首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The molar ratio of α-MSH:β-endorphin varies markedly among discrete microdissected regions of rat brain ranging from 0.57 in the median eminence to 2.74 in the lateral septum. This finding demonstrates that α-MSH and β-endorphin (β-END) are not uniformly distributed in a 1:1 molar ratio in rat brain as one might predict based on the consideration that the two peptides are synthesized in equimolar amounts as part of a common precursor molecule, pro-opiomelanocortin. The data indicate instead that the concentrations of α-MSH and β-END, the two predominant peptides expressed by opiomelantropinergic neurons, are independently regulated in rat brain. The heterogeneity of α-MSH:β-END ratios suggests that the regulation of α-MSH and β-END is regionally specific and may impart functional selectivity to the multisecretory opiomelanotropinergic neuronal system.  相似文献   

3.
Angiotensin II regulation of L-type calcium currents in cardiac muscle is controversial and the underlying signaling events are not completely understood. Moreover, the possible role of auxiliary subunit composition of the channels in Angiotensin II modulation of L-type calcium channels has not yet been explored. In this work we study the role of Ca(v)β subunits and the intracellular signaling responsible for L-type calcium current modulation by Angiotensin II. In cardiomyocytes, Angiotensin II exposure induces rapid inhibition of L-type current with a magnitude that is correlated with the rate of current inactivation. Semi-quantitative PCR of cardiomyocytes at different days of culture reveals changes in the Ca(v)β subunits expression pattern that are correlated with the rate of current inactivation and with Angiotensin II effect. Over-expression of individual b subunits in heterologous systems reveals that the magnitude of Angiotensin II inhibition is dependent on the Ca(v)β subunit isoform, with Ca(v)β(1b) containing channels being more strongly regulated. Ca(v)β(2a) containing channels were insensitive to modulation and this effect was partially due to the N-terminal palmitoylation sites of this subunit. Moreover, PLC or diacylglycerol lipase inhibition prevents the Angiotensin II effect on L-type calcium channels, while PKC inhibition with chelerythrine does not, suggesting a role of arachidonic acid in this process. Finally, we show that in intact cardiomyocytes the magnitude of calcium transients on spontaneous beating cells is modulated by Angiotensin II in a Ca(v)β subunit-dependent manner. These data demonstrate that Ca(v)β subunits alter the magnitude of inhibition of L-type current by Angiotensin II.  相似文献   

4.
The acid-sensing ion channels (ASICs) are members of the DEG/ENaC superfamily of Na+ channels. Acid-gated cation currents have been detected in neurons from multiple regions of the brain including the cerebellum, but little is known about their molecular identity and function. Recently, one of ASICs (ASIC1a) was implicated in synaptic plasticity. In this study we examined the subcellular distribution of ASIC2a in rat cerebellum by immunostaining and confocal microscopy. Monoclonal antibodies for labeling of defined brain structures, for example, astroglia, Purkinje cell dendrites, nuclei, and presynaptic terminals were used for colocalization analyses. In the gray matter, the anti-ASIC2a antibody intensively stained dendrite branches of Purkinje cells evenly distributed throughout the entire molecular layer (ML). In the granule cell layer (GL), anti-ASIC2a antibody stained synaptic glomeruli. Neuronal localization of ASIC2a was confirmed by lack of co-staining with glial fibrillary acidic protein. Anti-ASIC2a staining in the ML colocalized with metabotropic glutamate receptor 1alpha (mGluR1alpha) in Purkinje cell dendrites and dendritic spines. Both proteins, mGluR1alpha and ASIC2a, were enriched in a crude synaptic membrane fraction prepared from cerebellum, suggesting synaptic expression of these proteins. Dual staining with anti-syntaxin 1A and anti-ASIC2a antibodies demonstrates characteristic complementary distribution of two proteins in both ML and GL. Because syntaxin 1A localized in presynaptic membranes and synaptic vesicles, complementary distribution with ASIC2a suggests postsynaptic localization of ASIC2a in these structures. This study shows specific localization of ASIC2a in both Purkinje and granule cell dendrites of the cerebellum and enrichment of ASIC2a in a crude cerebellar synaptic membrane fraction. The study is the first report of synaptic localization of ASIC2a in the CNS. The synaptic localization of ASIC2a in the cerebellum makes this channel a candidate for a role in motor coordination and learning.  相似文献   

5.
6.
The opioid system regulates food choice, consumption, and reinforcement processes, especially for palatable meals such as fatty food. β-Endorphin is known as an endogenous opioid peptide produced in neurons of the hypothalamus. In this study, we found that Intralipid (fat emulsion) ingestion increased c-fos expression in β-endorphin neurons. However, intragastric infusion of Intralipid only slightly increased c-fos expression 2h after infusion. Further, dissection of glossopharyngeal nerve, innervating posterior tongue taste buds, partially but significantly decreased the Intralipid-induced c-fos expression. These results indicate that mainly the orosensory stimulation from fat may activate β-endorphin neurons, thereby promoting β-endorphin release.  相似文献   

7.
Cell volume is central to osmoregulation in intact cells. Bovine spermatozoa, as also other mammalian spermatozoa, exhibit a very rapid regulatory volume decrease (RVD) when exposed to hypotonic saline media. This response, fastest known in animal cells, is mediated by a putative potassium channel which the pharmacological properties of a conventional channel and yet admits both electrolytes and non-electrolytes. The evolutionary basis and functional role of this conserved quinine-sensitive channel in mammalian sperm could offer hitherto unexplored facets of the link(s) between ecology and reproduction.  相似文献   

8.
Ca2+-dependent K+ efflux from human erythrocytes was first described in the 1950s. Subsequent studies revealed that a K+-specific membrane protein (the Gárdos channel) was responsible for this phenomenon (the Gárdos effect). In recent years several types of Ca-activated K+ channel have been identified and studied in a wide range of cells, with the erythrocyte Gárdos channel serving as both a model for a broader physiological perspective, and an intriguing component of erythrocyte function.The existence of this channel has raised a number of questions. For example, what is its role in the establishment and maintenance of ionic distribution across the red cell membrane? What role might it play in erythrocyte development? To what extent is it active in circulating erythrocytes? What are the cell-physiological implications of its dysfunction?This review summarises current knowledge of this membrane protein with respect to its function and structure, its physiological roles (some putative) and its contribution to various disease states, and it provides an introduction to adaptable NMR methods, which is our own area of technical expertise, for such ion transport analysis.  相似文献   

9.
10.
Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous group of retinal diseases leading to blindness. By performing full genome linkage analysis in a consanguineous French family affected with severe autosomal recessive RP, we have excluded linkage to known loci involved in RP and mapped a novel locus to chromosome 16q13-q21 (Zmax=2.83 at theta=0 at the D16S3089 locus). Two candidate genes KIFC3 and CNGB1 mapping to this critical interval have been screened for mutations. The CNGB1 gene, which encodes the beta-subunit of the rod cGMP-gated channel, is mutated in the family presented in this study.  相似文献   

11.
Molecular and Cellular Biochemistry - Membrane fluidity is the most important physiochemical property of cell membranes and governs its functional attributes. The current investigations were...  相似文献   

12.
The role of the serotonergic mechanism in the regulation of β-endorphin (β-EP) and adrenocorticotropin (ACTH)-like immunoreactivity in plasma was investigated. Increases in β-EP and ACTH-LI produced by quipazine maleate (QPZ), a serotonergic agonist, 1 hr after injection could be completely prevented by the serotonin (5-HT) antagonist, cinanserin (CIN), which when injected alone, decreased basal plasma concentrations of both β-EP-LI and ACTH-LI. Concurrent injections of L-5-HTP with the 5-HT reuptake inhibitor, fluoxetine, produced an additive increase in plasma β-EP-LI 1 hr after injection. Injection of the 5-HT antagonist, cyproheptadine, significantly decreased plasma β-EP-LI. Stress by immobilization for 30 min or exposing the rats to 40° ± 1°C for 30 min produced an approximate 4-fold increase in plasma β-EP-LI and ACTH-LI, which was potentiated by I.P. injections of fluoxetine. Furthermore, the stress induced increases in plasma concentrations of β-EP-LI and ACTH-LI were significantly reduced by the serotonin antagonists metergoline and cinanserin. These results suggest that 5-HT is a potent stimulator of both β-EP and ACTH release and the increase in plasma concentrations of ACTH and β-EP induced by stress are probably mediated, at least in part, by central serotonergic mechanisms.  相似文献   

13.
Bursicon is the main regulator of post molting and post eclosion processes during arthropod development. The active Bursicon hormone is a heterodimer of Burs-α and Burs-β. However, adult midguts express Burs-α to regulate the intestinal stem cell niche. Here, we examined the potential expression and function of its heterodimeric partner, Burs-β in the adult midgut. Unexpectedly, our evidence suggests that Burs-β is not significantly expressed in the adult midgut. burs-β mutants displayed the characteristic developmental defects but showed wild type-like adult midguts, thus uncoupling the developmental and adult phenotypes seen in burs-α mutants. Gain of function data and ex vivo experiments using a cAMP biosensor, demonstrated that Burs-α is sufficient to drive stem cell quiescence and to activate dLGR2 in the adult midgut.

Our evidence suggests that the post developmental transactivation of dLGR2 in the adult midgut is mediated by Burs-α and that the β subunit of Bursicon is dispensable for these activities.  相似文献   


14.
15.
Protists embrace many species, some of which may be either occasional or permanent parasites of vertebrate animals. Between the parasite species, several of medical and veterinary importance are vector-transmitted. The ecology and epidemiology of vector-borne parasitoses, including babesiosis, leishmaniasis and malaria, are particularly complex, as they are influenced by many factors, such as vector reproductive efficiency and geographical spread, vectorial capacity, host immunity, travel and human behaviour and climatic factors. Transmission dynamics are determined by the interactions between pathogen, vector, host and environmental factors and, given their complexity, many different types of mathematical models have been developed to understand them. A good basic knowledge of vector-pathogen relationships and transmission dynamics is thus essential for disease surveillance and control interventions and may help in understanding the spread of epidemics and be useful for public health planning.  相似文献   

16.
The spleen from a patient with hairy-cell leukaemia had β-N-acetylhexosaminidase activity that could be resolved into three isoenzymes by chromatography on phenyl boronate agarose. Two of these were the major forms, A and B, found in normal tissues but, in addition, there was an ‘extra’ form that accounted for 15% of total activity. The ‘extra’ form hydrolysed the synthetic substrate 4-methylumbelliferyl-β-N-acetylglucosamine 6-sulphate, indicating the presence of α-subunits. It was more acidic than A, was less heat-stable and showed no generation of B on denaturation under a variety of conditions. These findings and the immunoblot (Western blotting) analysis demonstrate that the ‘extra’ form is entirely composed of α-subunits, and most closely resembles S, the residual activity in Sandhoff's disease.  相似文献   

17.
Recently, we reported that mutation A1529D in the domain (D) IV P-loop of the rat skeletal muscle Na(+) channel mu(1) (DIV-A1529D) enhanced entry to an inactivated state from which the channels recovered with an abnormally slow time constant on the order of approximately 100 s. Transition to this "ultra-slow" inactivated state (USI) was substantially reduced by binding to the outer pore of a mutant mu-conotoxin GIIIA. This indicated that USI reflected a structural rearrangement of the outer channel vestibule and that binding to the pore of a peptide could stabilize the pore structure (Hilber, K., Sandtner, W., Kudlacek, O., Glaaser, I. W., Weisz, E., Kyle, J. W., French, R. J., Fozzard, H. A., Dudley, S. C., and Todt, H. (2001) J. Biol. Chem. 276, 27831-27839). Here, we tested the hypothesis that occlusion of the inner vestibule of the Na(+) channel by the fast inactivation gate inhibits ultra-slow inactivation. Stabilization of the fast inactivated state (FI) by coexpression of the rat brain beta(1) subunit in Xenopus oocytes significantly prolonged the time course of entry to the USI. A reduction in USI was also observed when the FI was stabilized in the absence of the beta(1) subunit, suggesting a causal relation between the occurrence of the FI and inhibition of USI. This finding was further confirmed in experiments where the FI was destabilized by introducing the mutations I1303Q/F1304Q/M1305Q. In DIV-A1529D + I1303Q/F1304Q/M1305Q channels, occurrence of USI was enhanced at strongly depolarized potentials and could not be prevented by coexpression of the beta(1) subunit. These results strongly suggest that FI inhibits USI in DIV-A1529D channels. Binding to the inner pore of the fast inactivation gate may stabilize the channel structure and thereby prevent USI. Some of the data have been published previously in abstract form (Hilber, K., Sandtner, W., Kudlacek, O., Singer, E., and Todt, H. (2002) Soc. Neurosci. Abstr. 27, program number 46.12).  相似文献   

18.
Summary A peptide immunochemically related to -endorphin was detected in some LH-RH neurons of the fetal human hypothalamus by comparison of adjacent sections stained for -endorphin and for LH-RH. In the same section, by successive staining and after antibody elution, both peptides were again revealed in the same neuron. The significance of the presence of the -endorphin-like material in LH-RH neurons is discussed.  相似文献   

19.
Mutations in the gene encoding ether-à-go-go (EAG) potassium channel impair the function of several classes of potassium currents, synaptic transmission, and learning in Drosophila. Absence of EAG abolishes the modulation of a broad group of potassium currents. EAG has been proposed to be a regulatory subunit of different potassium channels. To further explore this regulatory role we searched for signaling molecules that associate with EAG protein. We have purified a approximately 95-kDa protein from rat brain membranes that binds to EAG. When co-expressed in mammalian cells this protein coimmunoprecipites with EAG and alters the gating of EAG channels. Expression of this protein is regulated during neuronal differentiation. The protein is identical to the recently reported rat protein epsin, which is an EH domain-binding protein similar to the Xenopus mitotic phosphoprotein MP90. These results show that proteins of the epsin family are modulators of channel activity that may link signaling pathways, or the cell cycle, to EAG and thus to various potassium channel functions.  相似文献   

20.
Hypokalemia modulatesα- andβ-adrenoceptor bindings in rat skeletal muscle   总被引:1,自引:0,他引:1  
Changes in the population of adrenergic alpha- and beta-receptors were examined in rat soleus muscles during hypokalemia by their direct determination using radiolabeled ligands. Only beta-adrenoceptors were detected in the normal rat muscles. Hypokalemia led to a pronounced decrease in beta-adrenoceptors, the number of [3H]DHA binding sites, by 50%, as compared with that in the normal rats. There was a genesis of alpha 1-adrenoceptors in hypokalemic rat muscles, since the competitive potency of adrenergic drugs against [3H]prazosin binding was in the order prazosin much greater than phentolamine greater than (+/-)-noradrenaline greater than yohimbine much greater than (+/-)-isoproterenol. The reduction of [3H]DHA binding sites was accompanied by an increase of an approximately equal amount in high-affinity [3H]prazosin binding sites. The Kd determined by kinetic analysis of [3H]prazosin binding was calculated from the ratio K-1/K1 that gave a value of 3.05 nM, which generally agreed with the 1.83 nM determined by saturation experiments (Scatchard plot). This phenomenon of a reduction in the beta-adrenoceptors and the occurrence of alpha 1-adrenoceptors in muscles during hypokalemia is discussed. alpha- and beta-adrenoceptors on soleus muscle membrane may play important but opposite roles in modulating potassium release from the muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号