共查询到20条相似文献,搜索用时 0 毫秒
1.
During gastrulation, the archenteron is formed using cell shape changes, cell rearrangements, filopodial extensions, and convergent extension movements to elongate and shape the nascent gut tube. How these events are coordinated remains unknown, although much has been learned from careful morphological examinations and molecular perturbations. This study reports that RhoA is necessary to trigger archenteron invagination in the sea urchin embryo. Inhibition of RhoA results in a failure to initiate invagination movements, while constitutively active RhoA induces precocious invagination of the archenteron, complete with the actin rearrangements and extracellular matrix secretions that normally accompany the onset of invagination. Although RhoA activity has been reported to control convergent extension movements in vertebrate embryos, experiments herein show that RhoA activity does not regulate convergent extension movements during sea urchin gastrulation. Instead, the results support the hypothesis that RhoA serves as a trigger to initiate invagination, and once initiation occurs, RhoA activity is no longer involved in subsequent gastrulation movements. 相似文献
2.
We have undertaken the first detailed analysis of Rho GTPase function during vertebrate development by analyzing how RhoA and Rac1 control convergent extension of axial mesoderm during Xenopus gastrulation. Monitoring of a number of parameters in time-lapse recordings of mesoderm explants revealed that Rac and Rho have both distinct and overlapping roles in regulating the motility of axial mesoderm cells. The cell behaviors revealed by activated or inhibitory versions of these GTPases in native tissue were clearly distinct from those previously documented in cultured fibroblasts. The dynamic properties and polarity of protrusive activity, along with lamellipodia formation, were controlled by the two GTPases operating in a partially redundant manner, while Rho and Rac contributed separately to cell shape and filopodia formation. We propose that Rho and Rac operate in distinct signaling pathways that are integrated to control cell motility during convergent extension. 相似文献
3.
Backes TM Latterman R Small SA Mattis S Pauley G Reilly E Lubkin SR 《Journal of theoretical biology》2009,256(2):180-186
We construct and implement a stochastic model of convergent extension, using a minimal set of assumptions on cell behavior. In addition to the basic assumptions of volume conservation, random cell motion, and cell-cell and cell-ECM adhesion, and a non-standard assumption that cytoskeletal polymerization generates an internal pressure tending to keep cells convex, we find that we need only two conditions for convergent extension. (1) Each cell type has a particular aspect ratio towards which it regulates its geometry. We do not require that cells align in a specific orientation, e.g. to be oriented mediolaterally. (2) The elongating tissue is composed of cells that prefer to be elongated, and these cells must be accompanied by cells which prefer to be round. The latter effectively provide a boundary to capture. In simulations, our model tissue extends and converges to a stacked arrangement of elongated cells one cell wide, an arrangement which is seen in ascidian notochords, but which has not been observed in other models. This arrangement is achieved without any direct mediolateral bias other than that which is provided by the physical edge of the adjacent tissue. 相似文献
4.
Schiffmann Y 《Progress in biophysics and molecular biology》2006,92(2):209-231
The initiation of axis, polarity, cell differentiation, and gastrulation in the very early chordate development is due to the breaking of radial symmetry. It is believed that this occurs by an external signal. We suggest instead spontaneous symmetry breaking through the agency of the Turing-Child field. Increased size or decreased diffusivity, both brought about by mitotic activity, cause the spontaneous loss of stability of the homogeneous state and the evolution of the metabolic pattern during development. The polar metabolic pattern is the cause of polar gene expression, polar morphogenesis (gastrulation), and polar mitotic activity. The Turing-Child theory explains not only the spontaneous formation of the invagination in gastrulation but also the coherent cell movement observed in convergence and extension during gastrulation and neurulation. The theory is demonstrated with respect to experimental observations on the early development of fish, amphibian, and the chick. The theory can explain a multitude of experimental details. For example, it explains the splayed polar progression of reduction in the fish blastoderm. Reduction starts on that side of the blastoderm margin, which will initiate invagination several hours later. It progresses toward the blastoderm center and somewhat laterally from this future "dorsal lip". This is precisely as predicted by a Turing-Child system in a circle. And for a fish like zebrafish with a blastoderm that is slightly oval, reduction is observed to progress along the long axis of the ellipse, which is what Turing-Child theory predicts. In general the shape and the chemical nature of the experimental patterns are the same as predicted by the Turing couple (cAMP, ATP). Embryological polarity and convergent extension are based on polar eigenfunction and saddle-shaped eigenfunction, respectively. 相似文献
5.
6.
The differential adhesion hypothesis (DAH), advanced in the 1960s, proposed that the liquid-like tissue-spreading and cell segregation phenomena of development arise from tissue surface tensions that in turn arise from differences in intercellular adhesiveness. Our earlier measurements of liquid-like cell aggregate surface tensions have shown that, without exception, a cell aggregate of lower surface tension tends to envelop one of higher surface tension to which it adheres. We here measure the surface tensions of L cell aggregates transfected to express N-, P- or E-cadherin in varied, measured amounts. We report that in these aggregates, in which cadherins are essentially the only cell-cell adhesion molecules, the aggregate surface tensions are a direct, linear function of cadherin expression level. Taken together with our earlier results, the conclusion follows that the liquid-like morphogenetic cell and tissue rearrangements of cell sorting, tissue spreading and segregation represent self-assembly processes guided by the diminution of adhesive-free energy as cells tend to maximize their mutual binding. This conclusion relates to the physics governing these morphogenetic phenomena and applies independently of issues such as the specificities of intercellular adhesives. 相似文献
7.
The Xenopus gene crescent encodes a member of the secreted Frizzled-related protein (sFRP) family and is expressed in the head organizer region. However, the target and function of Crescent in early development are not well understood. Here, we describe a role of Crescent in the regulation of convergent extension movements (CEMs) during gastrulation and neurulation. We show that overexpression of Crescent in whole embryos or animal caps inhibits CEMs without affecting tissue specification. Consistent with this, Crescent efficiently forms complexes with Xwnt11 and Xwnt5a, in contrast to another sFRP, Frzb1. As expected, the inhibitory effect of Crescent or Xwnt11 on CEMs is cancelled when both proteins are coexpressed in the neuroectoderm. Interestingly, when coexpressed in the dorsal mesoderm, the activity of Xwnt11 is rather enhanced by Crescent. Supporting this finding, the inhibition of CEMs by Crescent in mesodermalized but not neuralized animal caps is reversed by the dominant-negative form of Cdc42, a putative mediator of Wnt/Ca2+ pathway. Antisense morpholino oligos for Crescent impair neural plate closure and elicit microcephalic embryos with a shortened trunk without affecting early tissue specification. These data suggest a potential role for Crescent in head formation by regulating a non-canonical Wnt pathway positively in the adjacent posterior mesoderm and negatively in the overlying anterior neuroectoderm. 相似文献
8.
9.
Calpains are a family of calcium-dependent intracellular cysteine proteases that regulate several physiological processes by limited cleavage of different substrates. The role of Calpain2 in embryogenesis is not clear with conflicting evidence from a number of mouse knockouts. Here we report the temporal and spatial expression of Calpain2 in Xenopus laevis embryos and address its role in Xenopus development. We show that Calpain2 is expressed maternally with elevated expression in neural tissues and that Calpain2 activity is spatially and temporally regulated. Using a Calpain inhibitor, a dominant negative and a morpholino oligonoucleotide we demonstrate that impaired Calpain2 activity results in defective convergent extension both in mesodermal and neural tissues. Specifically, Calpain2 downregulation results in loss of tissue polarity and blockage of mediolateral intercalation in Keller explants without affecting adherens junction turnover. We further show that Calpain2 is activated in response to Wnt5a and that the inhibitory effect of Wnt5a expression on animal cap elongation can be rescued by blocking Calpain2 function. This suggests that Calpain2 activity needs to be tightly regulated during convergent extension. Finally we show that expression of Xdd1 blocks the membrane translocation of Calpain2 suggesting that Calpain2 activation is downstream of Dishevelled. Overall our data show that Calpain2 activation through the Wnt/Ca2+ pathway and Dishevelled can modulate convergent extension movements. 相似文献
10.
Activin-like signaling plays an important role in early embryogenesis. Activin A, a TGF-beta family protein, induces mesodermal/endodermal tissues in animal cap assays. In a screen for genes expressed early after treatment with activin A, we isolated a novel gene, denoted as BENI (Brachyury Expression Nuclear Inhibitor). The BENI protein has a conserved domain at the N-terminus that contains a nuclear localization signal (NLS), and two other NLSs in the C-terminal domain. BENI mRNA was localized to the animal hemisphere at the gastrula stages and to ectoderm except for neural regions at stage 17; expression persisted until the tadpole stage. The overexpression of BENI caused gastrulation defects and inhibition of elongation of activin-treated animal caps with reduction of Xbra expression. Moreover, whole-mount in situ hybridization revealed reduced expression of Xbra in BENI mRNA-injected regions of gastrula embryos. Functional knockdown of BENI using an antisense morpholino oligonucleotide also resulted in an abnormal phenotype of embryos curling to the dorsal side, and excessive elongation of activin-treated animal caps without altered expression of mesodermal markers. These results suggested that BENI expression is regulated by activin-like signaling, and that this regulation is crucial for Xbra expression. 相似文献
11.
Genetic studies substantiate that mesodermal convergent extension expressed behind the anteroposterior borderline, in the form of a gradient with the posterior apex after gastrulation, regulates morphogenesis of the posterior zone at the dorsal and dorso-lateral levels which is in full agreement with the model of dorsalization–caudalization. In contrast, how anteroposterior specification of mesodermal tissues occurs at the ventral and latero-ventral levels is not yet understood. 相似文献
12.
Methods for modeling cellular regulatory networks as diverse as differential equations and Boolean networks co-exist, however, without much closer correspondence to each other. With the example system of the fission yeast cell cycle control network, we here discuss these two approaches with respect to each other. We find that a Boolean network model can be formulated as a specific coarse-grained limit of the more detailed differential equations model for this system. This demonstrates the mathematical foundation on which Boolean networks can be applied to biological regulatory networks in a controlled way. 相似文献
13.
B Kraft CD Berger V Wallkamm H Steinbeisser D Wedlich 《The Journal of cell biology》2012,198(4):695-709
Wnt-11/planar cell polarity signaling polarizes mesodermal cells undergoing convergent extension during Xenopus laevis gastrulation. These shape changes associated with lateral intercalation behavior require a dynamic modulation of cell adhesion. In this paper, we report that Wnt-11/frizzled-7 (Fz7) controls cell adhesion by forming separate adhesion-modulating complexes (AMCs) with the paraxial protocadherin (PAPC; denoted as AMCP) and C-cadherin (denoted as AMCC) via distinct Fz7 interaction domains. When PAPC was part of a Wnt-11-Fz7 complex, its Dynamin1- and clathrin-dependent internalization was blocked. This membrane stabilization of AMCP (Fz7/PAPC) by Wnt-11 prevented C-cadherin clustering, resulting in reduced cell adhesion and modified cell sorting activity. Importantly, Wnt-11 did not influence C-cadherin internalization; instead, it promoted the formation of AMCC (Fz7/Cadherin), which competed with cis-dimerization of C-cadherin. Because PAPC and C-cadherin did not directly interact and did not form a joint complex with Fz7, we suggest that Wnt-11 triggers the formation of two distinct complexes, AMCC and AMCP, that act in parallel to reduce cell adhesion by hampering lateral clustering of C-cadherin. 相似文献
14.
Regulation of focal adhesion formation and filopodia extension by the cellular prion protein (PrPC) 总被引:1,自引:0,他引:1
While the prion protein (PrP) is clearly involved in neuropathology, its physiological roles remain elusive. Here, we demonstrate PrP functions in cell-substrate interaction in Drosophila S2, N2a and HeLa cells. PrP promotes cell spreading and/or filopodia formation when overexpressed, and lamellipodia when downregulated. Moreover, PrP normally accumulates in focal adhesions (FAs), and its downregulation leads to reduced FA numbers, increased FA length, along with Src and focal adhesion kinase (FAK) activation. Furthermore, its overexpression elicits the formation of novel FA-like structures, which require intact reggie/flotillin microdomains. Altogether, PrP modulates process formation and FA dynamics, possibly via signal transduction involving FAK and Src. 相似文献
15.
Jaykrishna Singh Fazle Hussain 《Computer methods in biomechanics and biomedical engineering》2013,16(3):282-292
Cell–cell and cell–matrix adhesions are fundamental to numerous physiological processes, including angiogenesis, tumourigenesis, metastatic spreading and wound healing. We use cellular potts model to computationally predict the organisation of cells within a 3D matrix. The energy potentials regulating cell–cell (JCC) and cell–matrix (JMC) adhesive interactions are systematically varied to represent different, biologically relevant adhesive conditions. Chemotactically induced cell migration is also addressed. Starting from a cluster of cells, variations in relative cell adhesion alone lead to different cellular patterns such as spreading of metastatic tumours and angiogenesis. The combination of low cell–cell adhesion (high JCC) and high heterotypic adhesion (low JMC) favours the fragmentation of the original cluster into multiple, smaller cell clusters (metastasis). Conversely, cellular systems exhibiting high-homotypic affinity (low JCC) preserve their original configuration, avoiding fragmentation (organogenesis). For intermediate values of JCC and JMC (i.e. JCC/JMC ~ 1), tubular and corrugated structures form. Fully developed vascular trees are assembled only in systems in which contact-inhibited chemotaxis is activated upon cell contact. Also, the rate of secretion, diffusion and sequestration of chemotactic factors, cell deformability and motility do not significantly affect these trends. Further developments of this computational model will predict the efficacy of therapeutic interventions to modulate the diseased microenvironment by directly altering cell cohesion. 相似文献
16.
Aims
In the present study, we found that saccharin, an artificial calorie-free sweetener, promotes neurite extension in the cultured neuronal cells. The purposes of this study are to characterize the effect of saccharine on neurite extension and to determine how saccharin enhances neurite extension.Main methods
The analyses were performed using mouse neuroblastoma N1E-115 cells and rat pheochromocytoma PC12 cells. Neurite extension was evaluated by counting the cells bearing neurites and measuring the length of neurites. Formation, severing and transportation of the microtubules were evaluated by immunostaining and western blotting analysis.Key findings
Deprivation of glucose increased the number of N1E-115 cells bearing long processes. And the effect was inhibited by addition of glucose. Saccharin increased the number of these cells bearing long processes in a dose-dependent manner and total neurite length and longest neurite length in each cell. Saccharin also had a similar effect on NGF-treated PC12 cells. Saccharin increased the amount of the microtubules reconstructed after treatment with nocodazole, a disruptor of microtubules. The effect of saccharin on microtubule reconstruction was not influenced by dihydrocytochalasin B, an inhibitor of actin polymerization, indicating that saccharin enhances microtubule formation without requiring actin dynamics. In the cells treated with vinblastine, an inhibitor of microtubule polymerization, after microtubule reorganization, filamentous microtubules were observed more distantly from the centrosome in saccharin-treated cells, indicating that saccharin enhances microtubule severing and/or transportation.Significance
These results suggest that saccharin enhances neurite extension by promoting microtubule organization. 相似文献17.
Membrane anchoring of aminoacyl-tRNA synthetases by convergent acquisition of a novel protein domain
Olmedo-Verd E Santamaría-Gómez J Ochoa de Alda JA Ribas de Pouplana L Luque I 《The Journal of biological chemistry》2011,286(47):41057-41068
Four distinct aminoacyl-tRNA synthetases (aaRSs) found in some cyanobacterial species contain a novel protein domain that bears two putative transmembrane helices. This CAAD domain is present in glutamyl-, isoleucyl-, leucyl-, and valyl-tRNA synthetases, the latter of which has probably recruited the domain more than once during evolution. Deleting the CAAD domain from the valyl-tRNA synthetase of Anabaena sp. PCC 7120 did not significantly modify the catalytic properties of this enzyme, suggesting that it does not participate in its canonical tRNA-charging function. Multiple lines of evidence suggest that the function of the CAAD domain is structural, mediating the membrane anchorage of the enzyme, although membrane localization of aaRSs has not previously been described in any living organism. Synthetases containing the CAAD domain were localized in the intracytoplasmic thylakoid membranes of cyanobacteria and were largely absent from the plasma membrane. The CAAD domain was necessary and apparently sufficient for protein targeting to membranes. Moreover, localization of aaRSs in thylakoids was important under nitrogen limiting conditions. In Anabaena, a multicellular filamentous cyanobacterium often used as a model for prokaryotic cell differentiation, valyl-tRNA synthetase underwent subcellular relocation at the cell poles during heterocyst differentiation, a process also dependent on the CAAD domain. 相似文献
18.
The process of controlling bacterial adhesion using an electric current deserves attention because of its ease of automation and environmentally friendly nature. This study investigated the role of electric currents (negative, positive, alternating) for preventing adhesion of Pseudomonas aeruginosa and achieving bacterial inactivation. Indium tin oxide (ITO) film was used as a working electrode to observe adhesion and inactivation under electric polarization. Electric current types were classified into negative, positive, and alternating current. The working electrode acted as a cathode or anode by applying a negative or positive current, and an alternating current indicates that the negative current was combined sequentially with the positive current. The numbers of adhered cells were compared under a flow condition, and the in situ behavior of the bacterial cells and the extent of their inactivation were also investigated using time-lapse recording and live/dead staining, respectively. The application of a negative current prevented bacterial adhesion significantly (~81% at 15.0 μA cm?2). The positive current did not significantly inhibit adhesion (<20% at 15.0 μA cm?2), compared to the nonpolarized case. The alternating current had a similar effect as the negative current on preventing bacterial adhesion, but it also exhibited bactericidal effects, making it the most suitable method for bacterial adhesion control. 相似文献
19.
S. V. Popov R. G. Ovodova G. Yu. Popova I. R. Nikitina Yu. S. Ovodov 《Russian Journal of Bioorganic Chemistry》2007,33(1):175-180
The inhibition of the adhesion of neutrophils to fibronectin by the fragments of the main galacturonan chain of the following pectins was demonstrated: comaruman from the marsh cinquefoil Comarum polustre, bergenan from the Siberian tea Bergenia crassifolia), lemnan from the duckweed Lemna minor), zosteran from the eelgrass Zostera marina), and citrus pectin. The parent pectins, except for comaruman, did not affect the cell adhesion. Galacturonans prepared from the starting pectins by acidic hydrolysis were shown to reduce the neutrophil adhesion stimulated by phorbol 12-myristate 13-acetate (1.625 μM) and dithiothreitol (0.5 mM) at a concentration of 50–200 μg/ml. The presence of carbohydrate chains with molecular masses higher than 300, from 100 to 300, and from 50 to 100 kDa in the galacturonan fractions was proved by membrane ultrafiltration. 相似文献
20.
The focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK) exists in monomeric closed (c) or arm exchanged (ae) dimeric state. FAT interaction with Grb2 necessitates an intermediate open (o) state that interacts with Grb2 and activates signaling pathways leading to pathological cardiac hypertrophy. Targeted molecular dynamics (TMD) simulation was carried out in order to capture the structure of the intermediate formed by opening of Helix1 (H1) from monomeric cFAT leading to the formation of monomeric aeFAT. During TMD, H1 separated from the four helices bundle of cFAT, completely unfolded and performed a full turn before folding back to a helix inclined at an acute angle to the helical bundle in aeFAT. The entire transition can be described in six distinct intermediate structural stages. The most significant correlation of H1 motion was observed with Loop3 (L3) and is the likely reason for the complete disruption of the FAT interaction with paxillin during the transition. High-affinity analogs of the paxillin LD4 region can be a promising strategy to drive the equilibrium towards cFAT, thus antagonizing FAT-Grb2 association. During transition, the overall shift in orientation of all the four helices rejects paxillin binding and approves Grb2 association. Exposure and β-turn conformation of the YENV motif (residues 925-928) in oFAT-facilitated phosphorylation and Grb2 binding. Docking, MD simulation and conservation analysis of oFAT-Grb2 complex provided insight into the structural determinants of binding and specificity. Our work provides a structural basis for pharmacological modulation of dynamic conformational changes and interactions of FAT. 相似文献