首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inhibition in the eye of Limulus   总被引:4,自引:0,他引:4       下载免费PDF全文
In the compound lateral eye of Limulus each ommatidium functions as a single receptor unit in the discharge of impulses in the optic nerve. Impulses originate in the eccentric cell of each ommatidium and are conducted in its axon, which runs without interruption through an extensive plexus of nerve fibers to become a fiber of the optic nerve. The plexus makes interconnections among the ommatidia, but its exact organization is not understood. The ability of an ommatidium to discharge impulses in the axon of its eccentric cell is reduced by illumination of other ommatidia in its neighborhood: the threshold to light is raised, the number of impulses discharged in response to a suprathreshold flash of light is diminished, and the frequency with which impulses are discharged during steady illumination is decreased. Also, the activity that can be elicited under certain conditions when an ommatidium is in darkness can be inhibited similarly. There is no evidence for the spread of excitatory influences in the eye of Limulus. The inhibitory influence exerted upon an ommatidium that is discharging impulses at a steady rate begins, shortly after the onset of the illumination on neighboring ommatidia, with a sudden deep minimum in the frequency of discharge. After partial recovery, the frequency is maintained at a depressed level until the illumination on the neighboring receptors is turned off, following which there is prompt, though not instantaneous recovery to the original frequency. The inhibition is exerted directly upon the sensitive structure within the ommatidium: it has been observed when the impulses were recorded by a microelectrode thrust into an ommatidium, as well as when they were recorded more proximally in single fibers dissected from the optic nerve. Receptor units of the eye often inhibit one another mutually. This has been observed by recording the activity of two optic nerve fibers simultaneously. The mediation of the inhibitory influence appears to depend upon the integrity of nervous interconnections in the plexus: cutting the lateral connections to an ommatidium abolishes the inhibition exerted upon it. The nature of the influence that is mediated by the plexus and the mechanism whereby it exerts its inhibitory action on the receptor units are not known. The depression of the frequency of the discharge of nerve impulses from an ommatidium increases approximately linearly with the logarithm of the intensity of illumination on receptors in its vicinity. Inhibition of the discharge from an ommatidium is greater the larger the area of the eye illuminated in its vicinity. However, equal increments of area become less effective as the total area is increased. The response of an ommatidium is most effectively inhibited by the illumination of ommatidia that are close to it; the effectiveness diminishes with increasing distance, but may extend for several millimeters. Illumination of a fixed region of the eye at constant intensity produces a depression of the frequency of discharge of impulses from a nearby ommatidium that is approximately constant, irrespective of the level of excitation of the ommatidium. The inhibitory interaction in the eye of Limulus is an integrative process that is important in determining the patterns of nervous activity in the visual system. It is analogous to the inhibitory component of the interaction that takes place in the vertebrate retina. Inhibitory interaction results in the exaggeration of differences in sensory activity from different regions of the eye illuminated at different intensities, thus enhancing visual contrast.  相似文献   

2.
The inhibitory influences exerted mutually among the receptor units (ommatidia) of the lateral eye of Limulus are additive. If two groups of receptors are illuminated together the total inhibition they exert on a "test receptor" near them (decrease in the frequency of its nerve impulse discharge in response to light) depends on the combined inhibitory influences exerted by the two groups. If the two groups are widely separated in the eye, their total inhibitory effect on the test receptor equals the sum of the inhibitory effects they each produce separately. If they are close enough together to interact, their effect when acting together is usually less than the sum of their separate effects, since each group inhibits the activity of the other and hence reduces its inhibitory influence. However, the test receptor, or a small group illuminated with it, may interact with the two groups and affect the net inhibitory action. A variety of quantitative effects have been observed for different configurations of three such groups of receptors. The activity of a population of n interacting elements is described by a set of n simultaneous equations, linear in the frequencies of the receptor elements involved. Applied to three interacting receptors or receptor groups equations are derived that account quantitatively for the variety of effects observed in the various experimental configurations of retinal illumination used.  相似文献   

3.
The inhibition that is exerted mutually among receptor units (ommatidia) of the compound eye of Limulus is less for units widely separated than for those close together. This diminution of inhibition with distance is the resultant of two factors: (1) the threshold of inhibitory action increases with increasing distance between the units involved; and (2) the coefficient of inhibitory action decreases with increasing distance. The discharge of nerve impulses from ommatidia at various distances from one another may be described quantitatively by a set of simultaneous linear equations which express the excitatory effects of the illumination on each ommatidium and the inhibitory interactions between each ommatidium and its neighbors. The values of the thresholds and coefficients of inhibitory action, which appear as parameters in these equations, must be determined empirically: their dependence on distance is somewhat irregular and cannot yet be expressed in an exact general law. Nevertheless the diminution of inhibitory influences with distance is sufficiently uniform that patterns of neural response generated by various patterns of illumination on the receptor mosaic can be predicted qualitatively. Such predictions have been verified experimentally for two simple patterns of illumination: an abrupt step in intensity, and a simple gradient between two levels of intensity (the so-called Mach pattern). In each case, transitions in the pattern of illumination are accentuated in the corresponding pattern of neural response.  相似文献   

4.
Inhibition in the Limulus lateral eye in situ   总被引:1,自引:1,他引:0       下载免费PDF全文
Inhibition in the Limulus lateral eye in situ is qualitatively similar to that in the excised eye. In both preparations ommatidia mutually inhibit one another, and the magnitude of the inhibitory effects are linear functions of the response rate of individual ommatidia. The strength of inhibition exerted between single ommatidia is also about the same for both preparations; however, stronger effects can converge on a single ommatidium in situ. At high levels of illumination of the retina in situ the inhibitory effects are often strong enough to produce sustained oscillations in the discharge of optic nerve fibers. The weaker inhibitory influences at low levels of illumination do not produce oscillations but decrease the variance of the optic nerve discharge. Thresholds for the inhibitory effects appear to be determined by both presynaptic and postsynaptic cellular processes. Our results are consistent with the idea that a single ommatidium can be inhibited by more of its neighbors in an eye in situ than in an excised eye. Leaving intact the blood supply to the eye appears to preserve the functional integrity of the retinal pathways which mediate inhibition.  相似文献   

5.
This study asks whether photomechanical movements in the retinal cells of the lateral eye of the American horseshoe crab, Limulus polyphemus, are controlled locally within each ommatidium, or whether they are a retinal array property involving lateral communication between ommatidia. Three experiments were performed. A small spot, a vertical slit down the center, or the anterior third of an otherwise masked eye was illuminated. The contralateral eye was fully illuminated in each experiment and served as a light-adapted control. Morphometric analyses of aperture length and rhabdom dimensions were made from serial 1-microm plastic sections. The results suggest there is a different spatial threshold for photomechanical movement for aperture lengthening than for rhabdom lengthening. When only a few ommatidia are illuminated, the aperture does not change. When about 10% are illuminated, they lengthen, but the masked ommatidia do not. When about a third are illuminated, all the ommatidia in the eye lengthen together, including the two thirds that were masked. When either only a few ommatidia or about 10% of the ommatidia are illuminated, rhabdom shape is unchanged. When a third of the eye is illuminated, the illuminated rhabdoms lengthen, but the masked rhabdoms do not.  相似文献   

6.
Summary The functional properties of the processing of visual information by the complex eye of Limulus was studied. The spatial distribution of activity that results in the optic nerve when the Limulus eye is exposed to a stationary optical pattern depends upon the transfer characteristics of two subsystems: the dioptric apparatus and the nervous interactions comprising the lateral inhibition system. — The transfer characteristic of the dioptric apparatus is determined by the sensitivity distribution function of single ommatidia. This distribution was measured and found to be approximately of Gauss-function type. The sensitivity falls off to 1/e at a distance of one ommatidium; thus the visual fields of adjacent ommatidia strongly overlap. As a consequence of the overlap, amplitudes of the spatial Fourier components, of which the brightness distribution of the optical surround is made up, are more and more reduced with increasing frequency in the intensity distribution on the receptor mosaic. The amplitude of the spatial frequency 1/=0,25 ( in units of interommatidial distance) is reduced to half of the maximum value, which is attained at zero frequency. It is shown that the amplitude frequency characteristic of the sensitivity distribution function has no zeros, which means that no loss of optical information results from overlap of visual fields. Thus the resolving power of the dioptric apparatus is limited only by the number of receptors per unit area. — The transfer characteristic of the lateral inhibition system in the Limulus eye depends on the distribution of the inhibitory coefficients around the individual receptors. This distribution function was determined from excitatory responses in the optic nerve elicited by a spatial light intensity step function on the receptor mosaic. It is found that this distribution is also Gaussian in form, but decays to 1/e at a distance of eight to nine ommatidia along the major axis of the eye. The average value of the inhibitory coefficients between adjacent ommatidia was found to be 0,025. The amplitude frequency response of the inhibitory system is constant for high spatial frequencies down to 1/=0,1 while amplitudes of lower frequency sinusoids are reduced down to nearly half of the maximum value at frequency zero. The amplitude frequency characteristic of the inhibitory system ensures a one to one correspondence between the intensity distribution on the receptor mosaic and the excitation distribution in the optic nerve. The overall transfer characteristic of the eye is derived from the transfer characteristics of the dioptric apparatus and the inhibitory system. This characteristic is of bandpass type with a maximum amplitude response at a frequency of 1/=0,07. The overall transfer characteristic was independently confirmed in a separate experiment. The nature of the overall transfer characteristic shows that the inhibitory system does not exactly correct for the overlap of the visual fields of single ommatidia, which in principal the system could do if the distributions of inhibitory coefficients and ommatidia sensitivity were equal. The overall transfer characteristic of the Limulus eye garantees a one to one correspondence between patterns in the optical surround and excitation distributions in the optic nerve. — The average values of the inhibitory coefficients derived from these experiments are at least a factor ten smaller than those determined directly by other investigators. Possible explanations of this discrepency are discussed. — In a separate chapter the overall transfer characteristic for eyes submerged in water is described. It was found that this characteristic does not differ from that determined in air for the eye region which was investigated in the experiments. This result is explained by two properties of the eye which are dependent on the refractive index of the surround medium and whose influences cancel each other: the visual fields of ommatidia are reduced under water, while the divergence angles between the optical axes of adjacent ommatidia also diminish.

This research was supported in part by the United States Air Force under Grant No. AF-EOAR-62-41 and monitored by the European Office, Office of Aerospace Research.  相似文献   

7.
Inhibitory Fields in the Limulus Lateral Eye   总被引:13,自引:13,他引:0  
The inhibition that is exerted mutually among receptor units (ommatidia) of the lateral eye of Limulus does not diminish uniformly with increasing distance between units. Instead the response of a receptor unit is most effectively inhibited by other units separated from it by approximately 1 mm (three to five receptor diameters); the effectiveness diminishes with distances both greater and less than this value. The ommatidial inhibitory field as measured by the spatial function of the inhibitory coefficients contains a uniform depression in the central region, a uniformly high annulus at some distance from the center, and a gradual tapering off toward the periphery. The field is large—covering over 30 % of the retina—and is somewhat elliptical in shape with its major axis in the anteroposterior direction on the lateral eye. A number of experiments reveal similar configurations in a sizable part of the eye. Control experiments show that the diminution of the inhibitory effects near the center of the field is not an artifact of the measuring technique and cannot be explained readily by local neural excitatory processes.  相似文献   

8.
Summary Pigment granule migration in pigment cells and retinula cells of the digger wasp Sphex cognatus Smith was analysed morphologically after light adaptation to natural light, dark adaptation and after four selective chromatic adaptations in the range between 358 nm and 580 nm and used as the index of receptor cell sensitivity. The receptor region of each ommatidium consists of nine retinula cells which form a centrally located rhabdom. Two morphologically and physiologically different visual units can be described, defined by the arrangement of the rhabdomeric microvilli, the topographical relationship of the receptor cells with respect to the eye axes and the unique retinula cell screening pigmentation. These two different sets of ommatidia (type A and B) are randomly distributed in a ratio of 13 throughout the eye (Ribi, 1978b). Chromatic adaptation experiments with wavelengths of 358 nm, 443 nm, 523 nm and 580 nm and subsequent histological examination reveal two UV receptors, two blue receptors and four yellow-green receptors in type A ommatidia and two UV receptors and six green to yellow-green receptors in type B ommatidia. The pigments in cells surrounding each ommatidium (two primary pigment cells, 20 secondary pigment cells and four pigmented cone extensions) were not affected significantly by the adaptation experiments.  相似文献   

9.
10.
The spontaneous discharge of impulses from the lateral-line nerves of trout and catfish has been examined. 1. Broken endings of nerve fibers supplying receptors of the lateral-lines of trout and catfish may be the source of a repetitive discharge of nerve impulses. 2. This injury discharge occurs more frequently in trout and may mask the spontaneous discharge from the receptor cells. Experiments indicate that the latter discharge is not the result of injury. 3. The injury discharge ceases in from 10 to 15 minutes. The spontaneous receptor discharge in trout may continue for an hour if the circulation remains intact. The receptor response also fails in from 10 to 15 minutes after failure of the circulation. 4. The receptor discharge, the injury discharge, or the summed discharges frequently become synchronized. The excitability of the fibers of the nerve trunk appears to vary synchronously, so that nerve impulses initiated in fibers from tactile receptors not contributing to the spontaneous discharge can be conducted only during the part of the cycle occupied by the spontaneous discharge.  相似文献   

11.
Summary In the noctuid moth Spodoptera exempta, the distribution of visual pigments within the fused rhabdoms of the compound eyes was investigated by electron microscopy. Each ommatidium regularly contains eight receptor cells belonging to three morphological types: one distal, six medial, and one basal cell (Meinecke 1981); four different visual pigments — absorption maxima at approximately 355, 465, 515, and 560 nm — are known to occur within the eye (Langer et al. 1979). The compound eyes were illuminated in situ by use of monochromatic light of different wavelengths. This illumination produced a wide scale of structural changes in the microvilli of the rhabdomeres of individual cells. Preparation of eyes by freeze-substitution revealed the structural changes in the rhabdomeres to be effects of light occurring in vivo.The degree of structural changes may be considerably different in rhabdomeres within the same ommatidium; it was found to depend on the wavelength and the duration of illumination, the intensity received by the ommatidia as well as the spectral sensitivity of the receptor cells. Therefore, it was possible to estimate the spectral sensitivities of the morphological types of receptor cells. Generally, all medial cells are green receptors and all basal cells red receptors; distal cells are blue receptors in about two-thirds of the ommatidia, while in the remaining third of them distal cells are sensitive to ultraviolet light.Supported by Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 114 (Bionach)  相似文献   

12.
Summary The resolving power of the human eye and the apposition eye in insects is discussed on the basis of Fraunhofer's diffraction theory. It is then shown that diffraction does not play an important role in the Limulus facet eye. In spite of this the visual fields of neighboured ommatidia overlap strongly as Waterman has shown. A mathematical relation which describes the process of imaging the optical surroundings onto the generator potentials of the excentric cells of the receptors is presented. This relation takes into account the overlap of the visual fields and the logarithmic relation between light intensity and generator potential (MacNichol, Fuortes). On the basis of Hartline and Ratliff's reports on lateral inhibition in the Limulus eye it is shown that this process corrects the overlap and therefore increases the resolving power of the eye. The functional mechanism of lateral inhibition is in principle able to create an image of the optical surroundings in the optic nerve. It therefore can compensate for the dioptric apparatus in front of the receptor mosaic. The correction process in the Limulus eye is studied quantitatively and other cases of principle interest are investigated by means of an analog computer. The results are discussed and other inhibitory processes in the visual and auditory system etc. are mentioned.  相似文献   

13.
The effect of menthol on the discharge pattern of feline nasal and lingual cold receptors was analyzed in order to elucidate the underlying sensory transducer mechanism. A repetitive beating activity and burst (grouped) discharges were observed in both cold receptor populations at constant temperatures and after rapid cooling. An analysis of the impulse activity revealed a cyclic pattern of impulse generation, which suggested the existence of an underlying receptor potential oscillation that initiates impulses in the afferent nerve when it exceeds a threshold value. The frequency and amplitude of the periodic impulse-inducing receptor processes were characterized by the burst frequency, which increased with warming, and by the average number of impulses generated during each cycle, which increased with cooling. Menthol at micromolar concentrations induced an acceleration of the burst frequency at higher temperatures, but reduced the burst frequency in the midtemperature range. At temperatures above 25 degrees C, menthol increased the number of impulses elicited during each cycle and induced bursting in previously repetitively discharging fibers. At low temperatures, menthol suppressed bursting and finally inhibited all cold receptor activity. The impulse pattern at constant temperatures and during the dynamic response to rapid cooling was comparably affected by menthol. Calcium application completely abolished the stimulating menthol effect. Since, in equal concentrations, menthol specifically impairs neuronal calcium currents, the results are consistent with the conjecture that in cold receptors, menthol reduces the activation of a calcium-stimulated outward current by an impeding effect on a calcium conductance, thereby inducing depolarization and a modification of bursting behavior. The data confirm the hypothesis of a calcium-controlled outward conductance being involved in the generation of cyclic afferent activity in cold receptors.  相似文献   

14.
External direct coupled recordings from the neurons of the mechanosensory hairs of insects show nerve impulses and graded slow potentials in response to deformation of the hair. These slow potentials or receptor potentials are negative going, vary directly with the magnitude of the stimulus, and show no overshoot when returning to baseline. The impulses have an initial positive phase which varies in size directly with the amplitude of the receptor potential. The receptor potential is related to the generator potential for the impulse in that it must attain some critical level before impulses are produced, and the frequency of impulses varies directly with amplitude of the receptor potential. The receptor potential does not return to the baseline after each impulse. In some receptors static deformation of the hair will maintain the receptor potential. It appears likely that both the receptor potential and the variation in size of the impulses are caused by a change in conductance of the cell membrane at the receptor site, and that the receptor potential originates at a site which is not invaded by the propagated impulses.  相似文献   

15.
Nerve fibers which respond to illumination of the sixth abdominal ganglion were isolated by fine dissection from connectives at different levels in the abdominal nerve cord of the crayfish. Only a single photosensitive neuron is found in each connective; its morphological position and pattern of peripheral connections are quite constant from preparation to preparation. These cells are "primary" photoreceptor elements by the following criteria: (1) production of a graded depolarization upon illumination and (2) resetting of the sensory rhythm by interpolated antidromic impulses. They are also secondary interneurons integrating mechanical stimuli which originate from appendages of the tail. Volleys in ipsilateral afferent nerves produce short-latency graded excitatory postsynaptic potentials which initiate discharge of one or two impulses; there is also a higher threshold inhibitory pathway of longer latency and duration. Contralateral afferents mediate only inhibition. Both inhibitory pathways are effective against both spontaneous and evoked discharges. In the dark, spontaneous impulses arise at frequencies between 5 and 15 per second with fairly constant intervals if afferent roots are cut. Since this discharge rhythm is reset by antidromic or orthodromic impulses, it is concluded that an endogenous pacemaker potential is involved. It is postulated that the increase in discharge frequency caused by illumination increases the probability that an inhibitory signal of peripheral origin will be detected.  相似文献   

16.
The compound eye of Pieris rapae crucivora contains ventrally three types of histologically distinct ommatidia. An ommatidium contains nine photoreceptors, four of which (R1-4) construct the distal tier of the rhabdom. We determined the sensitivity spectra of the R1-4 distal photoreceptors in each type of ommatidia by intracellular electrophysiology and identified UV, blue, double-peaked blue, green, and a green receptor with depressed sensitivity in the violet. We localized these receptors in each type of ommatidia by injecting dye after the recording. In type I ommatidia the R1 and R2 cells are UV and blue receptors. When R1 is UV sensitive, R2 is always blue sensitive, or vice versa. R3 and R4 in type I are both green receptors. In type II, R1 and R2 are both double-peaked blue receptors and R3 and R4 are both green receptors with depressed sensitivity in the violet. In type III, R1 and R2 are both UV, and R3 and R4 are green receptors. The double-peaked blue, and green receptors with depressed sensitivity in the violet in type II ommatidia have depressed sensitivity at 420 nm, which is probably due to the filtering effect of a fluorescing material present in the type II ommatidia. Spectral heterogeneity of ommatidia seems to be a common design of insect compound eyes.  相似文献   

17.
Summary The apposition eyes of the corduliid dragonfly Hemicordulia tau are each divided by pigment colour, facet size and facet arrangement into three regions: dorsal, ventral, and a posterior larval strip. Each ommatidium has two primary pigment cells, twenty-five secondary pigment cells, and eight receptor cells, all surrounded by tracheae which probably prevent light passing between ommatidia, and reduce the weight of the eye. Electron microscopy reveals that the receptor cells are of two types: small vestigial cells making virtually no contribution to the rhabdom, and full-size typical cells. The ventral ommatidia have a distal typical cell (oriented either horizontally or vertically), four medial typical cells, two proximal typical cells and one full-length vestigial cell. The dorsal ommatidia have only four full-length typical cells, and one distal and three vestigial full-length cells. The cross-section of dorsal rhabdoms is small and circular distally, but expands to a large three-pointed star medially and proximally. The tiered receptor arrangement in the ventral ommatidia is typical of other Odonata but the dorsal structure has not been fully described in other species. Specialised dorsal eye regions are typical of insects that detect others against the sky.  相似文献   

18.
Summary The superposition eye of the cockchafer, Melolontha melolontha, exhibits the typical features of many nocturnal and crepuscular scarabaeid beetles: the dioptric apparatus of each ommatidium consists of a thick corneal lens with a strong inner convexity attached to a crystalline cone, that is surrounded by two primary and 9–11 secondary pigment cells. The clear zone contains the unpigmented extensions of the secondary pigment cells, which surround the cell bodies of seven retinula (receptor) cells per ommatidium and a retinular tract formed by them. The seven-lobed fused rhabdoms are composed by the rhabdomeres of the receptor cells 1–7. The rhabdoms are optically separated from each other by a tracheal sheath around the retinulae. The orientation of the microvilli diverges in a fan-like fashion within each rhabdomere. The proximally situated retinula cell 8 does not form a rhabdomere. This standard form of ommatidium stands in contrast to another type of ommatidium found in the dorsal rim area of the eye. The dorsal rim ommatidia are characterized by the following anatomical specializations: (1) The corneal lenses are not clear but contain light-scattering, bubble-like inclusions. (2) The rhabdom length is increased approximately by a factor of two. (3) The rhabdoms have unlobed shapes. (4) Within each rhabdomere the microvilli are parallel to each other. The microvilli of receptor 1 are oriented 90° to those of receptors 2–7. (5) The tracheal sheaths around the retinulae are missing. These findings indicate that the photoreceptors of the dorsal rim area are strongly polarization sensitive and have large visual fields. In the dorsal rim ommatidia of other insects, functionally similar anatomical specializations have been found. In these species, the dorsal rim area of the eye was demonstrated to be the eye region that is responsible for the detection of polarized light. We suggest that the dorsal rim area of the cockchafer eye subserves the same function and that the beetles use the polarization pattern of the sky for orientation during their migrations.  相似文献   

19.
The ERG of the dragonfly ocellus has been analyzed into four components, two of which originate in the photoreceptor cells, two in the ocellar nerve fibers (Ruck, 1961 a). Component 1 is a sensory generator potential, component 2 a response of the receptor axons. Component 3 is an inhibitory postsynaptic potential, component 4, a discharge of afferent nerve impulses in ocellar nerve fibers. Responses to flickering light are examined in terms of this analytic scheme. It has been found that the generator potential can respond to higher rates of flicker—up to 220/sec.—than can the receptor axon responses, the postsynaptic potential, or the ocellar nerve impulses. The maximum flicker fusion frequency as measured by fusion of the ERG is that of the sensory generator potential itself.  相似文献   

20.
1. Photic stimulation of the mature eye of Strombus can evoke in the optic nerve 'on' activity in numerous small afferent fibres and repetitive 'off' bursts of afferent impulses in a smaller number of larger fibres. 2. Synchronous invasion of the eye by electrically evoked impulses in small optic nerve fibres (apparently the 'on' afferents, antidromically activated) can evoke a burst of impulses in the larger 'off' fibres which propagate away from the eye. Invasion of the eye via one branch of optic nerve can evoke an answering burst in another branch. 3. Such electrically evoked bursts are similar to light-evoked 'off' bursts with respect to their impulse composition, their ability to be inhibited by illumination of the eye, and their susceptibility to MgCl2 anaesthesia. 4. Invasion of the eye by a train of repetitive electrically evoked impulses in the absence of photic stimulation can give rise to repetitive 'off' bursts as well as concomitant oscillatory potentials in the eye which are similar to those normally evoked by cessation of a photic stimulus. 5. The electrically evoked 'off' bursts appear to be caused by an excitatory rebound following the cessation of inhibitory synaptic input from photoreceptors which can be antidromically activated by electrical stimulation of the optic nerve. 6. The experimental results suggest that the rhythmic discharge of the 'off' fibres evoked by the cessation of a photic stimulus is mediated by the abrupt decrease of inhibitory synaptic input from the receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号