首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Apoptosis is essential for clearance of potentially injurious inflammatory cells and subsequent efficient resolution of inflammation. Here we report that human neutrophils contain functionally active cyclin-dependent kinases (CDKs), and that structurally diverse CDK inhibitors induce caspase-dependent apoptosis and override powerful anti-apoptosis signals from survival factors such as granulocyte-macrophage colony-stimulating factor (GM-CSF). We show that the CDK inhibitor R-roscovitine (Seliciclib or CYC202) markedly enhances resolution of established neutrophil-dependent inflammation in carrageenan-elicited acute pleurisy, bleomycin-induced lung injury, and passively induced arthritis in mice. In the pleurisy model, the caspase inhibitor zVAD-fmk prevents R-roscovitine-enhanced resolution of inflammation, indicating that this CDK inhibitor augments inflammatory cell apoptosis. We also provide evidence that R-roscovitine promotes apoptosis by reducing concentrations of the anti-apoptotic protein Mcl-1. Thus, CDK inhibitors enhance the resolution of established inflammation by promoting apoptosis of inflammatory cells, thereby demonstrating a hitherto unrecognized potential for the treatment of inflammatory disorders.  相似文献   

2.
Paradoxically, oncogenes and growth factors can induce proliferation and promote cellular survival but can also cause apoptosis and growth arrest. What determines whether a cell decides to proliferate, arrest growth, or die? Mitogens and activators of mitogen-activated pathways initiate the simultaneous production of proliferative (cyclins) and anti-proliferative (CDK inhibitors such as p21WAF1/CIP1) signals. Quiescent cells may respond to these signals by proliferation whereas proliferating cells may respond by growth arrest. Although pro-apoptotic oncoproteins, which constitute the downstream pathway (cyclin D, E2F, c-myc) directly induce proliferation, the activation of the upstream steps (growth factor receptors, Ras, cytoplasmic kinases) is required to prevent apoptosis. BioEssays 21:704–709, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

3.
Roscovitine (Rosc) and purvalanol (Pur) are competitive inhibitors of cyclin-dependent kinases (CDKs) by targeting their ATP-binding pockets. Both drugs are shown to be effective to decrease cell viability and dysregulate the ratio of pro- and anti-apoptotic Bcl-2 family members, which finally led to apoptotic cell death in different cancer cell lines in vitro. It was well established that Bcl-2 family members have distinct roles in the regulation of other cellular processes such as endoplasmic reticulum (ER) stress. The induction of ER stress has been shown to play critical role in cell death/survival decision via autophagy or apoptosis. In this study, our aim was to investigate the molecular targets of CDK inhibitors on ER stress mechanism related to distinct cell death types in time-dependent manner in HeLa cervical cancer cells. Our results showed that Rosc and Pur decreased the cell viability, cell growth and colony formation, induced ER stress-mediated autophagy or apoptosis in time-dependent manner. Thus, we conclude that exposure of cells to CDK inhibitors induces unfolded protein response and ER stress leading to autophagy and apoptosis processes in HeLa cervical cancer cells.  相似文献   

4.
Multipotent mesenchymal stem/stromal cells (MSCs) are capable of differentiating into a variety of cell types from different germ layers. However, the molecular and biochemical mechanisms underlying the transdifferentiation of MSCs into specific cell types still need to be elucidated. In this study, we unexpectedly found that treatment of human adipose- and bone marrow-derived MSCs with cyclin-dependent kinase (CDK) inhibitor, in particular CDK4 inhibitor, selectively led to transdifferentiation into neural cells with a high frequency. Specifically, targeted inhibition of CDK4 expression using recombinant adenovial shRNA induced the neural transdifferentiation of human MSCs. However, the inhibition of CDK4 activity attenuated the syngenic differentiation of human adipose-derived MSCs. Importantly, the forced regulation of CDK4 activity showed reciprocal reversibility between neural differentiation and dedifferentiation of human MSCs. Together, these results provide novel molecular evidence underlying the neural transdifferentiation of human MSCs; in addition, CDK4 signaling appears to act as a molecular switch from syngenic differentiation to neural transdifferentiation of human MSCs.  相似文献   

5.
6.
Different hormonal therapies are used for estrogen receptor positive (ER+) breast cancers, being the third-generation of aromatase inhibitors (AIs), an effective alternative to the classical tamoxifen. AIs inhibit the enzyme aromatase, which is responsible for catalyzing the conversion of androgens to estrogens. In this study, it was evaluated the effects of several steroidal AIs, namely 3β-hydroxyandrost-4-en-17-one (1), androst-4-en-17-one (12), 4α,5α-epoxyandrostan-17-one (13a) and 5α-androst-2-en-17-one (16), on cell proliferation, cell cycle progression and cell death in an ER+ aromatase-overexpressing human breast cancer cell line (MCF-7aro). All AIs induced a decrease in cell proliferation and these anti-proliferative effects were due to a disruption in cell cycle progression and cell death, by apoptosis. AIs 1 and 16 caused cell cycle arrest in G0/G1, while AIs 12 and 13a induced an arrest in G2/M. Moreover, it was observed that these AIs induced apoptosis by different pathways, since AIs 1, 12 and 13a activated the apoptotic mitochondrial pathway, while AI 16 induced apoptosis through activation of caspase-8. These results are important for the elucidation of the cellular effects of steroidal AIs on breast cancer cells and will also highlight the importance of AIs as inducers of apoptosis in hormone-dependent breast cancers.  相似文献   

7.
Human Polo-like kinase 3 (Plk3, previously termed Prk or Fnk) is involved in regulation of cell cycle progression through the M phase (B. Ouyang, H. Pan, L. Lu, J. Li, P. Stambrook, B. Li, and W. Dai, J. Biol. Chem. 272:28646-28651, 1997). Here we report that in most interphase cells endogenous Plk3 was predominantly localized around the nuclear membrane. Double labeling with Plk3 and gamma-tubulin, the latter a major component of pericentriole materials, revealed that Plk3 was closely associated with centrosomes and that its localization to centrosomes was dependent on the integrity of microtubules. Throughout mitosis, Plk3 appeared to be localized to mitotic apparatus such as spindle poles and mitotic spindles. During telophase, a significant amount of Plk3 was also detected in the midbody. Ectopic expression of Plk3 mutants dramatically changed cell morphology primarily due to their effects on microtubule dynamics. Expression of a constitutively active Plk3 (Plk3-A) resulted in rapid cell shrinkage, which led to formation of cells with an elongated, unsevered, and taxol-sensitive midbody. In contrast, cells expressing a kinase-defective Plk3 (Plk3(K52R)) mutant exhibited extended, deformed cytoplasmic structures, the phenotype of which was somewhat refractory to taxol treatment. Expression of both Plk3-A and Plk3(K52R) induced apparent G(2)/M arrest followed by apoptosis, although the kinase-defective mutant was less effective. Taken together, our studies strongly suggest that Plk3 plays an important role in the regulation of microtubule dynamics and centrosomal function in the cell and that deregulated expression of Plk3 results in cell cycle arrest and apoptosis.  相似文献   

8.
MicroRNA-567 (miR-567) plays a decisive role in cancers whereas its role in non-small cell lung cancer (NSCLC) is still unexplored. This study was therefore planned to explore the regulatory function of miR-567 in A549 NSCLC cells and investigate its possible molecular mechanism that may help in NSCLC treatment. In the current study, miR-567 expression was examined by quantitative real time-polymerase chain reaction (qRT-PCR) in different NSCLC cell lines in addition to normal cell line. A549 NSCLC cells were transfected by miR-567 mimic, miR-567 inhibitor, and negative control siRNA. Cell proliferation was evaluated by MTT and 5-bromo-2′deoxyuridine assays. Cell cycle distribution and apoptosis were studied by flow cytometry. Bioinformatics analysis programs were used to expect the putative target of miR-567. The expression of cyclin-dependent kinase 8 (CDK8) gene at mRNA and protein levels were evaluated by using qRT-PCR and western blotting. Our results found that miR-567 expressions decreased in all the studied NSCLC cells as compared to the normal cell line. A549 cell proliferation was suppressed by miR-567 upregulation while cell apoptosis was promoted. Also, miR-567 upregulation induced cell cycle arrest at sub-G1 and S phases. CDK8 was expected as a target gene of miR-567. MiR-567 upregulation decreased CDK8 mRNA and protein expression while the downregulation of miR-567 increased CDK8 gene expression. These findings revealed that miR-567 may be a tumor suppressor in A549 NSCLC cells through regulating CDK8 gene expression and may serve as a novel therapeutic target for NSCLC treatment.  相似文献   

9.
A zebrafish spleen cell line, ZSSJ, was developed and its growth arrest by gamma radiation determined and its capacity to stimulate the proliferation of the zebrafish blastula cell line, ZEB2J, measured. ZSSJ was initiated by explant outgrowth, grew adherent with mainly an epithelial-like morphology, and stained strongly for alkaline phosphatase. ZSSJ was not only grown in L-15 with 15% fetal bovine serum at 26°C to 28°°C but also grew at room temperature. Cultures of ZSSJ have undergone approximately 40 population doublings, had few cells staining for b-galactosidase activity, which is commonly present in senescent cultures, and many cells with an aneuploid karyotype, which is frequently associated with immortalization. ZSSJ growth was arrested by 30 to 50 Gy of g-irradiation, whereas after 20 Gy, some slight growth was observed. By contrast, growth of the rainbow trout spleen stromal cell line, RTS34st, which has been used as a feeder for zebrafish ES cell cultures, was arrested completely by 20 Gy. In cocultures, nongrowth-arrested ZSSJ stimulated ZEB2J proliferation better than growth-arrested ZSSJ and better than RTS34st. ZSSJ should be useful as a feeder cell line for zebrafish ES cell cultures.  相似文献   

10.
Substance P-induced inositol trisphosphate (InsP3) formation was inhibited by 1 microM-4 beta-phorbol 12,13-dibutyrate (PDBu) in rat parotid acinar cells. The inhibitory effect of PDBu was reversed by the protein kinase C inhibitors H-7 or K252a. Substance P also elicits a persistent desensitization of subsequent substance P-stimulated InsP3 formation. However, this desensitization was not inhibited by H-7. In addition, H-7 had no effect on the time course of substance P-induced InsP3 formation. These results suggest that, although activation of protein kinase C by phorbol esters can inhibit the substance P receptor-linked phospholipase C pathway, this mechanism apparently plays little, if any, role in regulating this system after activation by substance P.  相似文献   

11.
12.
Hexavalent chromium [Cr(VI)] is a carcinogenic genotoxin commonly found in industry and the environment. DNA damage resulting from Cr(VI) exposure triggers numerous stress responses, including activation of cell cycle checkpoints and initiation of apoptosis. Mechanisms controlling these responses, while extensively studied, have yet to be fully elucidated. Here, we demonstrate that the p38 mitogen-activated protein kinase (MAPK) is activated by Cr(VI) exposure and that inhibition of p38 function using the selective inhibitor SB203580 results in abrogation of S-phase and G2 cell cycle checkpoints in response to Cr(VI). Also, we observe that inhibition of p38 results in decreased cell survival and increased percentage of apoptotic cells following Cr(VI) treatment. Taken together, these results indicate that p38 function is critical for optimal stress response induced by Cr(VI) exposure.  相似文献   

13.
The addition of ferric citrate to Burkitt's lymphoma (BL) cell lines inhibits growth, leads to the accumulation of cells in the phase G2/M of the cell cycle and to the modulation of translocated c-myc expression. The increase in the labile iron pool (LIP) of iron-treated BL cells leads to cytotoxicity. Indeed, intracellular free iron catalyzes the formation of highly reactive compounds such as hydroxyl radicals and nitric oxide (NO) that damages macromolecular components of cells, eventually resulting in apoptosis. In this report, we have investigated the possible involvement of free radicals in the response of Ramos cells to iron. When added to Ramos cells, iron increased the intracellular levels of peroxide/peroxynitrite and NO. Moreover, the addition of free radicals scavengers (TROLOX® and Carboxy-PTIO) neutralized the effects of iron on Ramos cells while addition of an NO donor or hydrogen peroxide (H2O2) to cells generated effects which partially mimicked those induced by iron addition. Collectively, our results suggest the involvement of free radicals as effectors in the iron specific growth inhibition of BL cells observed in vitro.  相似文献   

14.
15.
Herein, we embarked on a structural optimization campaign aiming at the discovery of novel anticancer agents with our previously reported XL-6f as a lead compound. A library of 23 compounds has been synthesized based on the highly conserved active site of VEGFR-2. Several title compounds exhibited selective inhibitory activities against VEGFR-2, which also displayed selective anti-proliferation potency against HepG2 cell. All synthesized compounds were evaluated for anti-angiogenesis capability. Compound 7o showed the most potent anti-angiogenesis ability, the efficient cytotoxic activities (in vitro against HUVEC and HepG2 cell lines with IC50 values of 0.58 and 0.23 µM, respectively). The molecular docking analysis revealed 7o is a Type-II inhibitor of VEGFR-2 kinase. In general, these results indicated these arylamide-5-anilinoquinazoline-8-nitro derivatives are promising inhibitors of VEGFR-2 for the potential treatment of anti-angiogenesis.  相似文献   

16.
Three series of novel urushiol derivatives were designed by introducing a hydroxamic acid moiety into the tail of an alkyl side chain and substituents with differing electronic properties or steric bulk onto the benzene ring and alkyl side chain. The compounds’ binding affinity toward HDAC8 was screened by Glide docking. The highest-scoring compounds were processed further with molecular docking, MD simulations, and binding free energy studies to analyze the binding modes and mechanisms. Ten compounds had Glide scores of ?8.2 to ?10.2, which revealed that introducing hydroxy, carbonyl, amino, or methyl ether groups into the alkyl side chain or addition of –F, –Cl, sulfonamide, benzamido, amino, or hydroxy substituents on the benzene ring could significantly increase binding affinity. Molecular docking studies revealed that zinc ion coordination, hydrogen bonding, and hydrophobic interactions contributed to the high calculated binding affinities of these compounds toward HDAC8. MD simulations and binding free energy studies showed that all complexes possessed good stability, as characterized by low RMSDs, low RMSFs of residues, moderate hydrogen bonding and zinc ion coordination and low values of binding free energies. Hie147, Tyr121, Phe175, Hip110, Phe119, Tyr273, Lys21, Gly118, Gln230, Leu122, Gly269, and Gly107 contributed favorably to the binding; and Van der Waals and electrostatic interactions provided major contributions to the stability of these complexes. These results show the potential of urushiol derivatives as HDAC8 binding lead compounds, which have great therapeutic potential in the treatment of various malignancies, neurological disorders, and human parasitic diseases.  相似文献   

17.
The addition of ferric citrate to Burkitt's lymphoma (BL) cell lines inhibits growth, leads to the accumulation of cells in the phase G2/M of the cell cycle and to the modulation of translocated c-myc expression. The increase in the labile iron pool (LIP) of iron-treated BL cells leads to cytotoxicity. Indeed, intracellular free iron catalyzes the formation of highly reactive compounds such as hydroxyl radicals and nitric oxide (NO) that damages macromolecular components of cells, eventually resulting in apoptosis. In this report, we have investigated the possible involvement of free radicals in the response of Ramos cells to iron. When added to Ramos cells, iron increased the intracellular levels of peroxide/peroxynitrite and NO. Moreover, the addition of free radicals scavengers (TROLOX® and Carboxy-PTIO) neutralized the effects of iron on Ramos cells while addition of an NO donor or hydrogen peroxide (H2O2) to cells generated effects which partially mimicked those induced by iron addition. Collectively, our results suggest the involvement of free radicals as effectors in the iron specific growth inhibition of BL cells observed in vitro.  相似文献   

18.
A series of novel 4-anilinoquinazoline derivatives (3a3j) has been synthesized and evaluated as potential inhibitors for protein kinases implicated in Alzheimer’s disease. Among all the synthesized compounds, compound 3e (N-(3,4-dimethoxyphenyl)-6,7-dimethoxyquinazolin-4-amine) exhibited the most potent inhibitory activity against CLK1 and GSK-3α/β kinase with IC50 values of 1.5 μM and 3 μM, respectively. Docking studies were performed to elucidate the binding mode of the compounds to the active site of CLK1 and GSK-3β. The results of our study suggest that compound 3e may serve as a valuable template for the design and development of dual inhibitors of CLK1 and GSK-3α/β enzymes with potential therapeutic application in Alzheimer’s disease.  相似文献   

19.
The antineoplastic agent paclitaxel (TaxolTM), a microtubule stabilizing agent, is known to arrest cells at the G2/M phase of the cell cycle and induce apoptosis. We and others have recently demonstrated that paclitaxel also activates the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) signal transduction pathway in various human cell types, however, no clear role has been established for JNK/SAPK in paclitaxel-induced apoptosis. To further examine the role of JNK/SAPK signaling cascades in apoptosis resulting from microtubular dysfunction induced by paclitaxel, we have coexpressed dominant negative (dn) mutants of signaling proteins of the JNK/SAPK pathway (Ras, ASK1, Rac, JNKK, and JNK) in human ovarian cancer cells with a selectable marker to analyze the apoptotic characteristics of cells expressing dn vectors following exposure to paclitaxel. Expression of these dn signaling proteins had no effect on Bcl-2 phosphorylation, yet inhibited apoptotic changes induced by paclitaxel up to 16 h after treatment. Coexpression of these dn signaling proteins had no protective effect after 48 h of paclitaxel treatment. Our data indicate that: (i) activated JNK/SAPK acts upstream of membrane changes and caspase-3 activation in paclitaxel-initiated apoptotic pathways, independently of cell cycle stage, (ii) activated JNK/SAPK is not responsible for paclitaxel-induced phosphorylation of Bcl-2, and (iii) apoptosis resulting from microtubule damage may comprise multiple mechanisms, including a JNK/SAPK-dependent early phase and a JNK/SAPK-independent late phase.  相似文献   

20.
New thiazolylpyrazolyl coumarin derivatives were synthesized and tested for their anticancer potential in vitro against five different human cell lines, including breast MCF-7, lung A549, prostate PC3, liver HepG2 and normal melanocyte HFB4. Breast carcinoma revealed higher sensitivity towards compounds 7a, 8c, 9b, 9c and 9d with IC50 values ranging from 5.41 to 10.75 μM in comparison to the reference drug doxorubicin (IC50 = 6.73 μM). In addition, no noticeable toxicity was exhibited towards normal cells HFB4. Moreover, in vitro studies of the VEGFR-2 inhibition in human breast cancer MCF-7 cell line for the promising cytotoxic compounds showed that compounds 7a, 8c, 9b, 9c and 9d were potent inhibitors at low micromolar concentrations (IC50 = 0.034–0.582 μM) compared to the reference drug, sorafenib (IC50 = 0.019 μM). Several theoretical and experimental studies were done to reveal the molecular mechanisms that control breast carcinoma metastasis. The mechanistic effectiveness in cell cycle progression, apoptotic induction and gene regulation were assessed for the promising compound 9d due to its remarkable cytotoxic activity against MCF-7 and significant VEGFR-2 inhibition. Flow cytometeric analysis showed that compound 9d induced cell growth cessation at G2/M phase and increased the percentage of cells at pre-G1 phase that stimulates the apoptotic death of MCF-7 cells. Furthermore, real time PCR assay illustrated that compound 9d up regulated p53 gene expression and elevated Bax/Bcl-2 ratio which confirmed the mechanistic pathway of compound 9d. Moreover, the apoptotic induction of breast cancer cells MCF-7 was enhanced effectively through activation of caspases-7 and 9 by compound 9d. On the other hand, a set of in silico methods such as molecular docking, molecular dynamics simulation, QSAR analysis as well as ADMET analysis was performed in order to study the protein-ligand interactions and the relationship between the physicochemical properties and the inhibitory activity of the promising compounds 7a, 8c and 9d. Based on the aforementioned findings, compound 9d could be considered as effective apoptosis modulator and promising lead for future development of new anti-breast cancer agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号