首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estrogen has been shown to protect osteoblastic cells from apoptosis. Similarly, estrogen treatment preceding heat shock elevates heat shock protein 27 (hsp27) expression and increases thermoresistance in the murine estrogen receptor-transformed SMER14 osteoblastic cell line. Forced expression of hsp27 expression in other cell lines limits apoptosis. The purpose of this study was to examine the effects of estrogen on staurosporine-induced apoptosis in the context of hsp27 expression. Cell viability was measured by the MTT assay. Early apoptotic events were examined by fluorescent microscopy by using FITC-conjugated Annexin V staining. TUNEL labeling was used to compare the number of apoptotic nuclei following staurosporine treatment of estrogen pretreated or untreated cells. Estrogen treatment increased SMER14 cell viability, but not ROS17/2.8 cell viability, in the presence of staurosporine. Estrogen treatment also reduced annexin V staining and DNA fragmentation. Similar treatment increased SMER14 cell hsp27 levels. The concurrent reduction in induced apoptosis suggests a possible estrogenic mechanism for increasing and/or maintaining the number of viable osteoblasts in bone.  相似文献   

2.
Estrogen plays important roles in preparing mammary tissue for lactation. However, estrogen also influences innervation in some tissues. We examined the effect of estrogen on peripheral innervation of mammary tissues of ovariectomized adult virgin female rats. Seven days after ovariectomy, 17beta-estradiol or placebo pellets were implanted subcutaneously, and tissues were harvested 1 week later. Estrogen treatment decreased mammary gland mass and adipocyte content, while ductal content increased and vascular composition was unaffected. Estrogen increased total areas occupied by nerves in mammary gland sections immunostained for the pan-neuronal marker protein gene product 9.5, and this increase persisted after normalizing for treatment-induced differences in gland mass. Although a significant increase in tyrosine hydroxylase-immunoreactive sympathetic nerve area was observed, no difference was detected following correction for differences in gland size, implying a conserved number of sympathetic nerves in the face of reduced gland volume. Calcitonin gene-related peptide-immunoreactive sensory nerve sectional area was also increased, and corrected nerve area remained 88% greater, indicating nerve proliferation during estrogen treatment. Total, sensory, and sympathetic innervation of the nipple and adjacent dermal tissue were unaffected by estrogen. We conclude that chronic estrogen elevation induces selective proliferation of rat mammary gland calcitonin gene-related peptide-containing nerves, which are associated primarily with blood vessels and are probably nociceptors. Because they are likely to subserve a vasodilatory function, increased innervation may promote increased blood flow necessary for milk formation during suckling. Moreover, these findings may help explain abundant anecdotal reports of increased breast sensitivity in humans under high estrogen conditions.  相似文献   

3.
雌激素信号通路概述   总被引:1,自引:0,他引:1  
过去几十年,人们一直认为雌激素信号通路是雌激素与细胞核中的雌激素受体(ER)结合,作用于雌激素受体反应元件调节基因表达,从而改变细胞功能。雌激素不但与核ER结合,也能与膜ER结合激活PI3K信号通路。G蛋白偶联受体(GPR30)也能与雌激素结合,激活PI3K信号通路。雌激素通过结合不同雌激素受体改变细胞生理功能。我们对雌激素信号通路做简要综述。  相似文献   

4.
The concentrations of plasma estrogens, progesterone, and corticosteroids and of urinary pregnanediol, pregnanetriol, ketogenic steroids, and corticosteroids were determined as indicators of ovarian and adrenal function throughout a normal sow's estrous cycle. Two broad peaks of plasma estrogen, one lasting 11–12 days during estrus and another 6-day peak period during the early part of the luteal phase were detected. Plasma progesterone was elevated during the late follicular and luteal phase. Two broad peaks of plasma corticoids appeared, one following the decrease of plasma progesterone and the second 7–14 days later. Those elevations in plasma corticoids occurred when estrogen titres were elevated. Urinary determinations generally reflected plasma findings. Estrogen levels began to rise during the follicular phase while a reasonably high progesterone level was evident. Estrogen titres never decreased to non-detectable levels. An interrelationship between adrenal function and ovarian estrogen production is suggested.  相似文献   

5.
Estrogen increases bone formation by promoting mineralization and prolonging the lifespan of osteoblasts. To understand the underlying molecular mechanism/s, we identified estrogen-regulated proteins at different stages of human osteoblast differentiation using differential proteomics approach. Among the identified proteins, we observed that estrogen upregulated RAB3GAP1 on day 1 and 5 of differentiation. RAB3GAP1 is critically involved in the process of autophagy, a eukaryotic degradative pathway essential for cell survival. We, therefore, investigated the effect of estrogen on autophagy in differentiating human osteoblasts and their precursors, the mesenchymal stem cells (MSCs). MSCs exhibited high autophagic flux which declined during osteoblast differentiation, resulting in high basal apoptosis in osteoblasts. Estrogen reduced apoptosis in differentiating osteoblasts by promoting autophagy, thus contributing towards their longer lifespan. Further, MSCs were resistant against starvation-induced apoptosis, whereas, differentiating osteoblasts showed significant susceptibility towards it. Estrogen, in addition to promoting mineralization, protected differentiating osteoblasts from starvation-induced apoptosis by increasing autophagic flux. Autophagic flux in RAB3GAP1 knockdown osteoblasts appeared diminished, and showed increased apoptosis even in nutrient-rich conditions, and exhibited significantly impaired mineralization. However, irrespective of the presence of estrogen, starvation further enhanced apoptosis in these cells. Furthermore, estrogen failed to promote mineralization in these osteoblasts. Our study illustrates that autophagy is essential for human osteoblast survival and mineralization, and osteoblasts are susceptible to apoptosis due to reduced autophagy during differentiation. Estrogen, via upregulation of RAB3GAP1, promotes autophagy in osteoblasts during differentiation thereby increasing their survival and mineralization capacity. Our study demonstrates the positive role of autophagy in bone homeostasis.  相似文献   

6.
The effect of estradiol-17-beta on lipids of the ventricular myocardium of mice has been studied with a cytochemical technique in which malachite green was added to glutaraldehyde. This malachite green-glutaraldehyde fixative enhances the visualization of certain phospholipid-related elements. Estrogen induces an affinity of ventricular cardiac lipid inclusions for the cationic dye malachite green. The staining affinity is evidenced only in the estrous female, not in diestrus. In oophorectomized animals, malachite green staining is seen only following estradiol injection, but this effect is blocked by progesterone. In the male, ventricular lipids do not stain, nor do they develop malachite green affinity with estrogen stimulation. These results imply a blockade of the estradiol-mediated dye affinity by progesterone and testosterone. This reinforces the concept of the heart as a target organ for sex steroids and expands the previously described estrogen effects on myocardium.  相似文献   

7.
Estrogen has been reported to inhibit apoptosis in vascular endothelial cells. However, its precise mechanism still remains to be elucidated. Here we determined the role of Akt in the anti-apoptotic effect of estrogen. 17Beta-estradiol prevented the apoptosis induced by TNF-alpha in bovine aortic endothelial cells, as evaluated by double staining with fluorescein isothiocyanate-conjugated annexin V and propidium iodide. Introducing a dominant negative mutant of Akt by using a cell-penetrating peptide of Tat protein inhibited the anti-apoptotic effect of estrogen in a concentration-dependent manner, and resulted in the complete inhibition of the anti-apoptotic effect of 17beta-estradiol at 1nM and higher concentrations. The dominant negative mutant without the cell-penetrating peptide and Tat peptide-conjugated protein A had no effect. The intracellular protein transduction was confirmed by immunoblot analysis. Our observations thus provide first direct evidence that Akt plays a central role in the anti-apoptotic effect of estrogen in vascular endothelial cells.  相似文献   

8.
Estrogen plays important roles in preparing mammary tissue for lactation. However, estrogen also influences innervation in some tissues. We examined the effect of estrogen on peripheral innervation of mammary tissues of ovariectomized adult virgin female rats. Seven days after ovariectomy, 17β‐estradiol or placebo pellets were implanted subcutaneously, and tissues were harvested 1 week later. Estrogen treatment decreased mammary gland mass and adipocyte content, while ductal content increased and vascular composition was unaffected. Estrogen increased total areas occupied by nerves in mammary gland sections immunostained for the pan‐neuronal marker protein gene product 9.5, and this increase persisted after normalizing for treatment‐induced differences in gland mass. Although a significant increase in tyrosine hydroxylase‐immunoreactive sympathetic nerve area was observed, no difference was detected following correction for differences in gland size, implying a conserved number of sympathetic nerves in the face of reduced gland volume. Calcitonin gene‐related peptide‐immunoreactive sensory nerve sectional area was also increased, and corrected nerve area remained 88% greater, indicating nerve proliferation during estrogen treatment. Total, sensory, and sympathetic innervation of the nipple and adjacent dermal tissue were unaffected by estrogen. We conclude that chronic estrogen elevation induces selective proliferation of rat mammary gland calcitonin gene‐related peptide‐containing nerves, which are associated primarily with blood vessels and are probably nociceptors. Because they are likely to subserve a vasodilatory function, increased innervation may promote increased blood flow necessary for milk formation during suckling. Moreover, these findings may help explain abundant anecdotal reports of increased breast sensitivity in humans under high estrogen conditions. © 2004 Wiley Periodicals, Inc. J Neurobiol 59: 192–204, 2004  相似文献   

9.
Estrogen is known to be anabolic for bone and we have used estrogen treatment as a paradigm to understand how p53 may affect osteoblast differentiation. In previous studies we have shown estrogen treatment to increase p53 functional activity in osteoblasts. Estrogen has been suggested to inhibit apoptosis in osteoblasts. Since the significance of a p53 increase during estrogen treatment is not apparent, we investigated the environment within osteoblasts after treatment with estrogen. We observed two peaks of p53 activity during continuous treatment of 17-[beta]-estradiol (E2) for 72h. The gene expression profile of different cell cycle regulators and apoptosis related genes at different times during treatment with 17-[beta]-estradiol were tested using gene arrays. There was an early increase in expression of several genes involved in apoptosis. This was followed by changes in expression of several genes involved in cell survival and stress response. The second peak of activity was associated with increase in expression of cell cycle regulators. Our results suggest that p53 activity may be a result of activation of several signaling pathways involving apoptosis, cell survival and cell cycle arrest. P53 may have a role in integrating these responses, which eventually results in cell cycle arrest and expression of differentiation markers.  相似文献   

10.
The influence of different estrogen and/or progesterone treatments on concentrations of A and B forms of progesterone receptor (PR-A and PR-B) in the different cell types of chick oviduct was studied. A semiquantitative immunohistochemical assay for cellular PR concentrations was developed using a computer-assisted image analysis system. The staining intensity of nuclear PR in the basal layer of epithelial cells, glandular, smooth muscle and mesothelial cells was analysed separately using two monoclonal antibodies, PR6 and PR22. The measured concentrations of PR varied between different cell types and from cell to cell. A significant decrease in PR concentration, as noted by a decrease in staining intensity, was observed in all cell types studied 2 or 6 h after a single injection of progesterone with or without simultaneous estrogen administration. The decrease was also verified with immunoblotting and an immunoenzymometric assay (IEMA) for chicken PR. After down-regulation the concentration of PR recovered to the control level within 48 h after progesterone or estrogen administration. Estrogen administration alone was observed to cause changes in the concentration of PR-A only, having little or no effect on PR-B concentration depending on the cell type studied.

These findings indicate that estrogen and progesterone cause cell-specific changes not only to the total concentration of PR but also to the cellular ratio of PR-A and PR-B.  相似文献   


11.
12.
Wong KA  Ma Y  Cheng WT  Wong TM 《生理学报》2007,59(5):571-577
雌激素是女性体内主要的类固醇性激素。对于心肌缺血性伤害,切除卵巢的成年雌性大鼠在β-肾上腺素受体激动时,比正常雌性大鼠呈现更严重的心肌损伤:而去卵巢后的雌激素替补组大鼠对β-肾上腺素受体激动时心肌缺血性伤害的反应则又回复到正常雌性大鼠水平,这为雌激素对抗缺血性伤害的心脏保护作用提供了证据。雌激素的这种保护作用是通过下调β1-肾上腺素受体的表达来实现的。也有研究证明,雌激素能抑制蛋白激酶A(protein kinaseA,PKA)的表达和活性,PKA是Gs蛋白/腺苷酸环化酶(adenylyl cyclase,AC)/cAMP/PKA通路的第二信使,而该通路最终影响心肌的收缩功能。有初步证据表明雌激素还能抑制β1-肾上腺素受体通路下游的另一种第二信使钙调蛋白激酶Ⅱ.δc(Ca^2+/calmodulin kinaseⅡ-δc,CaMKⅡ-δc)的活性,而CaMKII-δc参与PKA非依赖性的细胞凋亡。即时给予生理浓度雌激素可不通过雌激素受体而直接抑制心肌β1-肾上腺素受体并减弱Ca^2+内流。此外,脑研究也显示雌激素能抑制负责调节动脉血压脑区的β1-肾上腺素受体活性。因此,雌激素和β1-肾上腺素受体之间的相互作用及其信号通路十分复杂。雌激素不仅主导性别决定,在机体其它功能例如心脏保护方面也具有重要作用。  相似文献   

13.
雌激素是女性体内主要的类固醇性激素.对于心肌缺血性伤害,切除卵巢的成年雌性大鼠在β-肾上腺素受体激动时,比正常雌性大鼠呈现更严重的心肌损伤;而去卵巢后的雌激素替补组大鼠对β-肾上腺素受体激动时心肌缺血性伤害的反应则又回复到正常雌性大鼠水平,这为雌激素对抗缺血性伤害的心脏保护作用提供了证据.雌激素的这种保护作用是通过下调β1-肾上腺素受体的表达来实现的.也有研究证明,雌激素能抑制蛋白激酶A(protein kinase A,PKA)的表达和活性,PKA是Gs蛋白/腺苷酸环化酶(adenylyl cyclase,AC)/cAMP/PKA通路的第二信使,而该通路最终影响心肌的收缩功能.有初步证据表明雌激素还能抑制β1-肾上腺素受体通路下游的另一种第二信使钙调蛋白激酶Ⅱ-δc(Ca2+/calmodulin kinase Ⅱ-δc,CaMKⅡ-δc)的活性,而CaMKⅡ-δc参与PKA非依赖性的细胞凋亡.即时给予生理浓度雌激素可不通过雌激素受体而直接抑制心肌β1-肾上腺素受体并减弱Ca2+内流.此外,脑研究也显示雌激素能抑制负责调节动脉血压脑区的β广肾上腺素受体活性.因此,雌激素和β1-肾上腺素受体之间的相互作用及其信号通路十分复杂.雌激素不仅主导性别决定,在机体其它功能例如心脏保护方面也具有重要作用.  相似文献   

14.
Estrogen is a powerful neuroprotective agent in rodent models of ischemic stroke. However, in humans, estrogen treatment can increase risk of stroke. Health risks associated with hormone replacement have led many women to consider alternative therapies including high-soy diets or supplements containing soy isoflavones, which act as estrogen receptor ligands to selectively mimic some of estrogen's actions. We hypothesized that a high-soy diet would share the neuroprotective actions of estrogen in focal cerebral ischemia. Female Sprague-Dawley rats were ovariectomized and divided into three groups: isoflavone-free diet + placebo (IF-P), isoflavone-free diet + estradiol (IF-E), or high-soy diet + placebo (S-P). Two weeks after being placed on diets, rats underwent left permanent middle cerebral artery occlusion (MCAO). Reductions in ipsilateral cerebral blood flow were equivalent across groups ( approximately 50%). Twenty-four hours later neurological deficit was determined, and brains were collected for assay of cerebral infarct by TTC staining. In the IF-P rats MCAO produced a 50 +/- 4% cerebral infarct. Estrogen and high-soy diet both significantly reduced the size of the infarcts to 26 +/- 5% in IF-E rats and to 37 +/- 5% in S-P rats. Analysis at five rostro-caudal levels revealed that estrogen treatment was slightly more effective at reducing infarct size than high soy diet. Overall neurological deficit scores at 24 h correlated with infarct size; however, there were no statistically significant differences among the treatment groups. These data show that 2 wk of a high-soy diet is an effective prophylactic strategy for reducing stroke size in a rat model of focal cerebral ischemia.  相似文献   

15.
目的分析比格犬下丘脑-垂体-性腺轴,雌二醇β受体剪切异构体的存在情况。方法根据NCBI数据库上的比格犬雌二醇受体的基因序列,设计两对特异性引物,以比格犬的卵巢、子宫、下丘脑和垂体的总RNA为模板进行反转录,并利用两对特异性引物扩增比格犬雌二醇受体的基因,对其中的主要条带进行克隆测序。结果获得了比格犬雌二醇受体的全长cDNA序列,对主要条带进行克隆测序的结果表明,该序列是一种比格犬雌二醇受体的剪切异构体。结论比格犬雌二醇β受体剪切异构体与小鼠和人的组成有较大的不同,需要进一步系统研究。  相似文献   

16.
17.
Estrogen increases proliferation and migration of cultured endothelial cells and perfusion of ischemic hindlimbs of rabbits. We tested the hypothesis that estrogen is angiogenic and arteriogenic in the heart during progressive coronary occlusion. Ovariectomized (OVX) and 17beta-estradiol (1 mg.kg(-1).wk(-1) im)-treated OVX (OVX-ES) female New Zealand White rabbits were instrumented with an ameroid occluder on a proximal coronary artery. Four weeks after implantation of an ameroid occluder, we measured myocardial perfusion with microspheres at rest and during adenosine-induced maximal vasodilation. The heart was fixed by perfusion at physiological pressure, and capillary angiogenesis and remodeling were assessed by image analysis of tissue sections in collateral-dependent myocardium. Coronary conductance was higher at rest and during maximal vasodilation in collateral-dependent myocardium of OVX-ES than OVX rabbits. Estrogen treatment increased the wall-to-lumen ratio of collateral vessels while it decreased the wall-to-lumen ratio of noncollateral arteries in normal regions. In normal and collateral-dependent myocardium, mean capillary diameter and capillary volume density were greater in OVX-ES rabbits. However, estrogen had no effect on capillary length density in either region of the myocardium. These data suggest that estrogen induces remodeling of the collateral vasculature and may stimulate growth of the resistance vessels, thereby providing protection during development of a gradual coronary occlusion.  相似文献   

18.
19.
Estrogen alters reactivity of cerebral arteries by modifying production of endothelium-dependent vasodilators. Estrogen receptors (ER) are thought to be involved, but the responsible ER subtype is unknown. ER-alpha knockout (alphaERKO) mice were used to test whether estrogen acts via ER-alpha. Mice were ovariectomized, with or without estrogen replacement, and cerebral blood vessels were isolated 1 mo later. Estrogen increased levels of endothelial nitric oxide synthase and cyclooxygenase-1 in vessels from wild-type mice but was ineffective in alphaERKO mice. Endothelium-denuded middle cerebral artery segments from all animals constricted when pressurized. In denuded arteries from alphaERKO but not wild-type mice, estrogen treatment enhanced constriction. In endothelium-intact, pressurized arteries from wild-type estrogen-treated mice, diameters were larger compared with arteries from untreated wild-type mice. In addition, contractile responses to indomethacin were greater in arteries from wild-type estrogen-treated mice compared with arteries from untreated wild-type mice. In contrast, estrogen treatment of alphaERKO mice had no effect on diameter or indomethacin responses of endothelium-intact arteries. Thus ER-alpha regulation of endothelial nitric oxide synthase and cyclooxygenase-1 pathways appears to contribute to effects of estrogen on cerebral artery reactivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号