首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. The effects of changes in the cytoplasmic [NADH]/[NAD+] ratio on the efficacy of glucagon to alter rates of metabolism in isolated rat hepatocytes were examined. 2. Under reduced conditions (with 10mM-lactate), 10nM-glucagon stimulated both gluconeogenesis and urea synthesis in isolated hepatocytes from 48h-starved rats; under oxidized conditions (with 10mM-pyruvate), 10nM-glucagon had no effect on either of these rates. 3. The ability of glucagon to alter the concentration of 3':5'-cyclic AMP and the rates of glucose output, glycogen breakdown and glycolysis in cells from fed rats were each affected by a change in the extracellular [lactate]/[pyruvate] ratio; minimal effects of glucagon occurred at low [lactate]/[pyruvate] ratios. 4. Dose-response curves for glucagon-mediated changes in cyclic AMP concentration and glucose output indicated that under oxidized conditions the ability of glucagon to alter each parameter was decreased without affecting the concentration of hormone at which half-maximal effects occurred. 5. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.05 mM) significantly reversed the inhibitory effects of pyruvate on glucagon-stimulated glucose output. 6. For exogenously added cyclic [3H]AMP(0.1 mM), oxidized conditions decreased the stimulatory effect on glucose output as well as the intracellular concentration of cyclic AMP attained, but did not alter the amount of cyclic [3H]AMP taken up. 7. The effects of lactate, pyruvate, NAD+ and NADH on cyclic AMP phosphodiesterase activities of rat hepatocytes were examined. 8. NADH (0.01--1 MM) inhibited the low-Km enzyme, particularly that which was associated with the plasma membrane. 9. The inhibition of membrane-bound cyclic AMP phosphodiesterase by NADH was specific, reversible and resulted in a decrease in the maximal velocity of the enzyme. 10. It is proposed that regulation of the membrane-bound low-Km cyclic AMP phosphodiesterase by nicotinamide nucleotides provides the molecular basis for the effect of redox state on the hormonal control of hepatocyte metabolism by glucagon.  相似文献   

2.
1. The specific activity of lactate dehydrogenase of skeletal muscle mitochondria was found to be 2.5 times lower than specific activity of total NADH-cytochrome c reductase. 2. The specific activity of mitochondrial LDH in skeletal muscle mitochondria was almost equal to the activity of rotenone-insensitive NADH-cytochrome c reductase. 3. Mitochondrial LDH acting as an oxidase of lactate to pyruvate may feed an "external" pathway, but the activity of the mitochondrial enzyme is a limiting factor in oxidation of lactate-derived NADH. 4. Mitochondrial LDH acting as a reductase of pyruvate to lactate successfully competes with an "external" pathway for cytoplasmic NADH. 5. Exogenous NADH oxidation via an "external" pathway was inhibited by pyruvic acid. This inhibition was overcome by addition of oxamic acid or hydrazine.  相似文献   

3.
1. In epididymal adipose tissue synthesizing fatty acids from fructose in vitro, addition of insulin led to a moderate increase in fructose uptake, to a considerable increase in the flow of fructose carbon atoms to fatty acid, to a decrease in the steady-state concentration of lactate and pyruvate in the medium, and to net uptake of lactate and pyruvate from the medium. It is concluded that insulin accelerates a step in the span pyruvate-->fatty acid. 2. Mitochondria prepared from fat-cells exposed to insulin put out more citrate than non-insulin-treated controls under conditions where the oxaloacetate moiety of citrate was formed from pyruvate by pyruvate carboxylase and under conditions where it was formed from malate. This suggested that insulin treatment of fat-cells led to persistent activation of pyruvate dehydrogenase. 3. Insulin treatment of epididymal fat-pads in vitro increased the activity of pyruvate dehydrogenase measured in extracts of the tissue even in the absence of added substrate; the activities of pyruvate carboxylase, citrate synthase, glutamate dehydrogenase, acetyl-CoA carboxylase, NADP-malate dehydrogenase and NAD-malate dehydrogenase were not changed by insulin. 4. The effect of insulin on pyruvate dehydrogenase activity was inhibited by adrenaline, adrenocorticotrophic hormone and dibutyryl cyclic AMP (6-N,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate). The effect of insulin was not reproduced by prostaglandin E(1), which like insulin may lower the tissue concentration of cyclic AMP (adenosine 3':5'-cyclic monophosphate) and inhibit lipolysis. 5. Adipose tissue pyruvate dehydrogenase in extracts of mitochondria is almost totally inactivated by incubation with ATP and can then be reactivated by incubation with 10mm-Mg(2+). In this respect its properties are similar to that of pyruvate dehydrogenase from heart and kidney where evidence has been given that inactivation and activation are catalysed by an ATP-dependent kinase and a Mg(2+)-dependent phosphatase. Evidence is given that insulin may act by increasing the proportion of active (dephosphorylated) pyruvate dehydrogenase. 6. Cyclic AMP could not be shown to influence the activity of pyruvate dehydrogenase in mitochondria under various conditions of incubation. 7. These results are discussed in relation to the control of fatty acid synthesis in adipose tissue and the role of cyclic AMP in mediating the effects of insulin on pyruvate dehydrogenase.  相似文献   

4.
The involvement of calcium, ATP, and cyclic AMP-dependent protein kinase activity in the release of amylase from rat parotid glands was examined. Pretreatment of the glandular tissue in 11.25 mM Ca2+ medium potentiated the secretory responses to: dibutyryl cyclic AMP, elevation of the extracellular K+ concentration, reduction of the H+ concentration, La3+, and caffeine. Uncoupling of oxidative phosphorylation blocked release induced by dibutyryl cyclic AMP, K+, and reduction of H+, but had no effect on La3+, caffeine or tolbutamide-stimulated release. Inhibition of cyclic AMP-dependent protein kinase activity blocked only dibutyryl cyclic AMP-induced release and did not inhibit the responses to K+, reduction of H+ or caffeine. The loss of lactate dehydrogenase was used to access the integrity of the tissue during amylase release. No significant increase in the release of lactate dehydrogenase was observed during the secretory responses to: dibutyryl cyclic AMP, La3+, caffeine, or tolbutamide. Triton X-100 and ethanol increased the efflux of both amylase and lactate dehydrogenase. The differential involvement of Ca2+, ATP, and cyclic AMP-dependent protein kinase activity in amylase release induced by the various secretagogues suggests that three types of reactions are involved in the release of amylase.  相似文献   

5.
The objective of the present study was to assess metabolic changes in the neocortex and hippocampus of well-oxygenated or moderately hypoxic rats in which fluorothyl-induced seizures were sustained for 5 or 20 min, or which were allowed recovery periods of 5, 15, or 45 min following cessation of 20-min seizure activity by withdrawal of the convulsant gas. Sustained fluorothyl-induced seizures were found to cause metabolic alterations qualitatively and quantitatively similar to those previously observed with other commonly used convulsants. Thus, although the phosphorylation state of the adenine nucleotide pool remained only moderately perturbed, if at all, there were decreases in tissue concentrations of phosphocreatine and glycogen, and increases in those of cyclic AMP, lactate, and pyruvate, with a calculated fall in intracellular pH of about 0.15 units and a rise in the cytoplasmic NADH/NAD+ ratio. The enhanced metabolic rate was reflected in a marked reduction in the tissue-to-plasma glucose concentration ratio. Induced moderate hypoxia (arterial PO2 40-50 mm Hg) had no metabolic effect after 5 min of seizures but moderately increased lactate concentrations after 20 min (from about 10 to about 15 mumol X g-1). On cessation of seizure discharge cyclic AMP and phosphocreatine concentrations normalized already within 5 min, whereas glycogen and lactate concentrations normalized more slowly. In the neocortex (but not the hippocampus) postepileptic tissue-to-plasma glucose concentration ratios rose above control, probably reflecting metabolic depression. The results suggest that intracellular pH promptly returned to control, and that postepileptic alkalosis developed. They also suggest that some elevation of the NADH/NAD+ ratio persisted even after 45 min of recovery.  相似文献   

6.
The inactivation of cytoplasmic malate dehydrogenase (L-malate: NAD+ oxidoreductase, EC 1.1.1.37) from porcine heart and the specific modification of arginyl residues have been found to occur when the enzyme is inhibited with the reagent butanedione in sodium borate buffer. The inactivation of the enzyme was found to follow pseudo-first order kinetics. This loss of enzymatic activity was concomitant with the modification of 4 arginyl residues per molecule of enzyme. All 4 residues could be made inaccessible to modification when a malate dehydrogenase-NADH-hydroxymalonate ternary complex was formed. Only 2 of the residues were protected by NADH alone and appear to be essential. Studies of the butanedione inactivation in sodium phosphate buffer and of reactivation of enzymatic activity, upon the removal of excess butanedione and borate, support the role of borate ion stabilization in the inactivation mechanism previously reported by Riordan (Riordan, J.F. (1970) Fed. Proc. 29, Abstr. 462; Riordan, J.F. (1973) Biochemistry 12, 3915-3923). Protection from inactivation was also provided by the competitive inhibitor AMP, while nicotinamide exhibited no effect. Such results suggest that the AMP moiety of the NADH molecule is of major importance in the ability of NADH to protect the enzyme. When fluorescence titrations were used to monitor the ability of cytoplasmic malate dehydrogenase to form a binary complex with NADH and to form a ternary complex with NADH and hydroxymalonate, only the formation of ternary complex seemed to be effected by arginine modification.  相似文献   

7.
Like many other bacteria, Corynebacterium glutamicum possesses two types of L-malate dehydrogenase, a membrane-associated malate:quinone oxidoreductase (MQO; EC 1.1.99.16) and a cytoplasmic malate dehydrogenase (MDH; EC 1.1.1.37) The regulation of MDH and of the three membrane-associated dehydrogenases MQO, succinate dehydrogenase (SDH), and NADH dehydrogenase was investigated. MQO, MDH, and SDH activities are regulated coordinately in response to the carbon and energy source for growth. Compared to growth on glucose, these activities are increased during growth on lactate, pyruvate, or acetate, substrates which require high citric acid cycle activity to sustain growth. The simultaneous presence of high activities of both malate dehydrogenases is puzzling. MQO is the most important malate dehydrogenase in the physiology of C. glutamicum. A mutant with a site-directed deletion in the mqo gene does not grow on minimal medium. Growth can be partially restored in this mutant by addition of the vitamin nicotinamide. In contrast, a double mutant lacking MQO and MDH does not grow even in the presence of nicotinamide. Apparently, MDH is able to take over the function of MQO in an mqo mutant, but this requires the presence of nicotinamide in the growth medium. It is shown that addition of nicotinamide leads to a higher intracellular pyridine nucleotide concentration, which probably enables MDH to catalyze malate oxidation. Purified MDH from C. glutamicum catalyzes oxaloacetate reduction much more readily than malate oxidation at physiological pH. In a reconstituted system with isolated membranes and purified MDH, MQO and MDH catalyze the cyclic conversion of malate and oxaloacetate, leading to a net oxidation of NADH. Evidence is presented that this cyclic reaction also takes place in vivo. As yet, no phenotype of an mdh deletion alone was observed, which leaves a physiological function for MDH in C. glutamicum obscure.  相似文献   

8.
The involvement of calcium, ATP, and cyclic AMP-dependent protein kinase activity in the release of amylase from rat parotid glands was examined. Pretreatment of the glandular tissue in 11.25 mM Ca2+ medium potentiated the secretory responses to: dibutyryl cyclic AMP, elevation of the extracellular K+ concentration, reduction of the H+ concentration, La3+, and caffeine. Uncoupling of oxidative phosphorylation blocked release induced by dibutyryl cyclic AMP, K+, and reduction of H+, but had no effect on La3+, caffeine or tolbutamide-stimulated release. Inhibition of cyclic AMP-dependent protein kinase activity blocked only dibutyryl cyclic AMP-induced release and did not inhibit the responses to K+, reduction of H+ or caffeine.The loss of lactate dehydrogenase was used to access the integrity of the tissue during amylase release. No significant increase in the release of lactate dehydrogenase was observed during the secretory responses to: dibutyryl cyclic AMP, La3+, caffeine, or tolbutamide. Triton X-100 and ethanol increased the efflux of both amylase and lactate dehydrogenase.The differential involvement of Ca2+, ATP, and cyclic AMP-dependent protein kinase activity in amylase release induced by the various secretagogues suggests that three types of reactions are involved in the release of amylase.  相似文献   

9.
Generation of extramitochondrial reducing power in gluconeogenesis   总被引:24,自引:21,他引:3       下载免费PDF全文
1. Kidney-cortex slices incubated with pyruvate formed glucose and lactate in relatively large and approximately equimolar quantities. The formation of these products involves two exclusively cytoplasmic NADH(2)-requiring reductions, catalysed by lactate dehydrogenase and triose phosphate dehydrogenase. From the rates of glucose and lactate formation it can be calculated that over 1000mu-moles of NADH(2) must have been produced in the cytoplasm/g. dry wt. of tissue/hr. 2. When lactate is a gluconeogenic precursor the required NADH(2) is generated in the cytoplasm, but, when a substrate more highly oxidized than glucose, such as pyruvate, is the precursor, there is no direct cytoplasmic source of NADH(2). Quantitative data on the fate of pyruvate are in accord with the conclusion that the NADH(2) was primarily formed intramitochondrially by the dehydrogenases of cell respiration, with pyruvate as the major substrate. 3. Similar observations and conclusions apply to experiments with mouse-liver slices incubated with pyruvate, serine or aspartate. 4. Addition of ethanol, which increases the formation of NADH(2) in the cytoplasm, increased the formation from pyruvate of lactate but not of glucose. 5. In view of the low permeability of mitochondria for NAD and NADH(2) it must be postulated that special carrier mechanisms transfer the reducing equivalents of intramitochondrially generated NADH(2) to the cytoplasm. Reasons are given in support of the assumption that the malate-oxaloacetate system acts as the carrier. 6. Various aspects of the generation of reducing power and its transfer from mitochondria to cytoplasm are discussed.  相似文献   

10.
A correlation is shown to exist between malate dehydrogenase (MDH), lactate dehydrogenase (LDH) and glycerol-3-phosphate dehydrogenase (glycerol-3-PDH activity values, lactate/pyruvate and malate/oxaloacetate coefficients, MDH and LDH isozyme spectra and kinetic properties of LDH isozymes in soluble fractions of cytoplasm from intact rabbit m. soleus (red), m. gastrocnemius (mixed) and m. quadratus lumborum (white). In denervated soleus and gastrocnemius the cytoplasmic MDH/LDH, mitochondrial MDH/LDH, MDH mitochondrial/MDH cytoplasmic activity ratios, concentrations of substrates and isozyme spectra of MDH and LDH tend to equalize. The obtained results indicate the importance of isozyme composition and total activity ratios of the dehydrogenases for regulation of pyruvate and NADH metabolic pathways.  相似文献   

11.
Chicken hepatocytes synthesize glucose and fatty acids at rates which are faster than rat hepatocytes. The former also consume exogenous lactate and pyruvate at a much faster rate and, in contrast to rat hepatocytes, do not accumulate large quantities of lactate and pyruvate by aerobic glycolysis. α-Cyano-4-hydroxycinnamate, an inhibitor of pyruvate transport, causes lactate and pyruvate accumulation by chicken hepatocytes. Glucagon and N6,O2′-dibutyryl adenosine 3′,5′-monophosphate (dibutyryl cyclic AMP) convert pyruvate kinase (EC 2.7.1.40) of rat hepatocytes to a less active form. This effect explains, in part, inhibition of glycolysis, inhibition of lipogenesis, stimulation of gluconeogenesis, and inhibition of the transfer of reducing equivalents from the mitochondrial compartment to the cytoplasmic compartment by these compounds. In contrast, pyruvate kinase of chicken hepatocytes is refractory to inhibition by glucagon or dibutyryl cyclic AMP. Rat liver is known to have predominantly the type L isozyme of pyruvate kinase and chicken liver predominantly the type K. Thus, only the type L isozyme appears subject to interconversion between active and inactive forms by a cyclic AMP-dependent, phosphorylation-dephos-phorylation mechanism. This explains why the transfer of reducing equivalents from the mitochondrial compartment to the cytoplasmic compartment of chicken hepatocytes is insensitive to cyclic AMP. However, glucagon and dibutyryl cyclic AMP inhibit net glucose utilization, inhibit fatty acid synthesis, inhibit lactate and pyruvate accumulation in the presence of α-cyano-4-hydroxycinnamate, and stimulate gluconeogenesis from lactate and dihydroxyacetone by chicken hepatocytes. Thus, a site of action of cyclic AMP distinct from pyruvate kinase must exist in the glycolytic-gluconeogenic pathway of chicken liver.  相似文献   

12.
Escherichia coli was grown in chemostat culture under glycerol-limited and ammonium-limited conditions at growth rates between 0.1 and 0.5 h-1. At steady state, the concentrations of cyclic AMP and cyclic GMP and the activities of four constitutive enzymes (glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, NADH oxidase and cyclic phosphodiesterase) were determined in the organism. Addition of exogenous cyclic AMP, cyclic GMP or phencyclidine perturbed the steady state and caused inhibition or stimulation of synthesis of phosphodiesterase and isocitrate dehydrogenase. A novel hypothesis is proposed to account for the ability of bacteria to regulate the synthesis of constitutive enzymes with cyclic nucleotides and possibly other small molecules.  相似文献   

13.
The large increase in cyclic AMP accumulation by rat white fat cells seen in the presence of lipolytic agents plus methylxanthines and adenosine deaminase was markedly inhibited by lactate. However, lipolysis was unaffected by lactate. Octanoate, hexanoate, heptanoate, and beta-hydroxybutyrate inhibited both cyclic AMP accumulation and lipolysis by rat fat cells. The mechanism by which these acids inhibit lipolysis differs from that for long chain fatty acids such as oleate. Oleate directly inhibited triglyceride lipase activity of homogenized rat adipose tissue. In contrast, octanoate, beta-hydroxybutyrate, and lacatate had no effect on triglyceride lipase activity. Hormone-stimulated adenylate cyclase activity of rat fat cell ghosts was inhibited by oleate and 4mM octanoate but not by 1.6 mM octanoate, heptanoate, hexanoate, beta-hydroxybutyrate or lactate. None of the acids affected the soluble protein kinase activity of rat adipose tissue. There was no stimulation by lactate, butyrate, beta-hydroxybutyrate, or octanoate of the soluble or particulate cyclic AMP antilipolytic action of a short chain acid such as octanoate or hexanoate was not accompanied by any drop in total fat cell ATP. The mechanism by which lactate lowers cyclic AMP but not lipolysis remains to be established.  相似文献   

14.
1. The effects of secretin and pancreozymin-C-octapeptide and phosphodiesterase inhibitors on the concentration of adenosine 3',5'-cyclic monophosphate (cyclic AMP) and on the release of enzymes from rat pancreas have been studied. 2. In determininging cyclic AMP by means of the saturation assay of Brown et al. ((1971) Biochem. J. 121, 561-563) it is found essential to purify the pancreatic tissue extract by ion-exchange chromatography prior to the assay. 3. Injection of synthetic secretin or pancreozymin-C-octapeptide in anaesthetized rats in a secretory active dose (0.1 nmol) has no effect on the pancreatic cyclic AMP level. 4. Incubation for up to 10 min of pancreatic slices in Krebs-Ringer bicarbonate glucose medium containing 10(-2) M theophylline as phosphodiesterase inhibitor does not result in an increase of the cyclic AMP level. With 10(-2) M 1-methyl-3-isobutylxanthine as phosphodiesterase inhibitor the level is more than doubled after the first min of incubation and remains constant thereafter. 5. Addition of 3-10(-7) M secretin to slices incubated in the presence of 10(-2) M theophylline causes 84% increase of the cyclic AMP level above control, whereas the addition of 3-10(-7) M pancreozymin-C-octapeptide has no significant effect. In the presence of 10(-2) M 1-methyl-3-isobutylxanthine the latter hormone causes significant increases of up to 34% above control during 10 min of incubation. Secretin in this condition augments the cyclic AMP level by up to 296% above control during a 10 min incubation period. Addition of secretin and pancreozymin-C-octapeptide together has no greater effect than of secretin alone. 6. A broken cell fraction of rat pancreas contains adenylate cyclase activity which can be stimulated to 457 and 600% above the basal activity by 3-10(-7) M pancreozymin-C-octapeptide and secretin, respectively. Incubation of pancreatic slices with either hormone has no effect on the cyclic AMP phosphodiesterase activity in the homogenate of these slices. 7. Pancreozymin-C-octapeptide, dibutyryl cyclic AMP, 1-methyl-3-isobutylxanthine and carbamylcholine cause an elevated release of chymotrypsin from pancreatic slices incubated for 2 h in Krebs-Ringer bicarbonate medium, containing 10 mM glucose, while secretin, cyclic AMP and butyric acid have no significant effect. The release of the cytoplasmic enzyme lactate dehydrogenase is also elevated by dibutyryl cyclic AMP, 1-methyl-3-isobutylxanthine and carbamylcholine, but not significantly by pancreozymin-C-octapeptide. 8. The results support the role of cyclic AMP in the action of secretin, and do not exclude a mediating function of this nucleotide in the actions of pancreozymin in rat pancreas.  相似文献   

15.
We have shown that nuclei isolated by two methods contain grossly different amounts of cyclic AMP-dependent histone kinase activity. Repeated washing of the isolated nuclei with a low ionic strength buffer removed the majority of the cyclic AMP-dependent histone kinase and cyclic AMP binding activity. Nuclear cyclic AMP-dependent histone kinase activity accounted for only 0.42% of the total cytoplasmic enzyme activity. Similarly, the lactate dehydrogenase activity associated with liver nuclei represented only 0.07% of the total cytoplasmic activity. The isolated liver nuclei contained only 0.27% of the total homogenate glutamate dehydrogenase activity and 1.7%of the total homogenate glucose-6-phosphatase activity. The cyclic AMP-dependent histone kinase behaves as a cytoplasmic rather than a nuclear enzyme. We have also shown that using crude extracts, one can achieve separation of the two nuclear casein kinases, NI and NII, on sucrose density gradients in the presence of 0.5M NaCl. Nuclear casein kinases NI and NII had sedimentation coefficients of 3.0 and 593 S, respectively, in the presence of 0.5 M NaCl. Under conditions of low ionic strength, all of the casein kinase activity in the crude nuclear extract sedimented as one peak with a seminentation coefficient of 7.3 S. The aggregation-disaggregation which occurred in the crude extract was reversible and was mainly due to the aggregative and disaggregative properties of casein kinase NII. The two nuclear casein kinases have different affinities for chromatin. When nuclei were disrupted in a hypotonic solution and extracted with a buffercontaining 0.14 M NaCl, casein kinase NII could be completely extracted from the viscous nuclear material. Although a significant amount of casein kinase NI was extracted by the buffer containing 0.14 M NaCl, re-extraction of the nuclear material with a buffer containing 0.5 M NaCl yielded substantial amounts of casein kinase NI, and a final extraction with a buffer containing 1.0 M NaCl yielded measurable amounts of casein kinase NI. No casein kinase NII activity could be detected in the 0.5 M and 1.0M NaCl extracts.  相似文献   

16.
M L Sagrista  J Bozal 《Biochimie》1987,69(3):205-214
Chicken liver crude mitochondrial fraction showed lactate dehydrogenase activity (6.5% of cytoplasmic enzyme). Most of the mitochondrial lactate dehydrogenase was solubilized by sonication of the mitochondrial fraction in 0.15 M NaCl, pH 6. Total extracted lactate deshydrogenase activity was 3-fold higher than the initial pellet activity. Different isoenzymatic compositions were observed for cytosoluble and mitochondrial extracted lactate dehydrogenase. The pI, values of the 5 lactate dehydrogenase isoenzymes were found to be independent of their origin. The cytosoluble lactate dehydrogenase and the separated H4,H3M and H2M2 isoenzymes were able to bind to the chicken liver mitochondrial fraction in 5 mM sodium phosphate buffered medium, and could be solubilized afterwards with 0.15 M NaCl, pH 6. The enzyme bound to the mitochondrial fraction was less active than the soluble one. Particle saturation by the bound enzyme occurred with all mitochondrial fractions assayed. According to the Langmuir isotherm, the non-sonicated mitochondrial fractions contain a single type of binding sites for lactate dehydrogenase; in contrast, the sonicated mitochondrial fraction should contain different binding sites. Chicken liver crude or sonicated active mitochondrial fractions showed a hyperbolic behavior with respect to NADH and a non-hyperbolic one with respect to pyruvate. This mechanism is different from the bi-bi compulsory order mechanism of the soluble enzyme. With hydroxypyruvate as the substrate, the active mitochondrial fraction fit a sequential mechanism but lost the rapid-equilibrium characteristics of the soluble enzyme.  相似文献   

17.
UDPglucuronic acid and erythroascorbic acid were identified in extracts of the fungus Neurospora crassa. The concentrations of these two compounds are estimated, in growing wild type N. crassa, to be about 0.10 and 0.28 mumol/ml of cell water, respectively. The pools of these two compounds are regulated by cyclic AMP in Neurospora, both being elevated in the cr-1, adenylate cyclase deficient mutant and both being lowered by exogenous cyclic AMP. The pools of these two compounds are also elevated on nitrogen deprivation. The pools of a large number of other nucleotides are not influenced by cyclic AMP. Possible relationships between the metabolism of UDPglucuronic acid and erythroascorbic acid are discussed. It was found that exogenous cyclic AMP was much more effective in influencing cultures grown at 30-37 degrees C than those grown at 25 degrees C. We suggest that higher temperatures may render Neurospora more permeable to a variety of different compounds.  相似文献   

18.
Dibutyryl cyclic AMP and butyrate inhibited growth of S-20 (cholinergic) and NIE-115 (adrenergic) neuroblastoma clones. Both these drugs resulted in a parallel increase of choline acetyltransferase and ATP-citrate lyase activities in S-20 neuroblastoma cells. On the other hand, the increase in tyrosine hydroxylase activity in NIE-115 caused by these drugs was not accompanied by a significant change in ATP-citrate lyase activity. Both dibutyryl cyclic AMP and butyrate caused a decrease in fatty acid synthetase activity in both cell lines. The activities of pyruvate dehydrogenase, citrate synthase, choline acetyltransferase, and lactate dehydrogenase in both S-20 and NIE-115 cells were not significantly influenced by the drugs. ATP-citrate lyases from S-20 and NIE-115 had similar kinetic and immunological properties, and their subunits had the same molecular weight as the rat liver enzyme. These data indicate that the differential regulation of ATP-citrate lyase activity in cholinergic and adrenergic cells does not result from the existence of different molecular forms of the enzyme in these cell lines. They also provide further evidence to support the hypothesis that ATP-citrate lyase activity increases during maturation of normal cholinergic neurons and decreases in noncholinergic cells of the brain.  相似文献   

19.
1. The kinetic and metabolic properties of lactate dehydrogenase isoenzyme LDHx from human sperm cells and rat testes were studied. 2. LDHx shows a sensitivity to inhibition by stilboestrol diphosphate, urea and guanidinium chloride different from that of the LDH-H4 and LDH-M4 isoenzymes. 3. About 10 and 20% of the total lactate dehydrogenase activity of testes and sperm cells respectively were associated with particulate fractions. In sperm cells 11% was localized in the middle piece and 18·8% in the head fraction. LDHx was found in all particulate fractions of sperm cells. The middle piece contained 41·0% of total LDHx activity and showed high succinate dehydrogenase activity. 5. The pH-dependence of lactate/pyruvate and NAD+/NADH concentration ratios were estimated. Lactate dehydrogenase in sperm cells has maximal activity with NADH as coenzyme at pH7·5 and with NADPH as coenzyme at pH6·0. At pH6·0 a 10% greater oxidation of NADPH than of NADH was found. At acid pH lactate hydrogenase may function as an enzyme bringing about transhydrogenation from NADPH to NAD+. 6. In agreement with the stoicheiometry of the lactate de- hydrogenase reaction, the lactate/pyruvate concentration ratio decreased with increasing pH. 7. The lactate/pyruvate and NAD+/NADH concentration ratios were estimated with glucose, fructose and sorbitol as substrates and as a function of time after addition of these substrates. During a 20min. period after the addition of the substrates, changes in lactate/pyruvate and NAD+/NADH concentration ratios were noticed. Increasing concentration of the substrates mentioned gave rise to asymptotic increases in lactate and pyruvate. 8. Sorbitol did not act as a substrate for LDHx. 9. The findings described are consistent with the idea that LDHx is different from other known lactate dehydrogenase isoenzymes, but that it has a metabolic function similar to that of the isoenzymes of other tissues.  相似文献   

20.
Two inhibitors of lactate dehydrogenase generated during NADH storage have been isolated by chromatography. One is a dimer of the dinucleotide where the AMP moiety is unmodified. The other is also generated from NAD+ in the presence of a high concentration of phosphate ions at alkaline pH. This inhibitor was proved to be the addition compound of one phosphate group to position C-4 of the nicotinamide ring of NAD+ by NMR spectroscopy, enzymatic cleavage, and dissociation to NAD+ at neutral pH. This compound is a competitive inhibitor with respect to NAD+ in the presence of the lactate dehydrogenase with a Ki of 2 X 10(-7) M. The interaction of this inhibitor with lactate dehydrogenase is discussed relative to the structure of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号