首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dissociation of purified erythrocyte Ca(2+)-ATPase by hydrostatic pressure.   总被引:2,自引:0,他引:2  
Subunit interactions in the Ca(2+)-ATPase from erythrocyte plasma membranes were investigated through a combination of fluorescence spectroscopy and high-pressure techniques. Application of hydrostatic pressure in the range of 1 bar to 2.4 kbar promoted full dissociation of the ATPase, as revealed by spectral shifts of the intrinsic fluorescence emission and by changes in the fluorescence polarization of dansyl-conjugated ATPase. Pressure dissociation of the ATPase displayed a dependence on protein concentration compatible with dissociation of a dimer. Calculated from pressure-dissociation curves, the standard volume change dV0 for the association of subunits was 43-50 ml/mol and K0, the dissociation constant at atmospheric pressure, was 6-9 x 10(-8) M. Addition of Ca2+ stabilized the dimeric ATPase structure against pressure dissociation, whereas addition of vanadate facilitated dissociation by pressure. These results suggest that intersubunit interactions depend on the equilibrium between the two major conformational states E1 and E2 of the ATPase. Addition of calmodulin in the presence of Ca2+ had no additional effect when compared to that observed in the presence of Ca2+ alone. This finding is interpreted in terms of the mechanism of calmodulin activation of ATPase catalysis.  相似文献   

2.
The stability of bromegrass mosaic virus (BMV) and empty shells reassembled in vitro from purified BMV coat protein was investigated under hydrostatic pressure, using solution small-angle neutron scattering. This technique allowed us to monitor directly the dissociation of the particles, and to detect conformational changes preceding dissociation. Significant dissociation rates were observed only if virions swelled upon increase of pressure, and pressure effects became irreversible at very high-pressure in such conditions. At pH 5.0, in buffers containing 0.5 M NaCl and 5 mM MgCl(2), BMV remained compact (radius 12.9 nm), dissociation was limited to approximately 10 % at 200 MPa, and pressure effects were totally reversible. At pH 5.9, BMV particles were slightly swollen under normal pressure and swelling increased with pressure. The dissociation was reversible to 90 % for pressures up to 160 MPa, where its rate reached 28 %, but became totally irreversible at 200 MPa. Pressure-induced swelling and dissociation increased further at pH 7.3, but were essentially irreversible. The presence of (2)H(2)O in the buffer strongly stabilized BMV against pressure effects at pH 5.9, but not at pH 7.3. Furthermore, the reversible changes of the scattered intensity observed at pH 5.0 and 5.9 provide evidence that pressure could induce the release of coat protein subunits, or small aggregates of these subunits from the virions, and that the dissociated components reassociated again upon return to low pressure. Empty shells were stable at pH 5.0, at pressures up to 260 MPa. They became ill-shaped at high-pressure, however, and precipitated slowly after return to normal conditions, providing the first example of a pressure-induced conformational drift in an assembled system.  相似文献   

3.
The effects of hydrostatic pressure on the extracellular hemoglobin of Glossoscolex paulistus were investigated by studies of light scattering, intrinsic protein fluorescence, filtration chromatography, and oxygen binding. Pressure promoted a large decrease of light scattering consistent with the dissociation of the hemoglobin. Pressures up to 1.7 kbar caused dissociation with reversibility of the light scattering and fluorescence properties after return to atmospheric pressure. Higher pressures provoked additional dissociation with increasing loss of reversibility. After complete dissociation by incubation at 2.5 kbar followed by decompression, the protein continued mostly dissociated. The dissociated forms were distributed in two populations as based on size exclusion chromatography, one corresponding to small dissociated units (average Mr = 33,000) and the other population corresponding to the one-twelfth subunit (260,000 Mr). The pressure dissociation curves showed no significant dependence on protein concentration suggesting that the native hemoglobin population exists in a distribution of free-energies of association. Both the decrease of concentration dependence and the loss of ability to reassemble seem to increase with the complexity and size of the protein aggregate. These findings permit the conclusion that increased heterogeneity of free-energies of association with the size of the aggregate may result in the molecular individuality of large protein complexes such as subcellular particles and viruses.  相似文献   

4.
The effect of guanidine hydrochloride on ATPase activity, gel filtration, turbidity, and the fluorescence emission intensity of mitochondrial F1-ATPase was examined. Purified F1 from bovine heart mitochondria was slowly inactivated at low denaturant concentration, and inactivation was associated with delta and epsilon subunit dissociation. delta and epsilon subunits were bound together to form a stable and soluble heterodimer. In parallel, appearance of turbidity was observed. This was caused by the formation of alpha3beta3gamma non-covalent aggregates, as analyzed by SDS-PAGE. Short periods of exposition of the F1 complex to high concentrations of guanidine hydrochloride (0.8-3 M) again induced deltaepsilon dissociation as a heterodimer and the formation of an inactive alpha3beta3gamma subcomplex. This eventually dissociated progressively into single subunits caused by partial unfolding, as evidenced through changes of the protein intrinsic fluorescence emission. Our results suggest that the delta and epsilon subunits are loosely bound to alpha3beta3gamma , and play an important role in determining structural stability to isolated mitochondrial F1-ATPase.  相似文献   

5.
F-actin purified from rabbit skeletal muscle undergoes reversible dissociation when subjected to hydrostatic pressures up to 240 MPa. Dissociation and reversibility were detected by the following procedures: fluorescence spectral changes observed under pressure, when either intrinsic tryptophan or pyrenyl emission of N-(1-pyrenyl)iodoacetamide-labeled actin were monitored; electron microscopy of samples fixed under pressure; size-exclusion HPLC of pressurized actin. The effect of pressure upon F-actin that had been polymerized in the presence of either Mg2+, Ca2+ or K+ was studied. The standard volume changes for the association of actin subunits, calculated from pressure/dissociation curves were 74 +/- 14 ml/mol for Mg-F-actin, 79 +/- 12 ml/mol for Ca-F-actin and 328 +/- 63 ml/mol for K-F-actin, indicating that actin subunits are packed differently in the polymer depending on which cation is present. All pressure/dissociation data could be fitted by a model for dissociation of a dimer, which suggests that in the F-actin filament there is a predominant intersubunit interaction interface, most likely the head-to-tail intrastrand interaction between two subunits which repeats itself along the polymer. A tenfold change in total protein concentration from 20 micrograms to 200 micrograms/ml Mg-F-actin did not cause a change in the pressure required for half-maximal dissociation. This indicates a heterogeneity of free energy of association among actin monomers in the Mg-F-actin polymer, suggesting that, in addition to the predominant intersubunit interaction, the disordered interactions in the filament significantly contribute to the heterogeneity of microenvironments in the interface between the subunits.  相似文献   

6.
Effect of hydrostatic pressure on the mitochondrial ATP synthase   总被引:2,自引:0,他引:2  
The effects of hydrostatic pressure on three different preparations of mitochondrial H+-ATPase were investigated by studies of the hydrolytic activity, of the spectral shift and quantum yield of the intrinsic protein fluorescence, and of filtration chromatography. Both membrane-bound and detergent-solubilized forms of the mitochondrial F0-F1 complex were reversibly inactivated in the pressure range of 600-1800 bar, whereas with soluble F1-ATPase the inactivation was irreversible. Pressure inactivation of soluble F1-ATPase was facilitated by decreasing the protein concentration, indicating that dissociation is an important factor. In the presence of 30% glycerol, soluble F1-ATPase becomes inactivated by pressure in a reversible fashion, recovering the original activity. ATPase activity measured in an aqueous medium returns to the original values when incubated under high pressure in a glycerol-containing medium without substrate and is even enhanced when Mg-ATP is present. ATP hydrolysis returns to 80% of its original value in the case of the F0-F1 complex. Fluorescence studies under pressure revealed a red shift in the spectral distribution of the emission of tyrosine fluorescence of soluble F1-ATPase. A decrease in the quantum yield of intrinsic fluorescence was also observed upon subjection to pressure. The fluorescence intensity decreased monotonically as a function of pressure when the sample was in an aqueous medium, whereas it presented a biphasic behavior in a 30% glycerol medium. Gel filtration studies demonstrated that the hydrodynamic properties of the F1-ATPase are preserved if the enzyme is subjected to pressure in the presence of glycerol but they are modified when the same procedure is performed in an aqueous medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The yellow fluorescent protein from coral (zFP538) forms aggregates in water solutions. According to dynamic light scattering and gel filtration data, the aggregation number is approximately 1000-10000 at pH 8-9 and protein concentration 1 mg/mL. Gel filtration demonstrated that dissociation of the aggregates takes place upon dilution, and the molecular weight of the aggregates decreases with pH. Atomic force microscopy (AFM) and near-field scanning optical microscopy (NSOM) were used to obtain images of zFP538 in the solid state. It was shown that protein films are comprised of fluorescent ellipsoidal granules with a 50-300 nm major axis and a 30-130 nm minor axis. The dependence of zFP538 fluorescence on protein concentration between 1.2 x 10(-)(9) and 5.5 x 10(-)(7) M can be divided in two linear regions with different slopes indicating the existence of at least two different forms of zFP538. The fluorescence of zFP538 decreases with time upon acidification, and the decrease depends on pH and protein concentration. Between pH 3.5 and pH 5.5, relative residual fluorescence is higher for concentrated zFP538 solutions (about 10(-)(6) M) as compared with diluted ones (10(-)(7) M and below). Aggregation makes zFP538 more stable against fluorescence quenching upon acidification: the decrease in zFP538 fluorescence at protein concentration 1 mg/mL is completely reversible, unlike that observed for less concentrated solutions. This phenomenon may be due to the decrease in the freedom of chromophore mobility in zFP538 aggregates.  相似文献   

8.
The dissociation of mu- and m-calpains was studied by fluorescence spectroscopy under high hydrostatic pressure (up to 650 MPa). Increasing pressure induced a red shift of the tryptophan fluorescence of the calcium-free enzyme. The concentration dependence of the spectral transition was consistent with a pressure-induced dissociation of the subunits. Rising temperature increased the stability of calpain heterodimers and confirmed the predominance of hydrophobic interactions between monomers. At saturating calcium, the spectral transition was not observed for native or iodoacetamide-inactivated calpains, indicating that they were already dissociated by calcium. The reaction volume was about -150 ml mol-1 for both isoforms, and the dissociation constants at atmospheric pressure are approximately 10-12 M and 10-15 M for mu- and m-calpains, respectively. This result indicates a tighter interaction in the isoform that requires higher calcium concentration for activity.  相似文献   

9.
An immobilized metal affinity (IMA) hollow-fiber membrane was prepared by radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto a porous polyethylene hollow fiber, followed by chemical conversion of the produced epoxide group into an iminodiacetate (IDA) group and its chelation with copper(II) ion. The IDA hollow fiber, whose degree of GMA grafting was 120%, was found to retain 0.42 mol of Cu ion/kg of dry weight of the resulting IMA hollow fiber. The pure water flux of the affinity membrane was 0.90 m/h at a filtration pressure of 1 x 10(5) Pa. The 0.1 g/L L-histidyl-L-leucine (His-Leu) solution permeated across the IMA hollow fiber, whose inner diameter and thickness were 0.78 and 0.365 mm, respectively, at a prescribed filtration pressure ranging from 0.2 x 10(5) to 1.0 x 10(5) Pa. The adsorption of His-Leu during permeation of the solution showed that the overall adsorption rate was independent of the filtration pressure, i.e., the residence time, because of the negligible diffusional resistance of His-Leu to the pseudobioaffinity ligand located on the pore surface of the membrane. No deterioration in the adsorption capacity was observed after five cycles of His-Leu adsorption, its elution, and reimmobilization of copper. The adsorption isotherm of bovine serum albumin (BSA) on the IMA hollow fiber was measured and compared with that for the conventional agarose-based bead containing the IDA-Cu ligand.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
S Pin  C A Royer  E Gratton  B Alpert  G Weber 《Biochemistry》1990,29(39):9194-9202
The dissociation of the subunits of human adult oxyhemoglobin has been investigated by using steady-state fluorescence anisotropy, multifrequency phase fluorometry, and high hydrostatic pressure. Human hemoglobin obtained by using two purification procedures (bulk preparation by centrifugation or further fractionation using anion-exchange chromatography) was labeled with an extrinsic fluorescent probe, 5-(dimethylamino)naphthalene-1-sulfonyl chloride (DNS-Cl). The long fluorescence lifetime of this probe allows for the observation of the macromolecular tumbling, and thus provides a method for observing changes in the size of the complex upon subunit dissociation under differing solution conditions of proton and organic phosphate concentration. At pH 7, the dansylated preparations of bulk and fractionated hemoglobin showed a concentration-dependent decrease in the anisotropy which though not identical can only arise from the tetramer to dimer dissociation. We observed primarily the dimer at pH 9 and a small destabilization of the tetramer in the presence of saturating inositol hexaphosphate (IHP). High-pressure experiments allowed for the observation of the dissociation of the hemoglobin dimer into monomers. From these measurements, we estimate the dimer dissociation constant to be between 0.1 and 1 nM. We compare the present results on the subunit affinities in hemoglobin obtained from steady-state and time-resolved fluorescence data with those obtained previously by using gel filtration, sedimentation, and kinetic techniques. These comparisons are indicative of a certain degree of conformational heterogeneity in the hemoglobin preparations.  相似文献   

11.
Preparation of apolipoprotein B (Apo B)-deoxycholate (DOC) complexes by gel filtration chromatography in the presence of 20 mM DOC, pH 8.5, gave two populations of particles with 5% (peak I) and 13% (peak II) lipid remaining bound. These complexes were initially shown to be very large and elongated, with partition radii of approx. 131 +/- 0.5 A, weight average molecular weights of approx. 164 000 +/- 1 000, and an intrinsic viscosity of 80.19 +/- 2.21 ml/g. Additionally, they appeared very similar to native low-density lipoprotein on sodium dodecyl sulfate-polyacrylamide gels, giving one major band. Incubation of these samples for 10 days under nitrogen at 4 degrees C in the presence of antibiotics and protease inhibitor resulted in dissociation to many smaller subunits. Results of scanning molecular sieve chromatography and analytical ultracentrifugation showed that dissociation of these complexes was relatively slow and indicated the presence of at least two classes of components in fresh samples: one a very elongated complex with a radius directly correlated to the DOC/Apo B ratio and inversely correlated to sample aging; and another of much smaller radius which was independent of DOC/Apo B ratio but directly correlated to sample aging; indicating that these dissociated subunits interact with each other to an appreciable extent. Furthermore, these complexes were found to undergo a preferential hydration upon interaction with DOC, which may contribute to large changes in their effective specific volumes, as well as to dissociation of subunits.  相似文献   

12.
1. The hemocyanin of the freshwater snail, Marisa cornuarietis exists predominantly as a di-decamer with the approximate mol. wt of 8.5 x 10(6) and a sedimentation coefficient of 100 S. Sedimentation and scanning transmission electron microscopy experiments indicate that about 15-20% of the hemocyanin forms tri-decameric and possibly higher aggregates with mol. wts of 12.5 x 10(6) and 130 S. 2. The fully dissociated subunits in 8.0 M urea and 6.0 M GdmCl have mol. wts of 4.1 to 4.7 x 10(5) which is close to one-twentieth of the major di-decameric component of the native hemocyanin. 3. Subunit dissociation by the urea series and the Hofmeister salt series of reagents suggests hydrophobic stabilization of the decamers or half-molecules of the parent hemocyanin. As with the other molluscan hemocyanins the order of effectiveness of the ureas as dissociating agents shows increased efficacy with increasing hydrophobicity or chain-length of the urea substituents. 4. Denaturation of the hemocyanin subunits by the ureas and Hofmeister salt series, investigated by circular dichroism measurements, essentially follow the same trend in effectiveness as observed by changes in subunit dissociation followed by light-scattering mol. wt measurements. 5. The observed denaturation transitions are shifted to much higher ranges of reagent concentration than the concentrations required for the dissociation of the hemocyanin subunits.  相似文献   

13.
The dissociation of pyruvate oxidase (PO) caused by pressure up to 220 MPa at various conditions was explored by measuring the intrinsic fluorescence spectra and polarization. At 5 degrees C and pH 7.6 the standard volume change (deltaV0) and free energy upon dissociation of the enzyme is -220 ml/mol and 29.83 kCal/mol, respectively. It was found that FAD was irreversibly removed during the pressure-dissociation of the enzyme. A much smaller standard volume change (-153 ml/mol) and lower free energy (24.92 kCal/mol) of apo-pyruvate oxidase (apo-PO) compared with the native enzyme indicated that FAD played very important role in stabilizing the enzyme and significantly influenced the standard volume change. The substrate pyruvic acid can significantly stabilize the enzyme against pressure in spite the standard volume for the enzyme in this case has a big increase relative to the native enzyme. The comparison of the intrinsic fluorescence of the native and the activated enzyme obtained by limited proteolysis indicated that the physical separation of alpha-peptide from the enzyme only occurred when the subunits were dissociated from each other under pressure.  相似文献   

14.
The pressure-induced denaturation of rabbit skeletal myosin and its subfragments under hydrostatic pressure were investigated. Four nanometer of red shift of the intrinsic fluorescence spectrum was observed in myosin under a pressure of 400 MPa. The ANS fluorescence of myosin increased with elevating pressure. Changes in the intrinsic fluorescence spectra of myosin and its subfragments were quantified and expressed as the center of spectral mass. The center of spectral mass of myosin and its subfragments linearly decreased with elevating pressure, and increased with lowering pressure. The fluorescence intensity of the ANS-labeled rod did not change during pressure treatment. The present results indicate that the most pressure-sensitive portion of myosin molecule is the head. Hysteresis of the center of spectral mass of S1 appeared under pressures above 300 MPa. Changes in the center of spectral mass of S1 above 350 MPa showed stronger hysteresis. The center of spectral mass did not decrease above 350 MPa during the compression process, indicating that S1 was stable in a partially denatured state at 350 MPa under pressure. The changes in the relative intensities of ANS fluorescence of S1 were measured under pressures up to 400 MPa, and the ANS fluorescence intensity increased with elevating pressure but it did not change after pressure release. The ANS fluorescence intensity increased under constant pressure suggesting that the pressure-induced denaturation of myosin was accelerated during pressurization.  相似文献   

15.
The osmotic properties of sulphoethyl-Sephadex. A model for cartilage   总被引:1,自引:1,他引:0  
1. Observations are reported on the variation of the swelling of sulphoethyl-Sephadex C-50 and C-25, and of the partition of NaCl between solution and gel, with the concentration of NaCl. 2. The results were interpreted in terms of Manning's (1969) treatment of the interactions between polyionic polymers and simple electrolytes and of Flory's (1953) treatment of the swelling of gels. 3. The results indicate net inner osmotic pressures as high as 3.6x10(5)Pa (140 mosmolar=3.6x10(5)N/m(2)) in 0.15m-NaCl. 4. It is suggested that cartilage may have net inner osmotic pressure of the order of 10(5)Pa.  相似文献   

16.
Rates of sulfate reduction (SR) and anaerobic oxidation of methane (AOM) in hydrothermal deep-sea sediments from Guaymas Basin were measured at temperatures of 5 to 200 degrees C and pressures of 1 x 10(5), 2.2 x 10(7), and 4.5 x 10(7) Pa. A maximum SR of several micromoles per cubic centimeter per day was found at between 60 and 95 degrees C and 2.2 x 10(7) and 4.5 x 10(7) Pa. Maximal AOM was observed at 35 to 90 degrees C but generally accounted for less than 5% of SR.  相似文献   

17.
Monomer and dimer of myeloma IgA human globulins are isolated by means of electrophoresis, ionic exchange chromatography, gel filtration and immunoadsorbtion. They are shown to be homogenous (using analytical ultracentrifugation and immunochemical analysis) and to differ in their antigenic specificity. Dimeric form of IgA has additional antigenic determinants, which depend on the intactness of a polymer structure and which are destroyed after protein dissociation into subunits in the presence of beta-mercaptoethanol. Reconstructed polymers are polydispersed subunit aggregates, they do not have polymeric determinants inherent to native polymers.  相似文献   

18.
L Erijman  G Weber 《Biochemistry》1991,30(6):1595-1599
Transfer of electronic excitation energy (sensitized fluorescence) between donor and acceptor fluorophores separately attached to dimer or tetramer proteins is used to demonstrate the exchange of subunits among the undissociated particles. In dimers subjected to a pressure that produces half-dissociation, the exchange occurs at a rate that approaches the rate of dissociation. In the tetramers of glyceraldehydephosphate dehydrogenase and lactate dehydrogenase at 0 degrees C, the times for subunit exchange are nearly 2 orders of magnitude, and at room temperature 5-10 times longer than the time required to reach the dissociation equilibrium. By application of a novel method, pressure is shown to preferentially increase the rate of dissociation in dimers and decrease the rate of association in tetramers. From these observations, we conclude that the tetramers constitute a heterogeneous population, the members of which are dissociated by pressure according to individual molecular properties that can be retained over periods of time much longer than the time for equilibration of the dissociation. The dissociation of dimers exhibits the characteristics of the classical stochastic chemical equilibria, while those of the tetramers, like the more complex protein aggregates, must already be considered similar to the deterministic mechanical equilibria of macroscopic bodies.  相似文献   

19.
C A Royer  G Weber  T J Daly  K S Matthews 《Biochemistry》1986,25(25):8308-8315
Dissociation of lac repressor tetramer by high hydrostatic pressures was monitored with intrinsic tryptophan fluorescence. With the assumption of complete dissociation to monomer, tryptophan polarization data gave delta V a approximately 170 mL/mol and the concentration for 50% tetramer dissociation, C1/2, was 3.8 X 10(-8) M. Upon addition of inducer, the calculated delta V a increased to approximately 220 mL/mol and the C1/2 decreased to approximately 1 X 10(-8) M, a free energy difference of approximately 0.7 kcal. These results indicate a modest stabilization of the tetramer by the presence of inducer. Monitoring the average energy of tryptophan emission demonstrated that tetramer dissociation takes place over the same range of pressures as evidenced by the polarization data and IPTG dissociation can be more or less superimposed upon tetramer dissociation depending upon the ligand concentration used. Although the two transitions cannot be separated entirely, the delta V a for the region of the pressure dependence dominated by ligand dissociation was 69 mL/mol, an unexpectedly large value. For tetramer modified with methyl methanethiosulfonate, subunit dissociation was shifted to much higher pressures and IPTG dissociation did not occur. The delta V a for subunit association was calculated as approximately 160 mL/mol, and the C1/2 was 3.5 X 10(-9) M. Interactions at the subunit interface of the modified protein are apparently stronger than in the unmodified protein. The absence of inducer dissociation from the MMTS-modified tetramer by the application of high hydrostatic pressure suggests that the volume change for inducer binding to the modified protein is much smaller than that observed for the unmodified repressor.  相似文献   

20.
As an effort to elucidate the quaternary structure of cyclomaltodextrinase I-5 (CDase I-5) as a function of pH and salt concentration, the dissociation/association processes of the enzyme were investigated under various pH and salt conditions. Previous crystallographic analysis of CDase I-5 indicated that it existed exclusively as a dodecamer at pH 7.0, forming an assembly of six 3D domain-swapped dimeric subunits. In the present study, analytical ultracentrifugation analysis suggested that CDase I-5 was present as a dimer in the pH range of 5.0-6.0, while the dodecameric form was predominant at pH values above 6.5. No dissociation of the dodecamer was observed at pH 7.0 and the above. Gel filtration chromatography showed that CDase I-5 dissociated into dimers at a rate of 8.58 x 10(-2) h(-1) at pH 6.0. A mutant enzyme with three histidine residues (H49, H89, and H539) substituted with valines dissociated into dimers faster than the wild-type enzyme at both pH 6.0 and 7.0. The tertiary structure indicated that the effect of pH on dissociation of the oligomer was mainly due to the protonation of H539. Unlike the pH-dependent process, the dissociation of wild-type CDase I-5 proceeded very fast at pH 7.0 in the presence of 0.2-1.0 M of KCl. Stopped-flow spectrophotometric analysis at various concentrations of KCl showed that the rate constants of dissociation (kd) from dodecamers into dimers were 5.96 s(-1) and 7.99 s(-1) in the presence of 0.2 M and 1.0 M of KCl, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号