.3) blocked mIgG1 anti-T3 (Leu-4) stimulation but not mIgG2a anti-T3 (OKT3) stimulation of T cells; monomeric human IgG blocked only OKT3-induced stimulation. The simplest interpretation of these results is that human monocytes and U937 cells bear two classes of IgG FcR, one of 72 Kd and the other, as described above, of 40 Kd. We propose that the 72-Kd FcR mediates rosette formation with red cells coated by human anti-Rh IgG as well as T cell stimulation by mIgG2a anti-T3 (OKT3) and that the 40-Kd FcR mediates rosette formation with erythrocytes bearing mIgG1 as well as T cell stimulation by mIgG1 anti-T3 (Leu-4). Furthermore, we suggest that these two FcR are the human homologues of the murine macrophage FcRI (binding mIgG2a) and FcRII (binding mIgG2b/1).  相似文献   

19.
OKT3 monoclonal antibody, a human T cell mitogen, induced interferon production by cultured mononuclear cells at 10(-11) M concentrations. Interferon was secreted only under conditions wherein OKT3 was mitogenic, and production was correlated with cell proliferation. Thus, like mitogenesis, interferon secretion reached a peak 3 days after OKT3 stimulation, was inhibited by a factor(s) in human serum, and required 1000 times higher concentrations of Fab and F(ab')2 fragments of OKT3 for induction. The interferon was most likely of "gamma" (immune) type, because pH 2 and 56 degrees C treatments denatured it, whereas anti-alpha or -beta interferon antibodies did not. Mononuclear cells were fractionated into subpopulations that contained OKT4+ cells (helper/inducer T cells), OKT8+ cells (cytotoxic/suppressor T cells), and OKM1+ cells (monocytes) by combining sheep red blood cell rosetting and complement-mediated lysis using monoclonal antibodies against specific cell types. Both OKT4+ and OKT8+ cells proliferated upon OKT3 stimulation with the absolute requirement of OKM1+ cells. However, OKT4+ cells plus OKM1+ cells were necessary for the secretion of interferon. Studies with selective pretreatments with mitomycin C suggested that gamma-interferon was secreted by the OKT4+ cells and that the OKM1+ population subserved an accessory function.  相似文献   

20.
Most mature human T lymphocytes express both the multichain T3 (CD3)/Ti T cell receptor for antigen (TCR), and the biochemically distinct 55-kDa T11 (CD2) glycoprotein. Stimulating the T11 molecule causes profound T cell proliferation and functional activation in vitro, but the relationship of T11-mediated activation to antigenic stimulation of T lymphocytes in vivo remains unknown. We now present evidence that T11 function is directly linked to TCR components in T3/Ti+ T11+ human T cells. First, we found that stimulating peripheral blood T cells with the mitogenic combination of anti-T11(2) cells with the mitogenic combination of anti-T11(2) plus anti-T11(3) monoclonal antibodies caused the phosphorylation of TCR T3 chains. The predominance of T3-gamma-phosphorylation that occurred in anti-T11(2) plus anti-T11(3)-treated T cells is similar to the pattern previously observed in antigen-stimulated T cell clones. Second, T11 function depended upon concurrent cell-surface expression of the TCR. Thus, when peripheral blood T cells were deprived of cell surface T3/Ti by anti-T3 modulation, anti-T11(2) plus anti-T11(3)-induced mitogenesis and transmembrane signal generation in the form of calcium mobilization were inhibited. The mechanism of TCR-T11 interdependence was investigated in a series of TCR-deficient variants of a T cell lymphoblastoid cell line. T3/Ti negative variants expressed cell surface T11, but anti-T11(2) plus anti-T11(3) failed to cause detectable calcium mobilization. The TCR-deficient variants also failed to express T11(3) activation epitopes after incubation with anti-T11(2) antibodies, suggesting that T11(3) expression is an essential and TCR-dependent intermediate in the T11 activation mechanism in these cells. Taken together, our results suggest that T11 function depends upon cell-surface expression of TCR in many T3/Ti+ T11+ T lymphocytes, and T11-mediated activation is intimately interconnected with TCR activation mechanisms. A model in which stimulating signals delivered via T11 may be a part of antigenic activation of T lymphocytes is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号