首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
5-Carboxymethyl-2-hydroxymuconic semialdehyde dehydrogenase in the 4-hydroxyphenylacetate meta-cleavage pathway has been purified to 96% homogeneity. The native enzyme, which appears to be a tetramer, has an apparent molecular weight of 210000. The purified enzyme shows a narrow pH optimum at pH 7.8 and does not require ions for its catalytic activity. Under standard assay conditions the enzyme acts preferentially with NAD but reduces NADP at 11% of the rate observed for NAD, primarily because of a difference in Km. Apparent Km values are 6.4 μM for 5-carboxymethyl-2-hydroxymuconic semialdehyde and 52.2 μM for NAD.  相似文献   

2.
Previously, we reported that pyruvate production was markedly improved in TBLA-1, an H+-ATPase-defective Escherichia coli mutant derived from W1485lip2, a pyruvate-producing E. coli K-12 strain. TBLA-1 produced more than 30 g/l pyruvate from 50 g/l glucose by jar fermentation, while W1485lip2 produced only 25 g/l pyruvate (Yokota et al. in Biosci Biotechnol Biochem 58:2164–2167, 1994b). In this study, we tested the ability of TBLA-1 to produce alanine by fermentation. The alanine dehydrogenase (ADH) gene from Bacillus stearothermophilus was introduced into TBLA-1, and direct fermentation of alanine from glucose was carried out. However, a considerable amount of lactate was also produced. To reduce lactate accumulation, we knocked out the lactate dehydrogenase gene (ldhA) in TBLA-1. This alanine dehydrogenase-expressing and lactate dehydrogenase-defective mutant of TBLA-1 produced 20 g/l alanine from 50 g/l glucose after 24 h of fermentation. The molar conversion ratio of glucose to alanine was 41%, which is the highest level of alanine production reported to date. This is the first report to show that an H+-ATPase-defective mutant of E. coli can be used for amino acid production. Our results further indicate that H+-ATPase-defective mutants may be used for fermentative production of various compounds, including alanine.  相似文献   

3.
Four classes of Escherichia coli mutants deficient in either or both of their anaerobic selenium-containing formate dehydrogenases (FDH) were isolated. A class I mutant devoid of FDHH activity specifically linked to benzyl viologen (BV) produced a small amount of the FDHH 80,000 dalton selenopeptide. Three class II mutants were deficient in FDHN activity specifically linked to phenazine methosulfate (PMS) and exhibited a selenopeptide doublet rather than the FDHN 110,000 dalton selenosubunit. Three class III mutants were selenium incorporation deficient and did not exhibit either FDH activity or 75Selabeled selenopolymers. A class IV mutant was devoid of PMS-linked FDHN activity; neither its FDHN 110,000 dalton selenosubunit nor its BV-linked FDHH activity was fully regulated by nitrate.Abbreviations FDH formate dehydrogenase - BV benzyl viologen - MV methyl viologen - PMS phenazine methosulfate - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

4.
A succinate semialdehyde dehydrogenase gene (gabD) was identified to be disrupted in a transposon-induced mutant of Ralstonia eutropha exhibiting the phenotype 4-hydroxybutyric acid-leaky. The native gabD gene was cloned by colony hybridization using a homologous gabD-specific DNA probe. DNA sequencing revealed an 1452-bp open reading frame, and the deduced amino acid sequence showed strong similarities to NADP(+)-dependent succinate semialdehyde dehydrogenases from Escherichia coli, Rhizobium sp., Homo sapiens and Rattus norvegicus. The gabD gene was heterologously expressed in a recombinant E. coli strain harboring plasmid pSK::EE6.8. Similar to the molecular organization of the gab cluster in E. coli, additional genes encoding enzymes for the degradation of gamma-aminobutyrate are closely related to gabD in R. eutropha. Enzymatic studies indicated the existence of a second NAD(+)-dependent succinate semialdehyde dehydrogenase in R. eutropha.  相似文献   

5.
Succinic semialdehyde dehydrogenase (EC 1.2.1.16) was purified 74-fold from wheat grain (Triticum durum Desf.). The enzyme appears quite specific for succinic semialdehyde (SSA). Both NAD and NADP support the oxidation of the substrate, but the former is 7-fold more active than the latter. The optimum pH for activity is around 9; the enzyme is stable in the pH range 6–9 and retains its whole activity up to 40°C. The enzyme activity is strongly dependent on the presence of mercaptoethanol, other thiol compounds being much less effective. Kinetic data support the formation of a ternary complex between enzyme, substrate and coenzyme. The K m for SSA and for NAD are 7.4x10-6 M and 2x10-4 M, respectively. The molecular weight of the enzyme protein was estimated by gel-filtration to be about 130,000.Abbreviations GABA -aminobutyric acid - GABA-T -aminobutyric acid transaminase - ME mercaptoethanol - SSA succinic semialdehyde - SSA-DH succinic semialdehyde dehydrogenase  相似文献   

6.
Two enzymes, one NADPH-dependent and another NADH-dependent which catalyze the reduction of methylglyoxal to acetol have been isolated and substantially purified from crude extracts of Escherichia coli K12 cells. Substrate specificity and formation of acetol as the reaction product by both the enzymes, reversibility of NADH-dependent enzyme with alcohols as substrates and inhibitor study with NADPH-dependent enzyme indicate that NADPH-dependent and NADH-dependent enzymes are identical with an aldehyde reductase (EC 1.1.1.2) and alcohol dehydrogenase (EC 1.1.1.1) respectively. The Km for methylglyoxal have been determined to be 0.77 mM for NADPH-dependent and 3.8 mM for NADH-dependent enzyme. Stoichiometrically equimolar amount of acetol is formed from methylglyoxal by both NADPH- and NADH-dependent enzymes. In phosphate buffer, both the enzymes are active in the pH range of 5.8–6.6 with no sharp pH optimum. Molecular weight of both the enzymes were found to be 100,000 ± 3,000 by gel filtration on a Sephacryl S-200 column. Both NADPH- and NADH-dependent enzymes are sensitive to sulfhydryl group reagents.  相似文献   

7.
Kang Z  Du L  Kang J  Wang Y  Wang Q  Liang Q  Qi Q 《Bioresource technology》2011,102(11):6600-6604
The strategic design of this study aimed at producing succinate and polyhydroxyalkanoate (PHA) from substrate mixture of glycerol/glucose and fatty acid in Escherichia coli. To accomplish this, an E. coli KNSP1 strain derived from E. coli LR1110 was constructed by deletions of ptsG, sdhA and pta genes and overexpression of phaC1 from Pseudomonas aeruginosa. Cultivation of E. coli KNSP1 showed that this strain was able to produce 21.07 g/L succinate and 0.54 g/L PHA (5.62 wt.% of cell dry weight) from glycerol and fatty acid mixture. The generated PHA composed of 58.7 mol% 3-hydroxyoctanoate (3HO) and 41.3 mol% 3-hydroxydecanoate (3HD). This strain would be useful for complete utilization of byproducts glycerol and fatty acid of biodiesel production process.  相似文献   

8.
A recombinant Escherichia coli strain (E. coli NO3) containing genomic DNA fragments from azo-reducing wild-type Pseudomonas luteola strain decolorized a reactive azo dye (C.I. Reactive Red 22) at approx. 17 mg dye h–1 g cell. The ability to decolorize the azo dye probably did not originate from the plasmid DNA. Acclimation in azo-dye-containing media gave a nearly 10% increase in the decolorization rate of E. coli NO3. Growth with 1.25 g glucose l–1 completely stopped the decolorization activity. When the decolorization metabolites from E. coli NO3 were analyzed by HPLC and MS, the results suggested that decolorization of the azo dye may be due to cleavage of the azo bond.  相似文献   

9.
5-Carboxymethyl-2-hydroxymuconic semialdehyde (CHMS) dehydrogenase from Escherichia coli C and Klebsiella pneumoniae M5a1 have been purified and some of their properties studied. The apparent Km values for NAD and CHMS were 11.7 +/- 1.5 microM and 5.2 +/- 1.9 microM, respectively, for the K. pneumoniae enzyme, and 19.5 +/- 2.7 microM and 9.2 +/- 1.4 microM, respectively, for the E. coli enzyme. Both enzymes were optimally active at pH 7.5 in sodium phosphate buffer. They had subunit molecular weights of 52,000 (+/- 1000) and the native enzymes appeared to be dimers of identical subunits. The first 20 residues of their N-terminal amino acid sequences were 90% homologous. A degenerate oligonucleotide probe constructed to a six amino acid sequence common to both enzymes gave strong hybridization with DNA from E. coli strains B and W as well as with E. coli C and K. pneumoniae but little or no hybridization to DNA from E. coli K12 or Pseudomonas putida.  相似文献   

10.
Some kinetic properties of the D(-)-lactate dehydrogenase (EC 1.1.1.28) of Escherichia coli have been investigated. There were marked differences between the kinetic properties of the enzyme studied in situ compared with the in vitro D(-)-lactate dehydrogenase. D(-)-Lactate dehydrogenase in situ showed high substrate inhibition with pyruvate over the pH range 6.0–7.0, whereas the enzyme in vitro did not. The pH optimum for pyruvate reduction by the in situ D(-)-lactate dehydrogenase ranged between pH 7.5 and 7.8, whereas the in vitro enzyme showed its pH optimum between pH 6.8 and 7.0. The pK values of the prototropic groups that controlled the enzymatic activity shift to the acidic region for the in vitro enzyme with respect to the in situ enzyme. In vitro D(-)-lactate dehydrogenase exhibits homotropic interactions with its substrate, pyruvate and its coenzyme, NADH, at pH values ranging between pH 6.0 and 8.5, but the in situ enzyme showed homotropic interactions neither with pyruvate nor with NADH at all pH values studied.  相似文献   

11.
The site of integration of phage Mu d (Ap lac) in mutant M9s which leads to deficiency of formic dehydrogenase (benzylviologen-linked) activity was determined. It was shown that the phage had inserted into the gene for the seleno-polypeptide of the enzyme (80 kd) leading to the formation of a truncated peptide (60 kd) still able to incorporate Se. Synthesis of the truncated polypeptide is subject to the same regulatory signals as that of the wild-type enzyme. The formation of the 110 kd seleno-polypeptide, which is a constituent component of the formic dehydrogenase from the formate-nitrate respiratory pathway, is unimpaired in mutant M9s. The location of the gene for the 80 kd seleno-polypeptide was mapped at 92.4 min of the Escherichia coli chromosome.Abbreviation PMSF phenylmethylsulfonyl fluoride Dedicated to Professor G. Drews on the occasion of his 60 th birthday  相似文献   

12.
Summary We have previously described defined mutants of the TraT protein, an outer membrane lipoprotein specified by F-like plasmids, which sensitize Escherichia coli and Salmonella typhimurium to antibiotics that are normally excluded from the cell. In this paper, the isolation, characterization and molecular cloning of suppressors of one such mutant (pDOC40) is reported. The suppressors, which were isolated by selection for vancomycin-resistant revertants, also restored resistance to several hydrophobic antibiotics although there were no detectable changes in lipopolysaccharides (LPS), phospholipids or outer membrane proteins. Three suppressor loci, provisionally designated sip, for suppression of increased permeability, were cloned in cosmids and mapped by a novel approach involving random sequencing of cloned DNA to identify flanking genes with known map positions. Our results indicate that the sipB locus is located in the 11 min region (485–510 kb) whereas sipC and sipD both map to 82 min (3850–3885 kb). Additionally, the previously sequenced nlpA gene was also mapped to the 82 min region. The cloned suppressor loci were specific for the permeability phenotype caused by the mutant R6-5 TraT protein and had no effect on the permeability phenotype caused by a related TraT mutant of S. typhimurium.  相似文献   

13.
In this study, the expression level of the pyc gene from Lactococcus lactis was fine tuned to improve succinate production in Escherichia coli SBS550MG. IPTG induction in the cultures of SBS550MG with pHL413, a positive control plasmid previously constructed (Sanchez et al., 2005), gave drastically decreased PYC activity and succinate yield. We constructed several plasmids for the expression of pyc to change copy number and variant promoters. Among the constructs, as compared to pHL413, the PYC activity dropped significantly with the Plac, Ptac, Ptrc or native Ppyc promoters in medium or high copy vectors, which resulted in a decrease in succinate yield. Three constructs pThio12, pHL413-Km, and pHL413-Km(lacIq-)N showed considerable PYC activity and improved succinate production in E. coli SBS550MG. The native Ppyc promoter was also modified in order to vary pyc expression levels by site-directed mutagenesis of the −10, −35, −44 regions, and the spacer regions between −10 to −35 and −35 to −44 regions. Out of 9 native promoter variants, the MIII variant resulted in a 20% increase in PYC activity, and improved succinate yield in SBS550MG. We also determined the copy number and stability of pHL413 and pHL413-Km. The two plasmids showed roughly the same copy number, but the pHL413-Km plasmid was relatively more stable. This study provides more understanding of the plasmid characteristics and fine tuning of the expression level of pyc for optimization of the succinate production processes.  相似文献   

14.
15.
Summary Several strains of Escherichia coli K12 were compared for activity of the periplasmic pH 2.5 acid phosphatase, an enzyme whose expression is regulated negatively by cyclic AMP. Two distinct enzyme levels differing by about four-fold were observed. This strain-dependent difference does not involve modifications in the structure of the enzyme, but results from a difference in its expression. We show that (1) strains with a high- or a low level of enzyme differ in the gene locus appR located in the 59 min region of the chromosome, a site remote from the structural gene appA; (2) the appR + versus appR enzyme ratio is 3–4 in wild-type strains, adenylate cyclase-deficient strains (cya) or cyclic AMP receptor protein-deficient strains (crp) grown in rich medium or in glucose minimal medium, but is close to 1 in cya strains in the presence of 0.1 mM cyclic AMP and in wild-type strains grown with succinate as carbon source; (3) in a crp genetic background, appR strains, contrary to appR + strains, are able to grow on minimal medium with succinate as the sole carbon source. The selection, from an appR + crp strain, of clones growing on succinateminimal medium. yielded mutations in the same region of the chromosome and showing the same phenotype as naturally-occurring appR strains.All appR strains analysed so far showed other similar deficiencies. The possibility that mutated appR gene products might function as weak substitutes for a functional cAMP-CRP complex is discussed.  相似文献   

16.
17.
Escherichia coli cells, which contain apo-glucose dehydrogenase, were used in constructing a mediated amperometric glucose sensor. The E. coli modified glucose sensor, which was prepared by immobilizing E. coli cells behind a dialysis membrane on a carbon paste electrode containing 2,3-dimethoxy-5-methyl-1,4-benzoquinone (Q(0)), produced a current for the electrocatalytic oxidation of glucose with Q(0) as an electron transfer mediator only after the addition of a trace amount of pyrroloquinoline quinone (PQQ), the cofactor of the enzyme. This allows a novel method of glucose measurements free from the interference of the redox active substances, if contained, in a sample solution. The glucose sensor was insensitive to dioxygen; the currents measured under anaerobic and aerobic conditions, and even under dioxygen saturated conditions were almost the same in magnitude at a given concentration of glucose over the range of 0.2-10 mM. Response time of the glucose sensor was 2 min to attain 90% level of the steady-state current. The E. coli modified glucose sensor was reusable when treated with ethylenediaminetetraacetic acid (EDTA). When E. coli cells were lyophilized, they could be stored at room temperature in a dry box for more than six months without loss of the catalytic activity.  相似文献   

18.
We have determined the nucleotide sequences of two structural genes of the Escherichia coli gab cluster, which encodes the enzymes of the 4-aminobutyrate degradation pathway: gabD, coding for succinic semialdehyde dehydrogenase (SSDH, EC 1.2.1.16) and gabP, coding for the 4-aminobutyrate (GABA) transport carrier (GABA permease). We have previously reported the nucleotide sequence of the third structural gene of the cluster, gabT, coding for glutamate: succinic semialdehyde transaminase (EC 2.6.1.19). All three gab genes are transribed unidirectionally and their orientation within the cluster is 5-gabD-gabT-gabP-3. gabT and gabP are separated by an intergenic region of 234-bp, which contains three repetetive extragenic palindromic (REP) sequences. The gabD gene consists of 1,449 nucleotides specifying a protein of 482 amino acids with a molecular mass of 51.7 kDa. The protein shows significant homologies to the NAD+-dependent aldehyde dehydrogenase (EC 1.2.1.3) from Aspergillus nidulans and several mammals, and to the tumor associated NADP+-dependent aldehyde dehydrogenase (EC 1.2.1.4) from rat. The permease gene gabP comprises 1,401 nucleotides coding a highly hydrophobic protein of 466 amino acids with a molecular mass of 51.1 kDa. The GABA permease shows features typical for an integral membrane protein and is highly homologous to the aromatic acid carrier from E. coli, the proline, arginine and histidine permeases from Saccharomyces cerevisiae and the proline transport protein from A. nidulans. Uptake of GABA was increased ca. 5-fold in transformants of E. coli containing gabP plasmids. Strong overexpression of the gabP gene under control of the isopropyl-2-d-thiogalactoside (IPTG) inducible tac promoter, however, resulted in a severe growth inhibition of the transformed strains. The GABA carrier was characterized using moderately overexpressing transformants. The K m of GABA uptake was found to be 11.8 M and the Vmax 0.33 nmol/min · mg cells. Uptake of GABA was stimulated by ammonium sulfate and abolished by 2,4-dinitrophenol. Aspartate competed with GABA for uptake.  相似文献   

19.
For efficient production of isoflavone aglycones from soybean isoflavones, we isolated three novel types of β-glucosidase (BGL1, BGL3, and BGL5) from the filamentous fungi Aspergillus oryzae. Three enzymes were independently displayed on the cell surface of a yeast Saccharomyces cerevisiae as a fusion protein with α-agglutinin. Three β-glucosidase-displaying yeast strains hydrolyzed isoflavone glycosides efficiently but exhibited different substrate specificities. Among these β-glucosidases, BGL1 exhibited the highest activity and also broad substrate specificity to isoflavone glycosides. Although glucose released from isoflavone glycosides are generally known to inhibit β-glucosidase, the residual ratio of isoflavone glycosides in the reaction mixture with BGL1-displaying yeast strain (Sc-BGL1) reached approximately 6.2%, and the glucose concentration in the reaction mixture was maintained at lower level. This result indicated that Sc-BGL1 assimilated the glucose before they inhibited the hydrolysis reaction, and efficient production of isoflavone aglycones was achieved by engineered yeast cells displaying β-glucosidase.  相似文献   

20.
Wang Z  Chen M  Xu Y  Li S  Lu W  Ping S  Zhang W  Lin M 《Biotechnology letters》2008,30(4):657-663
An ethanol-tolerant mutant, ET1, was isolated by an enrichment method from Escherichia coli JM109. Strains JM109 and ET1 were transformed with expression vector pZY507bc containing Zymomonas mobilis alcohol dehydrogenase II (adhB) and pyruvate decarboxylase (pdc) genes, resulting in an ethanol-sensitive recombinant strain JMbc and an ethanol-tolerant recombinant strain, ET1bc. Alcohol dehydrogenase and pyruvate decarboxylase activities were 24 and 32% lower, respectively, in JMbc than in ET1bc. ET1bc fermented 10% (w/v) xylose to give 39.4 g ethanol/l (77%, theoretical yield), a 1.3-fold increase compared with the ethanol-sensitive strain JMbc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号