首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The myotonic dystrophy (DM) gene maps to the long arm of human chromosome 19 and is flanked by markers ERCC1 and D19S51. Also mapping to this region is the polio virus receptor gene (PVS). To produce more markers for this interval, we have constructed radiation-reduced hybrids by selecting for the retention of ERCC1 and for the loss of PVS. One of the cell lines produced has been characterized extensively and contains about 2 Mb of human DNA derived exclusively from chromosome 19, and includes ERCC1 and D19S51. Phage libraries constructed from DNA of this cell line have been screened and several new markers identified, including two for which cDNAs have been isolated. These represent candidate genes for DM. The new markers have also been used to extend the long-range restriction map of this region.  相似文献   

2.
Human chromosome 19 carries a poliovirus receptor gene   总被引:1,自引:0,他引:1  
The chromosome complements of human/mouse hybrid cell lines of mouse 3T3-4E and RAG parentage have been analyzed using chromosome banding methods. Three lines that were susceptible to lytic infection with poliovirus contained eleven to seventeen human chromosomes, including chromosome 19. Polio-resistant sublines of these contained no chromosome 19 and showed no other consistent change in the complement of human chromosomes. Human chromosome 19 therefore is essential for polio-sensitivity. Since polio sensitivity was correlated with receptor activity in these lines, we conclude that chromosome 19 carries the structural gene for the poliovirus receptor. Sensitivity to echo-7 and Rhino-1A viruses could not be related to the presence of a specific human chromosome.  相似文献   

3.
Further mapping of markers around the centromere of human chromosome 19   总被引:10,自引:0,他引:10  
The gene for myotonic dystrophy (DM) is located on the proximal long arm of chromosome 19 along with at least 10 cloned genes and anonymous DNA segments. In order to refine the map of this region of the chromosome, we have constructed somatic cell hybrid lines from fibroblasts carrying a balanced translocation t(1, 19) with a breakpoint at 19q12. We have established that D19S7 is the most proximal of the available long-arm markers and confirmed that PEPD localizes to 19q, along with PVS, MSK19, and MSK37. We have also examined the segregation of markers from the proximal long-arm region of chromosome 19 in hybrids containing fragments of this chromosome.  相似文献   

4.
A number of human-mouse hybrid cell lines with partial human chromosome complements were sensitive to poliovirus because the cells contained the viral receptor substance of human origin. Infection of the lines with one type of poliovirus regularly led to the survival of a few cells, whose progeny were found to be resistant to all types of poliovirus. Comparison of the chromosomes of sensitive hybrids and their resistant sublines showed no consistent difference in the number of biarmed human chromosomes of any group. The number of acrocentrics was always lower in the resistant hybrids than in the corresponding sensitive lines. It is suggested that the human chromosome bearing the polio receptor gene is an acrocentric.  相似文献   

5.
The human 8.5 H probe was isolated from a human cerebellum cDNA library with a probe corresponding to the coding region of the murine 8.5 M cDNA. This cDNA isolated from a murine cDNA library constructed from newborn cerebral hemispheres was selected because of its strong expression in embryonic neurons. Consequently the corresponding human gene could be a candidate for hereditary neurodegenerative diseases. The human 8.5 H gene was assigned by somatic hybrid analysis to chromosome 5; this chromosome contains the gene(s) for spinal muscular atrophy (SMA), a group of heritable degenerative diseases that selectively affect the anterior horn motor neuron of the spinal cord. The localization by in situ hybridation of 8.5 H on 5q35 excluded the possibility that this gene is identical to SMA. The SMA gene(s) was (were) known, from linkage analysis, to be in a region (5q11.2-q13.3) very distant from 5q35.  相似文献   

6.
Charcot-Marie-Tooth disease type 2D (CMT2D) and distal spinal muscular atrophy type V (dSMA-V) are axonal peripheral neuropathies inherited in an autosomal dominant fashion. Our previous genetic and physical mapping efforts localized the responsible gene(s) to a well-defined region on human chromosome 7p. Here, we report the identification of four disease-associated missense mutations in the glycyl tRNA synthetase gene in families with CMT2D and dSMA-V. This is the first example of an aminoacyl tRNA synthetase being implicated in a human genetic disease, which makes genes that encode these enzymes relevant candidates for other inherited neuropathies and motor neuron diseases.  相似文献   

7.
A number of human-mouse somatic hybrid cell lines have been prepared, containing from 3 to 12 human biarmed chromosomes. These lines were susceptible to poliovirus type 1, producing viral yields comparable to those of the human parental cells. A small proportion of the cells of these lines survived the polio infection, and their progeny were solidly resistant to reinfection with the virus. Both sensitive and resistant hybrids produced virus following infection with viral ribonucleic acid, indicating that the cytoplasm of the resistant hybrids was able to support viral multiplication. Viral adsorption studies carried out at 4 C showed that the resistant sublines had negligible ability to adsorb the virus. It was concluded that the hybrid cells became resistant to polio through loss of the human chromosome bearing the gene for the receptor substance.  相似文献   

8.
The region of human chromosome 19 which includes the myotonic dystrophy locus (DM) has recently been redefined by the tight linkage between it and the gene for muscle-specific creatine kinase (CKMM), which lies just proximal to DM. Utilizing human/hamster hybrid cell lines containing defined breakpoints within this region, we have assigned a number of new probes close to DM. Two of these probes, p134B and p134C, were isolated from a single cosmid clone (D19S51) and detect the same BglI RFLP; p134C detects an additional RFLP with the enzyme PstI. Analysis of these probes in the Centre d'Etude du Polymorphisme Humain families demonstrates tight linkage with a number of markers known to be proximal to DM. A two-point lod score of 6.34 at theta = .025 demonstrates the linkage of this probe to DM. Analysis of a DM individual previously shown to be recombinant for other tightly linked markers indicates that p134C is distal to DM. This result indicates that both the new probe and the existing group of proximal probes including CKMM and ERCC1 probably flank DM and define the genetic interval into which this mutation maps.  相似文献   

9.
We have determined the chromosomal localization of the gene for the catalytic subunit Cα of cAMP-dependent protein kinase (locus PRKACA) to human chromosome 19 using polymerase chain reaction (PCR) and Southern blot analysis of two different somatic cell hybrid mapping panels. In addition, PCR analysis of a chromosome 19 mapping panel revealed the presence of a human Cα-specific amplification product only in cell lines containing the region 19p13.1 to 19q12. Finally, two-color fluorescencein situhybridization to metaphase chromosomes using the human Cα cDNA and human chromosome 19 inter-Alu-PCR product as probes localized the human Cα gene to chromosome region 19p13.1.  相似文献   

10.
A human-mouse hybrid segregant HM76Dd40-6 with new characteristics was derived from the hybrid cell line HM76Dd containing human chromosome 19 as the only human chromosome. Three virus sensitivities located on human chromosome 19 (PVS, E11S and RDRC) were lost in HM76Dd40-6, while six other genes (C3, LDLR, EF2, GPI, PEPD and MANB) were retained. Cytogenetic analysis and in situ hybridization using human or mouse repeated sequences as probes showed that the region q13.1-qter of human chromosome 19 had been replaced by a fragment of mouse chromosome. Our results permit further regional assignment for the following five genes on human chromosome 19: GPI in the region cen-q12, MANB in p13.2-q12, E11S and RDRC in q13.1-qter, and EF2 in pter-q12.  相似文献   

11.
The gene for myotonic dystrophy (DM), the most common form of adult muscular dystrophy, has previously been mapped to the proximal long arm of chromosome 19. We have conducted linkage analysis on 53 DM families (comprising 421 individuals) using seven DM-linked DNA markers. This analysis, combined with our somatic cell hybrid mapping panel data, places the DM locus more distal on the chromosome 19 long arm than previously thought. Further, we have been able to unequivocally identify DNA markers that flank the disease locus. The definition of a 10-cM region of chromosome 19 that contains the DM locus should prove useful in both the search for the causative gene and the molecular diagnosis of DM.  相似文献   

12.
The recent cloning of cDNA encoding the Ca++ release channel (ryanodine receptor) of human sarcoplasmic reticulum has enabled us to use somatic cell hybrids to localize the ryanodine receptor gene (RYR) to the proximal long arm of human chromosome 19. Studies with additional hybrids containing deletions or translocations in chromosome 19 enabled us to localize RYR to 19q13.1 in a region distal to GPI/MAG and proximal to D19S18/DNF11. On the basis that the myotonic dystrophy (DM) locus maps near this region and that myotonia could result from a defect in the ryanodine receptor, we examined the linkage between the DM locus and RYR. Our results, showing several DM-RYR recombinants, rule out an RYR defect as the cause of DM. However, localization of RYR to a region of human chromosome 19 which is syntenic to an area of pig chromosome 6 containing the HAL gene responsible for porcine malignant hyperthermia supports the candidacy of RYR for this disorder.  相似文献   

13.
DNA amplification is associated with genomic instability, the main characteristic of cancer cells, and it frequently involves protooncogenes. Double minute chromosomes (DM) and homogeneously stained regions (HSR) are cytological manifestations of DNA amplification. Gain of chromosome 19 is a recurrent alteration in mouse hepatocellular carcinoma (HCC). In one tumor cell line established from HCC developed in myc transgenic mice, DM derived from chromosome 19 were identified by spectral karyotyping and confirmed by fluorescence in situ hybridization (FISH). A probe generated by PCR from microdissected DM was localized by FISH on normal and HCC-derived cell lines on DM and chromosome 19 at two sites separated by several medium size G-bands. This organization of DM containing amplified sequences from separate loci of the same chromosome, indicates a complex mechanism of DNA amplification, possibly involving more than one gene. DM or HSR were not previously identified in mouse HCC and adult human HCC. The recognition of these loci could lead to the cloning of new genes or identification of known genes important in development or progression of HCC.  相似文献   

14.
Isolation and mapping of 88 new RFLP markers on human chromosome 8.   总被引:1,自引:0,他引:1  
M Emi  E Takahashi  K Koyama  K Okui  M Oshimura  Y Nakamura 《Genomics》1992,13(4):1261-1266
To obtain new RFLP markers for construction of a high-resolution map of human chromosome 8, a cosmid library was constructed from a somatic hybrid cell that contained chromosome 8 as the only human component in mouse genomic background. Eighty-eight new RFLP markers were isolated and characterized, and 71 of them were sublocalized to chromosomal bands by fluorescent in situ hybridization (FISH). Of these, 36 were localized to the short arm, 34 to the long arm, and 1 to the centromeric region. Five markers defined VNTR loci. This work represents the first extensive isolation and physical mapping of RFLP markers on human chromosome 8. These new markers will serve as useful resources for linkage mapping of loci for inherited diseases and for efforts to identify a putative tumor suppressor gene(s) on chromosome 8.  相似文献   

15.
The tumorigenicity of HeLa cells in nude mice can be suppressed by the addition of a normal human chromosome 11 in somatic cell hybrids. We have attempted to identify specific genes involved in this phenomenon by transfecting a complementary DNA expression library into a tumorigenic HeLa-fibroblast hybrid. A cell line designated F2 was isolated which displayed morphological features of the nontumorigenic hybrids, demonstrated reduced tumorigenicity in nude mice, and showed an 85% reduction in alkaline phosphatase, a consistent marker of the tumorigenic phenotype in these cells. F2 contained a single exogenous complementary DNA, which was recovered by polymerase chain reaction and designated HTS1 because of its potential association with "HeLa tumor suppression." Northern blot studies suggested differential regulation of the HTS1 gene dependent on the tumorigenicity of the cell. In nontumorigenic hybrids, RNA species of 2.8, 3.1, and 4.6 kilobases were identified. In two tumorigenic hybrid lines, the 2.8-kilobase species was markedly reduced or absent. Similarly, three nontumorigenic human keratinocyte lines expressed all three RNA species, whereas several tumorigenic cervical carcinoma cell lines lacked the 2.8-kilobase species. Chromosome localization studies mapped the HTS1 gene to chromosome 11p15, a region of chromosome 11 that is believed to contain a tumor suppressor gene. These findings indicate that HTS1 represents a novel chromosome 11 gene which may be a target of the tumor suppressor gene active in this system.  相似文献   

16.
17.
S Brown  H K Oie  A F Gazdar  J D Minna  U Francke 《Cell》1979,18(1):135-143
The replication pattern of the endogenous baboon type C virus M7 was studied in 29 primary Chinese hamster × human hybrid clones generated with leukemic cells from two different patients with acute lymphoblastic or myeloblastic leukemia. There was no evidence of viral particulate RDDP or M7 antigen before viral infection. M7 virus replicated in human and some hybrid cells but not in Chinese hamster cells, indicating that M7 requires dominantly expressed human gene(s) for replication. Enzyme and cytogenetic analyses show that a gene(s) coded for by human chromosome 19 is necessary for M7 infection of these hybrids. Detailed cytogenetic correlations revealed, however, that the chromosome 19+/M7 + hybrid clones with intact chromosomes also had copies of chromosomes 3 and 6. Previously, Bevi, the putative integration site for M7 virus, has been assigned to human chromosome 6. Many clones with various combinations of chromosomes 3 and 6 lacked chromosome 19, however, and failed to replicate exogenously applied M7 virus, while tests of 27 secondary clones showed that M7 markers co-segregated with chromosome 19 markers. These findings all confirm the need for a chromosome 19-coded function in Chinese hamster × human hybrids. In addition, the yield of viral particulate RDDP produced into the culture fluid was 50–100 fold less per viral antigen-positive cell in the hybrids compared with human cells. Thus some form of regulation of viral components exists in the hybrid cells. When the virus replicating in hybrid cells was transferred back to human cells, this regulation was relaxed and the yield of RDDP per FA(+) cell greatly increased. We conclude that human chromosomes 6 and 19 code for functions involved in M7 virus metabolism, and we cannot exclude a function coded for by chromosome 3.  相似文献   

18.
19.
We have assigned a human beta-crystallin gene, Hu beta A3/A1 (gene symbol: CRYB1), to chromosome 17 using a panel of 19 human-hamster somatic cell hybrids and blot-hybridization analysis of cell hybrid DNA. Positive probe-hybridization signal was detected in a hybrid that had lost the short arm of human chromosome 17 but retained the long arm, translocated to a hamster chromosome. In addition, in situ hybridization analysis of metaphase chromosome spreads of this cell line suggested that the most probable location for CRYB1 is on the long arm of chromosome 17, in the region q21.  相似文献   

20.
Myotonic dystrophy (DM)--the most common form of muscular dystrophy in adults, affecting 1/8000 individuals--is a dominantly inherited disorder with a peculiar and rare pattern of multisystemic clinical features affecting skeletal muscle, the heart, the eye, and the endocrine system. Two genetic loci have been associated with the DM phenotype: DM1, on chromosome 19, and DM2, on chromosome 3. In 1992, the mutation responsible for DM1 was identified as a CTG expansion located in the 3' untranslated region of the dystrophia myotonica-protein kinase gene (DMPK). How this untranslated CTG expansion causes myotonic dystrophy type 1(DM1) has been controversial. The recent discovery that myotonic dystrophy type 2 (DM2) is caused by an untranslated CCTG expansion, along with other discoveries on DM1 pathogenesis, indicate that the clinical features common to both diseases are caused by a gain-of-function RNA mechanism in which the CUG and CCUG repeats alter cellular function, including alternative splicing of various genes. We discuss the pathogenic mechanisms that have been proposed for the myotonic dystrophies, the clinical and molecular features of DM1 and DM2, and the characterization of murine and cell-culture models that have been generated to better understand these diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号