首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Limited trypsinolysis of pig muscle 3-phosphoglycerate kinase yielded a nicked enzyme without loss of catalytic activity [Jiang, S. X. & Vas, M. (1988) FEBS Lett. 231, 151-154]. The reactivation rate of the nicked enzyme after denaturation does not differ substantially from the reactivation rate of the denatured intact enzyme: t 1/2 varies between 70-110 s at 25 degrees C, pH 7.0 in both cases. Thus, the absence of a covalent linkage between the two proteolytic fragments of the enzyme molecule apparently does not affect the refolding. The two proteolytic fragments can be separated by FPLC under denaturing conditions. Fluorescence spectra of the isolated fragments may indicate that the tryptic cleavage site is within the N-terminal domain. Thus, the larger fragment (molecular mass about 30 kDa) probably contains the whole nucleotide-binding C-terminal domain plus a small part of the N-terminal domain. The inactive isolated fragments were used in renaturation experiments to study the reassembly of active 3-phosphoglycerate kinase. Kinetic measurements revealed the presence of a bimolecular rate-limiting step of reactivation. Separate preincubation of the fragments under renaturing conditions did not cause substantial acceleration of reactivation. This implies that assembly of the separate structural units (possibly domains) may limit the reactivation of the intact enzyme.  相似文献   

2.
Fluorescence spectroscopy and 1H/2H-exchange techniques have been applied to characterize the folding of an scFv fragment, derived from the humanized anti-HER2 antibody hu4D5-8. A stable intermediate, consisting of a native VL domain and an unfolded VH domain, is populated under equilibrium unfolding conditions. A partially structured intermediate, with 1H/2H-exchange protection significantly less than that of the two isolated domains together, is detectable upon refolding the equilibrium-denatured scFv fragment. This means that the domains in the heterodimer do not fold independently. Rather, they associate prematurely before full 1H/2H-exchange protection can be gained. The formation of the native heterodimer from the non-native intermediate is a slow, cooperative process, which is rate-limited by proline cis/trans-isomerization. Unproductive domain association is also detectable after short-term denaturation, i.e. with the proline residues in native conformation. Only a fraction of the short-term denatured protein folds into the native protein in a fast, proline-independent reaction, because of spontaneous proline cis/trans-reisomerization in the early non-native intermediate. The comparison with the previously studied antibody McPC603 has now allowed us to delineate similarities in the refolding pathway of scFv fragments.  相似文献   

3.
We previously reported that C-terminal fragments of Escherichia coli Ile-tRNA synthetase, a monomeric enzyme of 939 amino acids, act as dominant negative inhibitors of the wild-type enzyme in vivo and in vitro. Our experiments suggested that it is possible to block the functional assembly of a monomeric protein by interfering with the folding pathway. We postulated that the inhibitory C-terminal fragments fold autonomously, and in the presence of full-length Ile-tRNA synthetase, trap the N-terminal portion of polypeptide in an unproductive complex. Here, we report the results of experiments aimed at understanding the mechanism of dominant negative inhibition. We have carried out biophysical experiments on fragment 585-939 of Ile-tRNA synthetase, which we previously determined to be the minimal inhibitory unit. Circular dichroism and fluorescence spectroscopy indicate that this fragment forms a compact and stable structure in solution. The secondary structure of this fragment is predominantly alpha-helical, consistent with the crystal structure of Ile-tRNA synthetase from another organism. The C-terminal fragment is capable of forming native-like secondary and tertiary structure after refolding from guanidine HCl. Taken together, the results are consistent with the hypothesis that the inhibitory fragment of Ile-tRNA synthetase forms an independent folding unit.  相似文献   

4.
The time course of refolding of both pig muscle and yeast 3-phosphoglycerate kinase (molecular masses about 47 kDa), as well as their proteolytic C-terminal fragments (30 and 33 kDa, respectively) has been investigated. Very similar refolding kinetics (with half-time between 80-120 s, at 20 degrees C) were observed by fluorescence and ultraviolet absorbance spectroscopy, as well as by activity measurements, for the intact enzyme from both sources. This time course appears not to depend on the time the protein spends in the unfolded state, i.e. it is certainly not controlled by proline isomerization. Furthermore, after removal of a large N-terminal part (molecular mass of about 18 kDa for pig muscle enzyme or 13 kDa for yeast enzyme) of the molecule by proteolysis, refolding of the remaining C-terminal fragment of both proteins follows kinetics virtually indistinguishable from those of the intact protein molecule.  相似文献   

5.
Big defensin is a 79-residue peptide derived from hemocytes of the Japanese horseshoe crab. It has antimicrobial activities against Gram-positive and -negative bacteria. The amino acid sequence of big defensin can be divided into an N-terminal hydrophobic half and a C-terminal cationic half. Interestingly, the trypsin cleaves big defensin into two fragments, the N-terminal and C-terminal fragments, which are responsible for antimicrobial activity against Gram-positive and -negative bacteria, respectively. To explore the antimicrobial mechanism of big defensin, we determined the solution structure of mature big defensin and performed a titration experiment with DPC micelles. Big defensin has a novel defensin structure; the C-terminal domain adopts a beta-defensin structure, and the N-terminal domain forms a unique globular conformation. It is noteworthy that the hydrophobic N-terminal domain undergoes a conformational change in micelle solution, while the C-terminal domain remains unchanged. Here, we propose that the N-terminal domain achieves its antimicrobial activity in a novel fashion and explain that big defensin has developed a strategy different from those of other beta-defensins to suppress the growth of Gram-positive bacteria.  相似文献   

6.
The mitochondrial energy-linked nicotinamide nucleotide transhydrogenase is a homodimer of monomer Mr = 109,228. Hydropathy analysis of its cDNA-deduced amino acid sequence (1043 residues) has indicated that the molecule is composed of 3 domains: a 430-residue-long hydrophilic N-terminal domain which binds NAD(H), a 200-residue-long hydrophilic C-terminal domain which binds NADP(H), and a 400-residue-long hydrophobic central domain which appears to be made up mainly of about 14 hydrophobic clusters of approximately 20 residues each. In this study, antibodies were raised to the hydrophilic N- and C-terminal domains cleaved from the isolated transhydrogenase by proteolytic digestion, and to a synthetic, hydrophilic pentadecapeptide, which corresponded to position 540-554 within the central hydrophobic domain. Immunochemical experiments with mitoplasts (mitochondria denuded of outer membrane) and submitochondrial particles (inside-out inner membrane vesicles) as sources of antigens showed that essentially the entire N- and C-terminal hydrophilic domains of the transhydrogenase, as well as epitopes from the central pentadecapeptide, protrude from the inner membrane into the mitochondrial matrix, where the N- and C-terminal domains would be expected to come together to form the enzyme's catalytic site. Treatment of mitoplasts with several proteolytic enzymes indicated that large protease-sensitive masses of the transhydrogenase are not exposed on the cytosolic side of the inner membrane, which agreed with the exception that the central highly hydrophobic domain of the molecule should be largely membrane-intercalated. Trypsin, alpha-chymotrypsin, and papain had little or no effect on the mitoplast-embedded transhydrogenase. Proteinase K, subtilisin (Nagarse), thermolysin, and pronase E each split the mitoplast-embedded enzyme into two fragments only, a fragment of approximately 70 kDa containing the N-terminal hydrophilic domain, and one of approximately 40 kDa bearing the C-terminal hydrophilic domain. The cleavage site of proteinase K was determined to be A690 -A691, which is located in a small hydrophilic segment within the central hydrophobic domain. This protease-sensitive loop appears to be exposed on the cytosolic side of the inner membrane. The proteinase K-nicked enzyme containing two peptides of 71 and 39 kDa was isolated from mitoplasts and shown to have high transhydrogenase activity.  相似文献   

7.
The conformational stabilities of full-length colicin B and its isolated C-terminal domain were studied by guanidine hydrochloride induced unfolding. The unfolding/refolding was monitored by far-UV CD and intrinsic tryptophan fluorescence spectroscopies. At pH 7.4, the disruption of the secondary structure of full-length colicin B is monophasic, while changes in tertiary structure occur in two separate transitions. The intermediate species, which is well-populated around 2.2 M guanidine hydrochloride, exhibits secondary and tertiary structures distinct from both native and unfolded states. Whereas the domain structure of native full-length colicin B is reflected in its DSC profile, the folding intermediate of the same protein exhibits a single unresolved peak. These observations have led us to propose an unfolding model for full-length colicin B where the first transition between 0 and 2.5 M GuHCl with an associated free energy of 3 kcal/mol correlates with the partial unfolding of the R/T domain. The stability of full-length colicin B is weakened due to the presence of the R/T domain in both the native [Ortega, A., Lambotte, S., and Bechinger, B. (2001) J. Biol. Chem. 276 (17), 13563-13572] and the intermediate states. The second transition between 2.5 and 5 M GuHCl involves unfolding of the C-terminal domain (Delta = 7 kcal/mol). The isolated colicin B C-terminal domain consists of two subdomains, and the two parts of this protein fragment unfold sequentially through the formation of at least one intermediate. The significance of these results for membrane insertion of colicin B is discussed.  相似文献   

8.
The gradual removal of the denaturing reagent guanidine HCl (GdnHCl) using stepwise dialysis with the introduction of an oxidizing reagent and l-arginine resulted in the highly efficient refolding of various denatured single-chain Fv fragments (scFvs) from inclusion bodies expressed in Escherichia coli. In this study, the influence of the additives on the intermediates in scFv refolding was carefully analyzed on the basis of the stepwise dialysis, and it was revealed that the additive effect critically changes the pathway of scFv refolding. Circular dichroism and tryptophan fluorescence emission spectroscopies demonstrated that distinct secondary and tertiary structures were formed upon dialysis from 2 m GdnHCl to 1 m GdnHCl, and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid dipotassium salt binding analysis indicated that the addition of l-arginine to the stepwise dialysis system effectively stabilized the exposed hydrophobic area on the scFv. Quantification of the free thiol groups in the scFv by means of Ellman's assay revealed that there was a particular stage in which most of the free thiol groups were oxidized and that adding an oxidizing reagent (the oxidized form of glutathione, GSSG) at that stage was important for complete refolding of the scFv. The particular stage depended on the nature of the refolding solution, especially on whether l-arginine was present. Spontaneous folding at the 1 m GdnHCl stage resulted in a structure in which a free thiol group accessed to the proper one for correct disulfide linkage; however, the addition of l-arginine resulted in the formation of a partially folded intermediate without disulfide linkages. Mass spectrometry experiments on alkylated scFv were carried out at each stage to determine the effects of l-arginine. The spectroscopic studies revealed two different pathways for scFv refolding in the stepwise dialysis system, pathways that depended on whether l-arginine was present. Controlled coupling of the effects of GSSG and l-arginine led to the complete refolding of scFv in the stepwise dialysis.  相似文献   

9.
Precise elimination of the N-terminal domain of histone H1.   总被引:1,自引:0,他引:1       下载免费PDF全文
The proteinase from mouse submaxillary gland was used to cleave total calf thymus histone H1 between residues 32 and 33. The C-terminal peptide, comprising residues 33 to the C-terminus, was purified and identified by amino acids analysis and Edman degradation. Spectroscopic characterization by n.m.r. for tertiary structure and by c.d. for secondary structure shows the globular domain of the parent histone H1 to be preserved intact in the peptide. It has therefore lost only the N-terminal domain and is a fragment of histone H1 comprising the globular plus C-terminal domains only. Precise elimination of only the N-terminal domain makes the fragment suitable for testing domain function in histone H1.  相似文献   

10.
Borrelia outer surface protein A (OspA) contains a unique single-layer beta-sheet that connects N and C-terminal globular domains. This single-layer beta-sheet segment (beta-strands 8-10) is highly stable in solution, although it is exposed to the solvent on both faces of the sheet and thus it does not contain a hydrophobic core. Here, we tested whether interactions with the C-terminal domain are essential for the formation of the single-layer beta-sheet. We characterized the solution structure, dynamics and stability of an OspA fragment corresponding to beta-strands 1-12 (termed OspA[27-163]), which lacks a majority of the C-terminal globular domain. Analyses of NMR chemical shifts and backbone nuclear Overhauser effect (NOE) connectivities showed that OspA[27-163] is folded except the 12th and final beta-strand. (1)H-(15)N heteronuclear NOE measurements and amide H-(2)H exchange revealed that the single-layer beta-sheet in this fragment is more flexible than the corresponding region in full-length OspA. Thermal-denaturation experiments using differential scanning calorimetry and NMR spectroscopy revealed that the N-terminal globular domain in the fragment has a conformational stability similar to that of the same region in the full-length protein, and that the single-layer beta-sheet region also has a modest thermal stability. These results demonstrate that the unique single-layer beta-sheet retains its conformation in the absence of its interactions with the C-terminal domain. This fragment is significantly smaller than the full-length OspA, and thus it is expected to facilitate studies of the folding mechanism of this unusual beta-sheet structure.  相似文献   

11.
The COOH-terminal cyanogen bromide fragment 206-316 of thermolysin has been shown to possess protein domain characteristics that are able to refold into a stable native-like structure (Fontana et al., 1982). We now report the results of limited proteolysis of this fragment with the aim of identifying the minimum size of a COOH-terminal fragment of thermolysin that is able to fold by itself. Proteolysis with subtilisin, chymotrypsin, thermolysin and trypsin allowed us to isolate to homogeneity eight different subfragments, which can be grouped in two sets of peptides, i.e. (218-222)-316 and (252-255)-316. These subfragments are able to acquire a stable conformation of native-like characteristics, as judged by quantitative analysis of secondary structure from far-ultraviolet circular dichroism spectra and immunochemical properties using rabbit anti-thermolysin antibodies. In addition, even the smallest fragment isolated (sequence 255-316) shows co-operative and reversible unfolding transitions mediated by heat (tm 65 degrees C) and guanidine hydrochloride (midpoint transition at 2.5 M denaturant), as often observed with globular proteins. From the kinetics of the proteolytic digestion and analysis of the isolated subfragments, it is concluded that proteases lead to a stepwise degradation of fragment 206-316 from its NH2-terminal region, leading to the highly helical fragment (252-255)-316, quite resistant to further proteolytic digestion. The results of this study provide evidence that it is possible to isolate stable supersecondary structures of globular proteins and correlate well with predictions of subdomains of the COOH-terminal structural domain of thermolysin.  相似文献   

12.
PMP1 is a 38-residue single-spanning membrane protein whose C-terminal cytoplasmic domain, Y25-F38, is highly positively charged. The conformational coupling between the transmembrane span and the cytoplasmic domain of PMP1 was investigated from 1H-nuclear magnetic resonance data of two synthetic fragments: F9-F38, i.e. 80% of the whole sequence, and Y25-F38, the isolated cytoplasmic domain. Highly disordered in aqueous solution, the Y25-F38 peptide adopts a well-defined conformation in the presence of dodecylphosphocholine micelles. Compared with the long PMP1 fragment, this structure exhibits both native and non-native elements. Our results make it possible to assess the influence of a hydrophobic anchor on the intrinsic conformational propensity of a cytoplasmic domain.  相似文献   

13.
Using limited chymotrypsin and trypsin digestion of isolated Physarum histone H1 labeled in vivo in postsynthetically added N epsilon-methyl groups of lysine we show that: --there is no postsynthetic methylation in the central globular domain of H1, --a moderate number of methylated sites occurs in the N-terminal fragment and the part of the C-terminal fragment directly adjacent to the globular domain (the main site of interphase phosphorylation), --the most intensively methylated region occurs within the sequence located in an extended part of the C-terminal fragment, distant to the globular domain and the main site of interphase phosphorylation.  相似文献   

14.
The kinetics of reversible unfolding and refolding by guanidine hydrochloride of the constant fragment of the immunoglobulin light chain are described. The kinetic measurements were made at pH 7.5 and 25 °C using tryptophyl fluorescence and farultraviolet circular dichroism.The kinetics of unfolding of the constant fragment showed two phases in the conformational transition zone and a single phase above the transition zone. A double-jump experiment confirmed the presence of two forms of the unfolded molecule. These results were thoroughly explained on the basis of the three-species mechanism, U1
U2
N, where U1 and U2 are the slow-folding and fast-folding species, respectively, of unfolded protein and N is native protein. The equilibrium constant for the process of U2 to U1 was estimated to be about 10 and was independent of the conditions of denaturation. These findings were consistent with the view that the U1
U2 reaction is proline isomerization. The rates of interconversion between N and U2 changed greatly with the concentration of guanidine hydrochloride. On the other hand, the refolding kinetics below the transition zone showed behavior unexpected from the three-species mechanism. Whereas the apparent rate constant of the slow phase of refolding was independent of the refolding conditions, its amplitude decreased markedly with the decrease in the final concentration of guanidine hydrochloride. On the basis of this and other results, formation of an intermediate during refolding was ascertained and the refolding kinetics were consistently explained in terms of a more general mechanism involving a kinetic intermediate probably containing non-native proline isomers. The intermediate seemed to have a folded conformation similar to native protein. Comparison of the refolding kinetics of the constant fragment with those of other domains of the immunoglobulin molecule suggested that Pro143 is responsible for the appearance of the slow phase.  相似文献   

15.
Restricted chymotrypsin digestion of calf thymus H1 histone gives two fragments, residues 1--106 and 107--C-terminal. These were studied by proton magnetic resonance and circular dichroism. The N-terminal fragment exhibited some salt-induced structure in aqueous solution, but this did not parallel the globular structure of the intact H1 molecule. Comparison of circular dichroism results with helix predictions for this portion of the molecule suggests that the secondary structure may be the same in this fragment as it is in the corresponding region of the whole molecule. The C-terminal fragments show very little salt-induced structure. The N-terminal fragments binds to DNA very weakly, but the C-terminal fragment binds as strongly as the whole molecule. In the C-terminal fragment, about one quarter of the lysine residues are not bound to the DNA in water, but initial increase of salt concentration causes them to become bound. This increasing binding occurs under the same ionic conditions that cause chromatin condensation and condensation of H1 - DNA complexes, and it is suggested that there may be a connection between these phenomena.  相似文献   

16.
Human topoisomerase I (topo I) is an essential cellular enzyme that relaxes DNA supercoiling. The 6.3 kDa C-terminal domain of topo I contains the active site tyrosine (Tyr723) but lacks enzymatic activity by itself. Activity can be fully reconstituted when the C-terminal domain is associated with the 56 kDa core domain. Even though several crystal structures of topo I/DNA complexes are available, crystal structures of the free topo I protein or its individual domain fragments have been difficult to obtain. In this report we analyze the human topo I C-terminal domain structure using a variety of biophysical methods. Our results indicate that this fragment protein (topo6.3) appears to be in a molten globule state. It appears to have a native-like tertiary fold that contains a large population of alpha-helix secondary structure and extensive surface hydrophobic regions. Topo6.3 is known to be readily activated with the association of the topo I core domain, and the molten globule state of topo6.3 is likely to be an energy-favorable conformation for the free topo I C-terminal domain protein. The structural fluctuation and plasticity may represent an efficient mechanism in the topo I functional pathway, where the flexibility aids in the complementary association with the core domain and in the formation of a fully productive topo I complex.  相似文献   

17.
Trypsin is shown to generate an insecticidal toxin from the 130-kDa protoxin of Bacillus thuringiensis subsp. kurstaki HD-73 by an unusual proteolytic process. Seven specific cleavages are shown to occur in an ordered sequence starting at the C-terminus of the protoxin and proceeding toward the N-terminal region. At each step, C-terminal fragments of approximately 10 kDa are produced and rapidly proteolyzed to small peptides. The sequential proteolysis ends with a 67-kDa toxin which is resistant to further proteolysis. However, the toxin could be specifically split into two fragments by proteinases as it unfolded under denaturing conditions. Papain cleaved the toxin at glycine 327 to give a 34.5-kDa N-terminal fragment and a 32.3-kDa C-terminal fragment. Similar fragments could be generated by elastase and trypsin. The N-terminal fragment corresponds to the conserved N-terminal domain predicted from the gene-deduced sequence analysis of toxins from various subspecies of B. thuringiensis, and the C-terminal fragment is the predicted hypervariable sequence domain. A double-peaked transition was observed for the toxin by differential scanning calorimetry, consistent with two or more independent folding domains. It is concluded that the N- and C-terminal regions of the protoxin are two multidomain regions which give unique structural and biological properties to the molecule.  相似文献   

18.
Two different lipid-associating domains have been identified in the B fragment of diphtheria toxin using automated Edman degradation of its cyanogen bromide peptides, secondary structure prediction analysis, and comparisons with known phospholipid-interacting proteins. The first domain is located in the highly hydrophilic (polarity index [PI] = 61.0%) 9.00-dalton N-terminal region of fragment B. This region shows primary and predicted secondary structures dramatically similar to those found for the phospholipid headgroup-binding domains of human apolipoprotein A1 (surface lipid-associating domain). The second domain is located in the highly hydrophobic (PI = 32.4%) middle region of fragment B. Its structure resembles that found for the membranous domain of intrinsic membrane proteins (transverse lipid-associating domain). In contrast, the hydrophilic C-terminal 8,000-dalton region of fragment B (PI = 53.8%) does not show structural similarity with lipid- associating domains.  相似文献   

19.
Irreversible binding of T-even bacteriophages to Escherichia coli is mediated by the short tail fibres, which serve as inextensible stays during DNA injection. Short tail fibres are exceptionally stable elongated trimers of gene product 12 (gp12), a 56 kDa protein. The N-terminal region of gp12 is important for phage attachment, the central region forms a long shaft, while a C-terminal globular region is implicated in binding to the bacterial lipopolysaccharide core. When gp12 was treated with stoichiometric amounts of trypsin or chymotrypsin at 37 degrees C, an N-terminally shortened fragment of 52 kDa resulted. If the protein was incubated at 56 degrees C before trypsin treatment at 37 degrees C, we obtained a stable trimeric fragment of 3 x 33 kDa lacking residues from both the N- and C-termini. Apparently, the protein unfolds partially at 56 degrees C, thereby exposing protease-sensitive sites in the C-terminal region and extra sites in the N-terminal region. Well-diffracting crystals of this fragment could be grown. Our results indicate that gp12 carries a stable central region, consisting of the C-terminal part of the shaft and the attached N-terminal half of the globular region. Implications for structure determination of the gp12 protein and its folding are discussed.  相似文献   

20.
The kinetics of refolding of ribonuclease A were monitored by circular dichroism (CD), tyrosine fluorescence and absorbance in the -40 to -10 degrees C range using a methanol cryosolvent. The native-like far-ultraviolet CD signal returned in the dead-time of the mixing, whereas the native absorbance and fluorescence signals returned in a multiphasic process at rates several orders of magnitude more slowly. Thus the secondary structure was formed much more rapidly than the tertiary structure. In addition, the absorbance signal showed evidence of an early intermediate in which one, or more, tyrosine residues was in a transiently more polar environment. A total of four kinetic phases were observed by absorbance in refolding, the slowest two of which had energies of activation consistent with proline isomerization. A refolding scheme involving initial hydrophobic collapse, concurrent with secondary structure formation, followed by much slower rearrangement to the native tertiary structure is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号