首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns of cytokeratin and vimentin expression in the human eye   总被引:2,自引:0,他引:2  
We studied the expression of the various cytokeratin (CK) polypeptides and vimentin in tissues of the human eye by applying immunocytochemical procedures using a panel of monoclonal antibodies as well as by performing biochemical analyses of microdissected tissues. Adult corneal epithelium was found to contain significant amounts of the cornea-specific CKs nos. 3 and 12 as well as CK no. 5, and several additional minor CK components. Among these last CKs, no. 19 was found to exhibit an irregular mosaic-like staining pattern in the peripheral zone of the corneal epithelium, while having a predominantly basal distribution in the limbal epithelium. Both the fetal corneal epithelium and the conjunctival epithelium were uniformly positive for CK no. 19. In the ciliary epithelium, co-expression of CKs nos. 8 and 18 and vimentin was detected, whereas in the retinal pigment epithelium, CKs nos. 8 and 18 were dominant. The present data illustrate the remarkable diversity and complexity of CK-polypeptide expression in the human eye, whose significance with respect to histogenetic and functional aspects is, as yet, only partially clear. The unusual distribution of CK no. 19 in different zones of the corneal epithelium may be related to the specific topography of corneal stem cells. The occurrence of the expression of simple-epithelium CKs in the ciliary and pigment epithelium demonstrates that, despite their neuroectodermal derivation, these are true epithelia.  相似文献   

2.
Summary The immunocytochemical localization of cytokeratin and vimentin in rat eye tissues was investigated using a panel of 39 monoclonal antibodies specific for single or multiple of cytokeratin polypeptides and one polyclonal anti CK20 antiserum. The retinal and the ciliary body pigment epithelia only expressed cytokeratins 8 and 18, whereas the fetal retinal pigment epithelium and focally the adult epithelium, in the transition zone of retina and ciliary body, exhibited a reactivity for cytokeratin 19. In contrast, the non-pigmented ciliary epithelium was positive for vimentin only.In the rat conjunctiva distributed goblet cell clusters were selectively stained with cytokeratin 7, 8, 18 and 19 specific monoclonal antibodies. Among them a group of cytokeratin 8 and 18 specific monoclonal antibodies which stained the goblet cells as well as cytokeratin 8 and 18 positive internal controls did not react with either the cytokeratin 8 and 18 positive neuroectodermal cells of the rat eye nor the rat choroid plexus epithelium. This indicates differences in the phenotype e.g. conformational epitope changes, of neuroectodermal derived and other cytokeratins. The corneal and conjunctival epithelium showed a more complex distribution of squamous epithelium type cytokeratins. The limbal region as a transient zone connecting both epithelia exhibited a changing cytokeratin pattern. In general, the study emphasized the necessity to work with an enlarged antibody panel to avoid misleading results in the immunolocalization of cytokeratins.Dedicated to Prof. Dr. H.J. Scharf (Halle, FRG) on the occasion of his 70th birthday  相似文献   

3.
Alternatives to the Draize rabbit eye irritation test are currently being investigated. Because of morphological and biochemical differences between the rabbit and the human eye, continuous human cell lines have been proposed for use in ocular toxicology studies. Single cell-type monolayer cultures in culture medium have been used extensively in ocular toxicology. In the present study, an SV40-immortalised human corneal epithelial (HCE) cell line was characterised immunohistochemically, by using 13 different monoclonal antibodies to cytokeratins (CKs), ranging from CK3 to CK20. The results from the monolayer HCE cell cultures were compared with those from the corneal epithelium of human corneal cryostat sections. Previous studies have shown that the morphology of the HCE cell is similar to that of primary cultured human corneal epithelial cells, and that the cells express the cornea-specific CK3. In the study reported here, we show that the cell line also expresses CKs 7, 8, 18 and 19. These CKs are typically expressed by simple epithelial cells, and are not found in the human cornea in vivo. Therefore, the monolayer HCE cell line grown in culture medium does not express the CK pattern that is typical of human corneal epithelium. This should be taken into consideration when using HCE cell cultures in similar single cell-type experiments for ocular toxicology.  相似文献   

4.
Cytokeratins (CKs) are known as the intermediate filament proteins of epithelial origin. Their distribution in human epithelia is different according to the type of epithelium, state of growth and differentiation. We used monoclonal mouse antibodies against cytokeratins to study CK expression in the following human tissues: cholesteatoma, middle ear mucosa, glandular epithelium, and meatal ear canal epithelium. Immunohistochemical processing was performed using the labeled steptavidin peroxidase method to demonstrate the presence of CKs in cells of human epidermis. Positive reaction was obtained for CK4, CK34betaE12, CK10, CK14 in skin and cholesteatoma epithelium. However, a more extensive positive reaction with those CKs was observed in cholesteatoma epithelium. Positive immunoreactivity was seen with anti- CK19 in the glandular epithelium. Middle ear mucosa specimens revealed positive immunoreactivity with the antibodies against CK4. The expression of CK4 was definitely positive within the basal layers of the epidermis. The glandular epithelium showed no positive reaction with anti- CK4, anti- CK34betaE12, anti- CK14 and anti-CK10. Immunohistochemistry for CK18 showed no reaction in all examined tissues. Cholesteatoma is known as a proliferative disease in the middle ear which pathogenesis is not completely understood. Keratinocytes express hyperproliferation- associated CKs and after reaching the suprabasal layers they finally undergo apoptosis creating keratinous debris. Cytokeratin expression observed in the epithelium explains proliferative behavior of cholesteatoma which is associated with increased keratinocyte migration. Cytokeratins can be used as potential proliferative markers. It can also allow for searching the usefulness of inhibiting regulators in the treatment of hyperproliferative diseases.  相似文献   

5.
The expression of cytokeratins (CKs) 8, 18 and 19 was analyzed in male and female rat gonads from the undifferentiated stage (12.5 days of gestation) until two weeks after birth by indirect immunofluorescence, using specific monoclonal antibodies anti-CK 8 (LE41), anti-CK 19 (LP2K) and anti-CK 18 (LE65 and RGE53). In the undifferentiated blastema, the somatic cells were stained for CK 8 and CK 19, whereas no detectable immunoreactivity for CK 18 was obtained. The same staining CK pattern was observed in ovaries, in the somatic cells of ovigerous cords and in primary follicles. The staining was progressively decreasing in growing follicles after one week after birth. At the onset of testicular differentiation, when the first Sertoli cells differentiate in the gonad of 13.5-day old male fetuses, positive staining for CK 18 became evident, in addition to CK 8 and CK 19 expression. In the following days, CK 8, CK 18 and CK 19 were detected in Sertoli cells in the differentiating seminiferous cords, but progressively the reactivity for CK 19 decreased and was no longer observed after 18.5-19.5 days of gestation. In all cases, CKs were found to be coexpressed with vimentin, and germ cells were negative for both vimentin and CKs. The results reported here show first, that CKs are expressed before sexual differentiation in gonadal blastema in which no epithelial organization is observed, and second, that there is a CK 18/CK 19 shift in expression during morphogenesis of the testis which is not observed in the differentiating ovary. Future studies will have to determine whether these differences in CK expression are due to epitope-masking phenomena or to the regulation of CK synthesis.  相似文献   

6.
Cell types of lung epithelia of mini pigs have been studied using a panel of monoclonal and polyclonal antibodies against cytokeratins (CKs) and vimentin and three lectins before and after radiation-induced fibrosis. In normal tissues, CK18 specific antibodies reacted above all with type II alveolar epithelial cells, while CK7 and pan CK-specific antibodies stained the whole alveolar epithelium. In bronchial epithelial cells, CKs 7, 8, 18 and focally CKs 4 and 13 as well as vimentin were found. Cell specificity of the CK pattern was confirmed by double label immunofluorescence using type II cell-specific Maclura pomifera (MPA) lectin, type I cell specific Lycopersicon esculentum (LEA) lectin and capillary endothelium-binding Dolichos biflorus (DBA) lectin. In experimental pulmonary fibrosis, enhanced coexpression of CK and vimentin was observed in bronchial epithelium. Subtypes of alveolar epithelial cells were no longer easily distinguishable. CK18 was found to be expressed in the entire alveolar epithelium. The gradual loss of the normal alveolar epithelial marker, as seen by the binding of MPA to type I-like cells, of LEA to type II-like cells and the partial loss of MPA-binding to type II cells, was paralleled by the appearance of CK4, typical for squamous epithelia, and the occurrence of DBA-binding in epithelial cells. Implications of these results for general concepts of intermediate filament protein expression and lectin binding in the fibrotic process are discussed.  相似文献   

7.
The cytoskeleton of epithelial and muscle cells of the human iris and ciliary body was analyzed by immunohistochemistry in three morphologically normal formalin-fixed, paraffin-embedded eyes and in 34 eyes containing a uveal melanoma. Both layers of the iris epithelium reacted with monoclonal antibodies (MAb) V9 and Vim 3B4 to vimentin, whereas the ciliary epithelia additionally reacted with MAb CAM 5.2, CK5, KS-B17.2, and CY-90, recognizing cytokeratins 8 and 18. The same cytokeratin MAb labeled the retinal pigment epithelium, which lacked vimentin. The muscle portion of the anterior iris epithelium, which forms the dilator muscle, as well as the sphincter and ciliary muscles, reacted with MAb DE-U-10 to desmin and 1A4 to alpha-smooth muscle actin. The dilator and ciliary muscles also reacted with V9 and Vim 3B4 to vimentin, and some dilator fibers were weakly immunopositive for cytokeratin 8 and 18 with CY-90 and CAM 5.2. The antigenic profile of iris and ciliary epithelia infiltrated by melanoma cells remained unchanged. The intraocular epithelia, which are developmentally related but differ in function, and the intraocular muscles, which differ in origin but are functionally related, have distinct cytoskeletal profiles and may provide insights into the functional significance of intermediate filament expression.  相似文献   

8.
The intermediate filaments (IF) present in the various cells of human ovaries were studied by immunolocalization using antibodies to cytokeratins (CKs), vimentin, desmin and alpha-smooth muscle (-SM) actin. Oocytes revealed a single paranuclear aggregate, which reacted with antibodies to CKs 8, 18 and 19 both in adult and fetal ovaries. The existence of this aggregate was also documented by electron microscopy. Ovarian surface epithelium and granulosa cells consistently coexpressed CKs 8, 18, 19 and vimentin. During follicle maturation vimentin remained unchanged in the granulosa layer while CKs content decreased, showing variation in the amount and distribution of the different CK-types. Thecal cells of secondary and mature follicles showed -SM actin positivity. These contractile fibres increased in mature follicles. Ordinary fibrous stromal cells showed isolated cells which were desmin and -SM actin positive. A similar pattern of IF expression and distribution existed in all stages of development in fetal and embryonic ovaries. These results indicate that CKs are present in human oocytes and that the coexpression of vimentin and CKs can be regarded as a peculiar feature of all ovarian cell types except oocytes and ordinary stromal cells. Contractile properties have been documented associated with a modification in expression of IF proteins. This is likely to represent an integral part of folliculogenesis along with the functional hormone-dependent changes.  相似文献   

9.
Summary Using digoxigenin-labelled cRNA probes, relationships between morphological characteristics and in situ hybridization for cytokeratin (CK)-mRNAs were analysed in cases of squamous-cell carcinoma of variable differentiation and in balloon-cell formation within the oesophageal mucosa. The present results were correlated to our previous findings on normal oesophageal epithelium. Our results from in situ hybridization study on oesophageal squamous-cell carcinoma provide strong evidence that changes in CK expression occur with differences in malignant potential. Cells of poorly differentiated carcinoma lose an ability to produce CK-mRNAs characteristic of their normal progenitor cells. Moderately differentiated and, still more pronounced, well differentiated carcinoma cells retain an ability to produce CKs characteristic of their tissue of origin (CK 6, CK 14, CK 15 and CK 19). Furthermore, well differentiated carcinoma cells may also gain an ability to synthesize new types of CKs that are not characteristic of the normal oesophageal epithelium (CK 8 and CK 18 characteristic of most simple epithelia, and CK 10 characteristic of keratinizing epithelia). Moreover, some oesophageal CK-genes are expressed in an obviously higher amount (CK 6, CK 14, and CK 19), but the expression of genes coding for the oesophageal differentiation-related CKs (CK 4 and CK 13) is obviously decreased or apparently lost. At the interface zone, observed in sections of well differentiated carcinomas, CK 8 and CK 18 mRNA were expressed in intermediate cell layers, and the centrally located cell layers were found positive for CK 10 mRNA. These findings largely extend the existing results from immunoblotting and immunohistochemical studies. The reduced or non-detectable expression of oesophageal differentiation-related CK-mRNAs (CK 4 and CK 13) on the appearance of balloon cells, suggests molecular changes that may be a marker for pathological progression. In addition, the abundant expression of CK 6 and CK 14 mRNA within areas of balloon-cell formation showing basal hyperplasia, and the higher expression of CK 19 in comparison with normal epithelium, points rather to de-differentiation than to normal vertical differentiation of the oesophageal epithelium. Whether CK-mRNAs can be used as biomarkers for evaluation of oesophageal pathologies remains to be further elucidated.  相似文献   

10.
Rat liver epithelial cells (LECs) are non-parenchymal proliferating cells that readily emerge in primary culture and can be established as cell lines, but their in vivo cell(s) of origin is unclear. We reported recently some evidence indicating that the LEC line, T51B, contains two cytokeratins (CKs) equivalent to human CK8 and CK14 respectively. T51B cells also contain vimentin assembled as a network of intermediate filaments distinct from that of the CKs. In the present study, we examined the expression of CK14 gene in various LEC preparations and a Triton-resistant rat skin cytoskeletal fraction, and then assessed its usefulness as an LEC specific marker in the liver. Northern and Western blot analyses with cDNAs and antibodies for CK8, CK14, CK18 and vimentin confirmed that rat hepatocytes express CK8 and CK18 genes only, whereas T51B cells express CK8, CK14 and vimentin genes in the absence of CK18. CK14 was also present in LECs derived as primary from embryonic-day 12 rat liver and secondary cultures from 4-day-old rat liver. Primary cultures of oval cells isolated from 3'-methyl-4-dimethylaminoazobenzene (3'-Me-DAB) treated rat liver (an enriched source of biliary epithelial cells) contained CK14 mRNAs which were slightly shorter than those in LECs. The analyses of CK5 (the usual partner of CK14) gene expression using specific cDNA and antibody clearly demonstrated its absence in LECs. In situ double immunolocalization analyses by laser scanning confocal microscopy showed that CK14 was not present in hepatocytes (HES6+ cells) and was expressed in some biliary epithelial (BDS7+ cells). CK14-positive cells were also found in the Glisson's capsule. However, CK14-positive cells of the portal region were vimentin negative, whereas those of the Glisson's capsule were vimentin positive. Our results suggest that CK14 gene expression is part of the differentiation program of two types of LECs and that this differential CK14 gene expression can be used as a new means to type LECs in culture and in vivo.  相似文献   

11.
Water is a major component of the eye, and water channels (aquaporins) are ubiquitous in ocular tissues, and quite abundant at their different locations. AQP1 is expressed in corneal endothelium, lens epithelium, ciliary epithelium, and retinal pigment epithelium. AQP3 is expressed in corneal epithelium, and in conjunctival epithelium. AQP4 is expressed in ciliary epithelium and retinal Muller cells. AQP5 is expressed in corneal epithelium, and conjunctival epithelium. AQP0 is expressed in lens fiber cells. It is known that five ocular tissues transport fluid, namely: (1) Corneal endothelium; (2) Conjunctival epithelium; (3) Lens epithelium; (4) Ciliary epithelium; (5) Retinal pigment epithelium. For the corneal endothelium, aquaporins are not the main route for trans-tissue water movement, which is paracellular. Instead, we propose that aquaporins allow fast osmotic equilibration of the cell, which is necessary to maintain optimal rates of fluid movement since the cyclic paracellular water transfer mechanism operates separately and tends to create periodic osmotic imbalances (τ~5s).  相似文献   

12.
A C Knapp  W W Franke 《Cell》1989,59(1):67-79
Intermediate filaments (IFs) of the cytokeratin (CK) type are cytoskeletal elements typical for epithelial differentiation. However, in diverse transformed culture lines of non-epithelial origin, rare cells emerge spontaneously, which synthesize, in addition to their vimentin IFs, CKs 8 and 18. We enriched such cells by cloning and studied the level(s) of regulation at which these changes occur. We found that in SV40-transformed fibroblasts the CK 18 gene is constitutively transcribed into translatable mRNA but that the protein is rapidly degraded in the absence of its complex partner, CK 8. In contrast, cells immunocytochemically positive for CK IFs contained both CKs 8 and 18, which apparently stabilized in heterotypic complexes. These findings and related observations of active genes for CKs 8 and/or 18 in several other transformed non-epithelial cell lines indicate that the genes for CKs 18 and, less frequently, 8 can be active in diverse different non-epithelial cell lines; synthesis of type I and type II CK pair partners can be uncoupled; control of CK IF formation can take place at different levels. We suggest that the intrinsic instability of the inactive state of these genes is responsible for the occurrence of CKs 8 and 18 in certain non-epithelial tissues and tumors, a caveat in tumor diagnosis.  相似文献   

13.
The various epithelial cells of the lower respiratory tract and the carcinomas derived from them differ markedly in their differentiation characteristics. Using immunofluorescence microscopy and two-dimensional gel electrophoresis of cytoskeletal proteins from microdissected tissues we have considered whether cytokeratin polypeptides can serve as markers of cell differentiation in epithelia from various parts of the human and bovine lower respiratory tract. In addition , we have compared these protein patterns with those found in the two commonest types of human lung carcinoma and in several cultured lung carcinoma cell lines. By immunofluorescence microscopy, broad spectrum antibodies to cytokeratins stain all epithelial cells of the respiratory tract, including basal, ciliated, goblet, and alveolar cells as well as all tumor cells of adenocarcinomas and squamous cell carcinomas. However, in contrast, selective cytokeratin antibodies reveal cell type-related differences. Basal cells of the bronchial epithelium react with antibodies raised against a specific epidermal keratin polypeptide but not with antibodies derived from cytokeratins characteristic of simple epithelia. When examined by two-dimensional gel electrophoresis, the alveolar cells of human lung show cytokeratin polypeptides typical of simple epithelia (nos. 7, 8, 18 and 19) whereas the bronchial epithelium expresses, in addition, basic cytokeratins (no. 5, small amounts of no. 6) as well as the acidic polypeptides nos. 15 and 17. Bovine alveolar cells also differ from cells of the tracheal epithelium by the absence of a basic cytokeratin polypeptide. All adenocarcinomas of the lung reveal a "simple-epithelium-type" cytokeratin pattern (nos. 7, 8, 18 and 19). In contrast, squamous cell carcinomas of the lung contain an unusual complexity of cytokeratins. We have consistently found polypeptides nos. 5, 6, 8, 13, 17, 18 and 19 and, in some cases, variable amounts of cytokeratins nos. 4, 14 and 15. Several established cell lines derived from human lung carcinomas (SK-LU-1, Calu -1, SK-MES-1 and A-549) show a uniform pattern of cytokeratin polypeptides (nos. 7, 8, 18 and 19), similar to that found in adenocarcinomas. In addition, vimentin filaments are produced in all the cell lines examined, except for SK-LU-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The roles of the different molecular domains of intermediate filament (IF) proteins in the assembly and higher order organization of IF structures have recently been studied by various groups but with partially controversial results. To examine the requirement of the aminoterminal (head) and the carboxyterminal (tail) domain of cytokeratins (CKs) for de novo IF formation in the living cell, we have constructed cDNAs coding for intact as well as head- and/or tail-less human CKs 8 and 18 and the naturally tail-less human CK 19, all under the control of the human beta-actin promoter. After transient and stable transfections of mouse 3T3-L1 cells, which are devoid of any CKs, we have studied, with such constructs, the resulting gene products by gel electrophoresis and immunolocalization techniques. By light and electron microscopy we show that extended cytoplasmic IF meshworks are formed from pairs of the type II CK 8 with the type I CKs 18 or 19 as well as from pairs of tail-less CK 8 with tail-less CKs 18 or 19 in the transfected cells, proving that the absence of the tail domain in both types of CKs does not prevent the de novo formation of regular IFs. Most surprisingly, however, we have observed spectacular alterations in the nucleocytoplasmic distribution of the IFs formed from tail-less CKs. In many of the transfected cells, a large part, or all, of the detectable CKs was found to occur in extensive IF bundles in the nucleoplasm. Intranuclear accumulations of CK deposits, however mostly nonfibrillar, were also observed when the cells had been transfected with cDNAs encoding tail-less CKs also lacking their head domains, whereas CKs deleted only in the head domain were found exclusively in the cytoplasm. The specific domain requirements for the assembly of cytoplasmic IF bundles are discussed and possible mechanisms of intranuclear accumulation of IFs are proposed.  相似文献   

15.
We aimed to examine the distribution of SEPT4, SEPT5, and SEPT8 in the human eye. For each septin, five to six normal human eyes were examined by immunohistochemical staining of paraffin sections using polyclonal antibodies against SEPT4, SEPT5, and SEPT8 and an avidin biotin complex immunodetection system. SEPT4 immunoreactivity (IR) was detected primarily in the epithelium of cornea, lens, and nonpigmented ciliary epithelium; in the endothelium of cornea and vessels of iris and retina; and in the retinal nerve fiber layer, the outer plexiform layer, the outer segments of the photoreceptor cells, the inner limiting membrane of the optic nerve head, and optic nerve axons. SEPT5-IR was present in corneal endothelial cells, iris tissue, nonpigmented ciliary epithelium, and epithelial cells of the lens. SEPT8-IR almost paralleled that of SEPT4, except for a lower SEPT8-IR of the outer photoreceptor segments and a positive staining of the meningothelial cell nests in the subarachnoidal space of the bulbar segment of the orbital optic nerve. In conclusion, SEPT4, SEPT5, and SEPT8 are expressed in various ocular tissues, each revealing a distinct expression pattern. Both physiological and potential pathophysiological role of septins in the human eye deserve further investigation.  相似文献   

16.
The aim of this study was to detect a spectrum of cytokeratins (CK) present in the adult human cornea, limbus and perilimbal conjunctiva. Cryosections from seven corneo-scleral discs were fixed, and indirect immunofluorescent staining was performed using antibodies directed against CK1-CK10 and CK13-CK20. The percentage of positive cells was calculated in the epithelium of the cornea, limbus and perilimbal conjunctiva. Quantitative real time RT-PCR (qRT-PCR) was used to detect CK6 and CK18 expression in the corneal and conjunctival epithelium. The most intense staining present throughout the cornea was observed for CK3, CK5 and CK14; CK19 was found at the corneal periphery only. CK4 and CK10/13 revealed mild to moderate positivity mostly in the superficial layers of the cornea. The suprabasal cell layers of all examined areas showed a strong positivity for CK16. A heterogeneous staining pattern with a centrifugal decrease in the signal was observed for CK8 and CK18. CK5/6, CK14 and CK19 were present in the limbus, where a positive signal for CK3 was observed in the suprabasal and superficial cells only. In contrast to the cornea, CK15 appeared in the basal and suprabasal layers of the limbus. The perilimbal conjunctiva showed strong immunostaining for CK10/13, CK14 and CK19. A moderate signal for CK7 was detected in the superficial layers of the conjunctiva. qRT-PCR confirmed CK6 and CK18 expression in the corneal and conjunctival epithelium. The detailed characterization of the corneal, limbal and perilimbal conjunctival epithelium under normal circumstances may be useful for characterizing the changes occurring under pathological conditions.  相似文献   

17.
Acrosyringium, duct and secretory epithelium as well as myoepithelial cells of human eccrine sweat glands have been characterized by different immunostaining patterns with mono- and polyclonal antibodies to a wide spectrum of tissue antigens. Using monoclonal antibodies to neuron-specific enolase (NSE) and melanoma-associated antigens (LS 59, HMB-45, NKI/C-3) the expression of neuroectodermal antigens in secretory coils was demonstrated. Myoepithelial cells were double-stained with polyclonal vimentin and monoclonal CAM 5.2 (against keratins nos. 8, 18, 19) antibodies.  相似文献   

18.
We have analyzed the expression of cytokeratin polypeptides in subcolumnar reserve cells of the human uterine endocervical mucosa and the other epithelial cells using immunoperoxidase and immunofluorescence microscopy as well as by applying two-dimensional gel electrophoresis to microdissected cytoskeletal preparations. Endocervical columnar cells were uniformly positive for antibodies directed against the simple epithelium-type cytokeratins nos. 7, 8, 18, and 19, while a variable proportion of these cells was stained by an antibody against cytokeratin no. 4. Reserve cells were not only positive for cytokeratins nos. 8 (weakly and variably) and 19 but were also decorated by antibody KA 1, which reacts with cytokeratins present in stratified squamous epithelia. This last antibody selectively decorated reserve cells even when they were flat and inconspicuous. Antibody KA 1 uniformly stained the ectocervical squamous epithelium, the basal cells of which were also decorated by antibodies directed against cytokeratins nos. 8 (weakly and variably) and 19. Ectocervical suprabasal cells were positive, to a variable extent, for antibodies against cytokeratins nos. 4, 10/11, and 13. Gel electrophoresis revealed the presence of squamous-type cytokeratins nos. 5 and 17 in reserve cell-rich, but not in reserve cell-free, endocervical mucosa. We also analyzed the distribution pattern of these cells, as revealed by antibody KA 1, in the endocervical mucosa of 26 uteri. In all the specimens examined reserve cells were present, but their numbers exhibited considerable variation. In some cases these cells were confined to small islets localized deep within the cervical canal and lacked any continuity with the squamous epithelium. The expression of cytokeratins nos. 5 and 17 in reserve cells indicates that these cells have undergone a low level of squamous differentiation. The additional expression of cytokeratins nos. 8 and 19 in these cells points to a relationship with simple epithelial cells. The present data would seem to favor the view that reserve cells originate in situ from the columnar epithelium; however, this would imply an acquisition of new differentiation properties.  相似文献   

19.
Intermediate filament proteins of normal epithelia of the human and the bovine male urogenital tract and of certain human renal and bladder carcinomas have been studied by immunofluorescence microscopy and by two-dimensional gel electrophoresis of cytoskeletal fractions from microdissected tissue samples. The patterns of expression of cytokeratin polypeptides differ in the various epithelia. Filaments of a cytokeratin nature have been identified in all true epithelial cells of the male urogenital tract, including renal tubules and rete testis. Simple epithelia of renal tubules and collecting ducts of kidney, as well as rete testis, express only cytokeratin polypeptides nos. 7, 8, 18, and 19. In contrast, the transitional epithelia of renal pelvis, ureter, bladder, and proximal urethra contain, in addition to those polypeptides, cytokeratin no. 13 and small amounts of nos. 4 and 5. Most epithelia lining the human male reproductive tract, including those in the epididymis, ductus deferens, prostate gland, and seminal vesicle, synthesize cytokeratin no. 5 in addition to cytokeratins nos. 7, 8, 18, and 19 (cytokeratin no. 7 had not been detected in the prostate gland). Cytokeratin no. 17 has also been identified, but in very low amounts, in seminal vesicle and epididymis. The cytokeratin patterns of the urethra correspond to the gradual transition of the pseudostratified epithelium of the pars spongiosa (cytokeratins nos. 4, 5, 6, 13, 14, 15, and 19) to the stratified squamous epithelium of the fossa navicularis (cytokeratins nos. 5, 6, 10/11, 13, 15, and 19, and minor amounts of nos. 1 and 14). The noncornified stratified squamous epithelium of the glans penis synthesizes cytokeratin nos. 1, 5, 6, 10/11, 13, 14, 15, and 19. In immunofluorescence microscopy, selective cytokeratin antibodies reveal differential staining of different groups or layers of cells in several epithelia that may relate to the specific expression of cytokeratin polypeptides. Human renal cell carcinomas show a simple cytokeratin pattern consisting of cytokeratins nos. 8, 18, and 19, whereas transitional cell carcinomas of the bladder reveal additional cytokeratins such as nos. 5, 7, 13, and 17 in various proportions. The results shows that the wide spectrum of histological differentiation of the diverse epithelia present in the male urogenital tract is accompanied by pronounced changes in the expression of cytokeratin polypeptides and suggest that tumors from different regions of the urogenital tract may be distinguished by their cytokeratin complements.  相似文献   

20.
The distribution and type of cytokeratins present in the normal human epithelia of the nasopharynx, oropharynx, tongue, palatine tonsil, epiglottis, vocal cord, and laryngeal ventricle were studied using immunohistochemical techniques and by gel electrophoresis of cytoskeletal proteins microdissected from frozen tissues. Noncornifying stratified epithelia covering the oropharynx, tongue, surface of the palatine tonsil, pharyngeal surface of the epiglottis, and vocal cord were all found to contain cytokeratins nos. 4, 5, 6, 13, 14, and 15, together with minor amounts of cytokeratin no. 19, i.e., a pattern similar to that previously reported for esophageal epithelium. The immunohistochemical reaction with KA4, an antibody specific for cytokeratins nos. 14, 15, 16, and 19, revealed reactivity confined to the basal epithelial cells of the tongue, oropharynx, pharyngeal epiglottis, and two out of five samples of vocal cords. This same antibody reacted with the entire thickness of three out of the five true vocal cords which were shown by gel electrophoresis to also contain cytokeratins nos. 16 and 17. Gel electrophoresis revealed that the pseudostratified columnar epithelium covering the laryngeal ventricle was more complex, in that it contained cytokeratins nos. 5, 13, 14, 15, and 17, which are typical of stratified epithelia, as well as cytokeratins nos. 7, 8, 18, and 19, which are characteristic of simple epithelia. This pattern is similar to that found in bronchial epithelium. The laryngeal surface of the epiglottis exhibited cytokeratins nos. 4, 5, 7, 8, 13, 14, 15, 17, 18, and 19, i.e., a pattern combining features of both esophageal- and bronchial-type epithelia. The reaction of these epithelia containing columnar cells with antibody RGE-53, which is specific for cytokeratin no. 18, revealed a staining reaction confined to the superficial columnar cells, whereas KA1 stained only the basal cells of these epithelia. The results of our study make it possible to distinguish two types of noncornifying stratified squamous epithelium, namely the 'esophageal type' which covers the tongue, oropharynx, and pharyngeal surface of the epiglottis, and another type which overlies the vocal cords and the transitional zone between the pharyngeal and laryngeal surfaces of the epiglottis. Furthermore, there appear to be variants of pseudostratified columnar epithelium, i.e., the usual bronchial type lining the laryngeal ventricle, and a type with a thicker subcolumnar cell compartment that is found on the laryngeal surface of the epiglottis. The patterns of expression of cytokeratins in the respiratory tract are compared with those of other epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号