首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In DNA site-specific recombination catalysed by tyrosine recombinases, two pairs of DNA strands are sequentially exchanged between separate duplexes and the mechanisms that confer directionality to this theoretically reversible reaction remain unclear. The tyrosine recombinase TnpI acts at the internal resolution site (IRS) of the transposon Tn4430 to resolve intermolecular transposition products. Recombination is catalysed at the IRS core sites (IR1–IR2) and is regulated by adjacent TnpI-binding motifs (DR1 and DR2). These are dispensable accessory sequences that confer resolution selectivity to the reaction by stimulating synapsis between directly repeated IRSs. Here, we show that formation of the DR1–DR2-containing synapse imposes a specific order of activation of the TnpI catalytic subunits in the complex so that the IR1-bound subunits catalyse the first strand exchange and the IR2-bound subunits the second strand exchange. This ordered pathway was demonstrated for a complete recombination reaction using a TnpI catalytic mutant (TnpI-H234L) partially defective in DNA rejoining. The presence of the DR1- and DR2-bound TnpI subunits was also found to stabilize transient recombination intermediates, further displacing the reaction equilibrium towards product formation. Implication of TnpI/IRS accessory elements in the initial architecture of the synapse and subsequent conformational changes taking place during strand exchange is discussed.  相似文献   

2.
Xer site-specific recombination functions in the stable maintenance of circular replicons in Escherichia coli. Each of two related recombinase proteins, XerC and XerD, cleaves a specific pair of DNA strands, exchanges them, and rejoins them to the partner DNA molecule during a complete recombination reaction. The rejoining activity of recombinase XerC has been analyzed using isolated covalent XerC-DNA complexes resulting from DNA cleavage reactions upon Holliday junction substrates. These covalent protein-DNA complexes are competent in the rejoining reaction, demonstrating that covalently bound XerC can catalyze strand rejoining in the absence of other proteins. This contrasts with a recombinase-mediated cleavage reaction, which requires the presence of both recombinases, the recombinase mediating catalysis at any given time requiring activation by the partner recombinase. In a recombining nucleoprotein complex, both cleavage and rejoining can occur prior to dissociation of the complex.  相似文献   

3.
The establishment of erythropoietin (EPO) producing Chinese hamster ovary (CHO) cell lines was conducted using Cre-mediated cassette exchange. The characterization of site-specific recombination mediated by Cre-recombinase during the cell line development was also performed. A total of six parental clones, which had various green fluorescence levels ranging from high to low and containing a single copy of insertion vector (pEGFP-m2), were screened. The EPO targeting vector (pIC-m2-EPO) was targeted into the 6 parental clones by Cre-mediated cassette exchange. Correctly targeted clones were obtained from 4 out of 6 parental clones with 0∼15% of targeting efficiencies. Moreover, there was a positive relationship (R2 = 0.87) between fluorescence levels of the parental clones before Cre-mediated cassette exchange and specific EPO productivities (q EPO ) of the correctly targeted clones after Cre-mediated cassette exchange. Therefore, it was verified that the chromosomal loci’s characteristic gene expression level was not modified even after cassette exchange mediated by Cre recombinase during the development of EPO producing CHO cell lines. This finding implies that the reproducible development of CHO cell lines largely producing a desired protein is expected to be achieved by Cre-mediated cassette exchange.  相似文献   

4.
Induced DNA recombination by Cre recombinase protein transduction   总被引:1,自引:0,他引:1  
Cre is a DNA recombinase that recognizes 34 base-pair loxP sites of recombination. We have developed a cell-permeable Cre recombinase, TATCre, that is capable of mediating deletion of loxP-flanked targets by simply adding TATCre to cell cultures. Thus, TATCre allows efficient induced DNA recombination without the use of a Cre recombinase transgene or any other genetic material and should prove useful for the genetic manipulation of a wide variety of cell types that have been engineered to possess loxP sites.  相似文献   

5.
K G Golic  S Lindquist 《Cell》1989,59(3):499-509
We have transferred the site-specific recombination system of the yeast 2 micron plasmid, the FLP recombinase and its recombination targets (FRTs), into the genome of Drosophila. Flies were transformed with an FLP gene under the control of hsp70 regulatory sequences and with a white gene flanked by FRTs. The heat-induced recombinase catalyzes recombination between FRTs, causing loss of white (seen somatically as white patches in the eye) and, less frequently, gain of white (seen as dark-red patches). Loss and gain frequencies vary with the severity of the heat shock, and patterns of mosaicism vary with the developmental stage at which the heat shock is applied. The recombinase is also active in the germline, producing white-eyed and dark-red-eyed progeny.  相似文献   

6.
Excision of a DNA segment can occur in Arabidopsis thaliana by reciprocal recombination between two specific recombination sites (RSs) when the recombinase gene (R) from Zygosaccharomyces rouxii is expressed in the plant. To monitor recombination events, we generated several lines of transgenic Arabidopsis plants that carried a cryptic β-glucuronidase (GUS) reporter gene which was designed in such a way that expression of the reporter gene could be induced by R gene-mediated recombination. We also made several transgenic lines with an R gene linked to the 35S promoter of cauliflower mosaic virus. Each transgenic line carrying the cryptic reporter gene was crossed with each line carrying the R gene. Activity of GUS in F1 and F2 progeny was examined histochemically and recombination between two RSs was analyzed by Southern blotting and the polymerase chain reaction. In seedlings and plantlets of F1 progeny and most of the F2 progeny, a variety of patterns of activity of GUS, including sectorial chimerism in leaves, was observed. A small percentage of F2 individuals exhibited GUS activity in the entire plant. This pattern of expression was ascribed to germinal recombination in the F1 generation on the basis of an analysis of DNA structure by Southern blotting. These results indicate that R gene-mediated recombination can be induced in both somatic and germ cells of A. thaliana by cross-pollination of parental transgenic lines.  相似文献   

7.
The 2 mu plasmid of the yeast Saccharomyces cerevisiae encodes a site-specific recombination system consisting of plasmid-encoded FLP protein and two recombination sites on the plasmid. The recombination site possesses a specific orientation, which is determined by an asymmetric 8-base pair spacer sequence separating two 13-base pair inverted repeats. The outcome or directionality of site-specific recombination is defined by the alignment of two sites in the same orientation during the reaction. Sites containing point mutations or 1-base pair insertions or deletions within the spacer generally undergo recombination with unaltered sites at reduced levels. In contrast, recombination between the two identical mutant sites (where homology is restored) proceeds efficiently in all cases. Sites containing spacer sequences of 10 base pairs or more are nonfunctional under all conditions. A recombination site in which 5 base pairs are changed to yield an entirely symmetrical spacer sequence again recombines efficiently, but only with an identical site. This reaction, in addition, produces a variety of new products which can only result from random alignment of the two sites undergoing recombination, i.e. the reaction no longer exhibits directionality. These and other results demonstrate that both the efficiency and directionality of site-specific recombination is dependent upon homology between spacer sequences of the two recombining sites. This further implies that critical DNA-DNA interactions between the spacer region of the two sites involved in the reaction occur at some stage during site-specific recombination in this system. The specific spacer sequence itself appears to be unimportant as long as homology is maintained; thus, these sequences are probably not involved in recognition by FLP protein.  相似文献   

8.
9.
Summary A mutant Gin recombinase of the phage Mu DNA inversion system was successfully expressed in Arabidopsis thaliana and tobacco protoplasts. Site-specific recombination was monitored both physically and biologically with the help of a recombination assay system in which expression of a -glucuronidase (gus) gene requires Gin-mediated recombination. We demonstrate that the wild-type Gin protein is not able to promote recombination in plant protoplasts, presumably because plant cells do not contain a protein that can substitute for the Escherichia coli FIS protein needed for full activity of wild-type Gin in E. coli. A FIS-independent Gin mutant protein on the other hand was efficient in promoting recombination on recombination substrates introduced transiently and on substrates stably integrated into the plant genome. We discuss the various advantages this system can provide for genetic manipulation of plant cells.  相似文献   

10.
Ip SC  Bregu M  Barre FX  Sherratt DJ 《The EMBO journal》2003,22(23):6399-6407
DNA replication results in interlinked (catenated) sister duplex molecules as a consequence of the intertwined helices that comprise duplex DNA. DNA topoisomerases play key roles in decatenation. We demonstrate a novel, efficient and directional decatenation process in vitro, which uses the combination of the Escherichia coli XerCD site-specific recombination system and a protein, FtsK, which facilitates simple synapsis of dif recombination sites during its translocation along DNA. We propose that the FtsK-XerCD recombination machinery, which converts chromosomal dimers to monomers, may also function in vivo in removing the final catenation links remaining upon completion of DNA replication.  相似文献   

11.
We developed a novel system for gene activation in plastids that uses the CRE/loxP site-specific recombination system to create a translatable reading frame by excision of a blocking sequence. To test the system, we introduced an inactive gfp* gene into the tobacco plastid genome downstream of the selectable spectinomcyin resistance (aadA) marker gene. The aadA gene is the blocking sequence, and is flanked by directly oriented loxP sites for excision by the CRE. In the non-activated state, gfp* is transcribed from the aadA promoter, but the mRNA is not translated due to the lack of an AUG translation initiation codon. Green Fluorescent Protein (GFP) expression is activated by excision of the aadA coding segment to link up the gfp* coding region with the translation initiation codon of aadA. Tobacco plants that carry the inactive gfp* gene do not contain detectable levels of GFP. However, activation of gfp* resulted in GFP accumulation, proving the utility of CRE-induced protein expression in tobacco chloroplasts. The gene activation system described here will be useful to probe plastid gene function and for the production of recombinant proteins in chloroplasts.  相似文献   

12.
Bacteriophage P1 encodes a site-specific recombination system that consists of a site (loxP) at which recombination occurs and a gene, cre, whose protein product is essential for recombination. The loxP-Cre recombination event can be studied in greater detail by the use of an in vitro system that efficiently carries out recombination between two loxP sites. This paper presents a purification and characterization of the Cre protein (Mr = 35,000), which is the only protein required for the in vitro reaction. No high energy cofactors are needed. The purified Cre protein binds to loxP-containing DNA and makes complexes that are resistant to heparin. Cre efficiently converts 70% of the DNA substrate to products and appears to act stoichiometrically. The action of Cre on a loxP2 supercoiled substrate containing two directly repeated loxP sites results in product molecules that are topologically unlinked. Several models to account for the ability of Cre to produce free supercoiled products are discussed.  相似文献   

13.
The Cre/lox site-specific recombination system was used to activate a transgene in a tissue-specific manner. Cre-mediated activation of a beta-glucuronidase marker gene, by removal of a lox-bounded blocking fragment, allowed the visualization of the activation process. By using seed-specific promoters, the timing and efficiency of gene activation could be followed within the developing tobacco (Nicotiana tabacum) embryo. To serve as a basis for analyzing gene expression after-Cre-mediated activation, the timing and patterns of expression of the promoters of the genes encoding French bean (Phaseolus vulgaris) beta-phaseolin and the alpha' subunit of soybean (Glycine max) beta-conglycinin, as well as the cauliflower mosaic virus 35S promoter, were studied in developing transgenic tobacco embryos using the same visual marker. These seed-specific promoters were expressed earlier than anticipated. The 35S promoter was expressed earlier than the seed-specific promoters, but not in globular-stage embryos. Cre-mediated gene activation occurred approximately 1 d after promoter activation, based on developmental staging, and spread progressively throughout the embryo. The timing of gene activation was varied by altering Cre expression. Efficient Cre expression ultimately directed gene activation throughout the model tissue, whereas inefficient Cre expression resulted in mosaic tissue. Limited gene activation provides a system for cell lineage and developmental analyses.  相似文献   

14.
The Tn3-encoded resolvase protein promotes a site-specific recombination reaction between two directly repeated copies of the recombination site res. Several inhibitors that block this event in vitro have been isolated. In this study four of these inhibitors were tested on various steps in the recombination reaction. Two inhibitors. A9387 and A1062, inhibit resolvase binding to the res site. Further, DNase I footprinting revealed that at certain concentrations of A9387 and A1062, resolvase was preferentially bound to site I of res, the site containing the recombinational crossover point. The two other inhibitors, A20812 and A21960, do not affect resolvase binding and bending of the DNA but inhibit synapse formation between resolvase and two directly repeated res sites.  相似文献   

15.
Previous reports have demonstrated that new Cre recombinase specificities can be developed for symmetrically designed lox mutants through directed evolution. The development of Cre variants that allow the recombination of true asymmetric lox mutant sites has not yet been addressed, however. In the present study, we demonstrate that a mixture of two different site-specific Cre recombinase molecules (wt Cre and a mutant Cre) catalyzes efficient recombination between two asymmetric lox sites in vitro, presumably via formation of a functionally active heterotetrameric complex. The results may broaden the application of site-specific recombination in basic and applied research, including the custom-design of recombinases for natural, asymmetric, and lox-related target sequences present in the genome. Future applications may potentially include genomic manipulations, for example, site-specific integrations, deletions or substitutions within precise regions of the genomes of mammalians and other organisms.  相似文献   

16.
Brian Sauer  Nancy Henderson 《Gene》1988,70(2):331-341
The efficiency with which linearized plasmid DNA can transform competent Escherichia coli can be significantly increased by use of the Cre-lox site-specific recombination system of phage P1. Linear plasmid molecules containing directly repeated loxP sites (lox2 plasmids) are cyclized in Cre+ E. coli strains after introduction either by transformation or by mini-Mu transduction, Exonuclease V activity of the RecBC enzyme inhibits efficient cyclization of linearized lox2 plasmids after transformation. By use of E. coli mutants which lack exonuclease V activity, Cre-mediated cyclization results in transformation efficiencies for linearized lox2 plasmids identical to those obtained with covalently closed circular plasmid DNA. Moreover, Cre+ E. coli recBC strains allow the efficient recovery of lox2 plasmids integrated within large linear DNA molecules such as the 150-kb genome of pseudorabies virus.  相似文献   

17.
Site-specific DNA invertible elements often control the production of bacterial surface proteins that are subject to phase variation (ON/OFF switching). Inversion of the DNA element occurs as a result of the reciprocal exchange of DNA catalysed by a specialized enzyme (recombinase) that acts at specific sites. By continually switching the orientation of the invertible element in the chromosome, and consequently the production of the variable protein(s), the cell population remains continually responsive to environmental change such as immunological challenge. In addition to phase-variable surface proteins, Mycoplasma pulmonis has a family of phase-variable restriction-modification enzymes. We report here that a single recombinase in M. pulmonis, HvsR, catalyses independent DNA inversions at non-homologous loci, causing variations in surface lipoproteins and in the DNA recognition sequence specificity of restriction enzymes. Thus, HvsR is a site-specific DNA recombinase with dual substrate specificity.  相似文献   

18.
Excision of a DNA segment can occur in Arabidopsis thaliana by reciprocal recombination between two specific recombination sites (RSs) when the recombinase gene (R) from Zygosaccharomyces rouxii is expressed in the plant. To monitor recombination events, we generated several lines of transgenic Arabidopsis plants that carried a cryptic -glucuronidase (GUS) reporter gene which was designed in such a way that expression of the reporter gene could be induced by R gene-mediated recombination. We also made several transgenic lines with an R gene linked to the 35S promoter of cauliflower mosaic virus. Each transgenic line carrying the cryptic reporter gene was crossed with each line carrying the R gene. Activity of GUS in F1 and F2 progeny was examined histochemically and recombination between two RSs was analyzed by Southern blotting and the polymerase chain reaction. In seedlings and plantlets of F1 progeny and most of the F2 progeny, a variety of patterns of activity of GUS, including sectorial chimerism in leaves, was observed. A small percentage of F2 individuals exhibited GUS activity in the entire plant. This pattern of expression was ascribed to germinal recombination in the F1 generation on the basis of an analysis of DNA structure by Southern blotting. These results indicate that R gene-mediated recombination can be induced in both somatic and germ cells of A. thaliana by cross-pollination of parental transgenic lines.  相似文献   

19.
We have developed a strategy for producing single copy transgenic mouse lines using Cre-loxP site specific recombination. The method is based on transient expression of the recombinase after injection of in vitro transcribed mRNA into the cytoplasm of fertilised eggs containing multiple copies of the transgene. The success rate of the recombination event is 100% (15 out of 15).  相似文献   

20.
Insect transgenesis by site-specific recombination   总被引:1,自引:0,他引:1  
Wimmer EA 《Nature methods》2005,2(8):580-582
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号