首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human immunodeficiency virus type 1 (HIV-1) co-opts host proteins and cellular machineries to its advantage at every step of the replication cycle. Here we show that HIV-1 enhances heterogeneous nuclear ribonucleoprotein (hnRNP) A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm. The latter was dependent on the nuclear export of the unspliced viral genomic RNA (vRNA) and to alterations in the abundance and localization of the FG-repeat nuclear pore glycoprotein p62. hnRNP A1 and vRNA remain colocalized in the cytoplasm supporting a post-nuclear function during the late stages of HIV-1 replication. Consistently, we show that hnRNP A1 acts as an internal ribosomal entry site trans-acting factor up-regulating internal ribosome entry site-mediated translation initiation of the HIV-1 vRNA. The up-regulation and cytoplasmic retention of hnRNP A1 by HIV-1 would ensure abundant expression of viral structural proteins in cells infected with HIV-1.  相似文献   

2.
3.
Antigenic properties of the proteins of heterogeneous nuclear ribonucleoprotein particles, (hnRNP), weakly bound nonhistone chromatin proteins (WB(N)P) and single-strand DNA-binding proteins (SSB proteins) from chromatin and extrachromatin fraction of the Ehrlich ascites tumor cells have been comparatively studied. The chromatin and extrachromatin SSB proteins displayed similar mobility in the tube and slab SDS/PAGE, had the same ssDNA-binding capacity and similarly stimulated the replicative synthesis in permeable cells. However, the chromatin SSB proteins contained 1.4 times higher phosphate amount than the extrachromatin ones (3.1 and 2. 2. moles phosphorus per 1 mole protein, respectively). The study of four protein groups with the use of a rabbit antiserum to/against extrachromatin SSB proteins (titer 1:13000 by enzyme immunoassay) showed that the chromatin and the extrachromatin SSB proteins have similar antigenic properties. One fraction of the hnRNP proteins was also reactive with the antiserum, whereas the WB(N)P displayed no cross-reactivity. The specificity of the ferm "SSB proteins" as applied to eukaryotic cells, their affinity with hnRNP proteins and differences from the HMG proteins are discussed.  相似文献   

4.
5.
Protein arginine methylation is found in many nucleic acid binding proteins affecting numerous cellular functions. In this study we identified methylarginine-containing proteins in HeLa cell extracts by two-dimensional electrophoresis and immunoblotting with a methylarginine-specific antibody. Protein spots with matched protein stain and blotting signals were analyzed by mass spectrometry. The identities of 12 protein spots as 11 different proteins were suggested. Known methylarginine-containing proteins such as hnRNP A2/B1, hnRNP A1, hnRNP G and FUS were identified, indicating the feasibility of our approach. However, four highly abundant metabolic enzymes that might co-electrophorese with methylarginine-containing proteins were also identified. Other nucleic acid binding proteins hnRNP M, hnRNP I and NonO protein were identified. Recombinant hnRNP M and a peptide with the RGG sequence in hnRNP M could be further methylated in vitro. The immunoblotting results of immunoprecipitated hnRNP I and NonO protein are consistent with arginine methylation in both proteins. In this study we identified methylarginine-containing proteins in HeLa cells through proteomic approaches and the method is fast and robust for further applications.  相似文献   

6.
The RGG domain in hnRNP A2 affects subcellular localization   总被引:4,自引:0,他引:4  
The heterogeneous nuclear ribonucleoproteins (hnRNP) associate with pre-mRNA in the nucleus and play an important role in RNA processing and splice site selection. In addition, hnRNP A proteins function in the export of mRNA to the cytoplasm. Although the hnRNP A proteins are predominantly nuclear, hnRNP A1 shuttles rapidly between the nucleus and the cytoplasm. HnRNP A2, whose cytoplasmic overexpression has been identified as an early biomarker of lung cancer, has been less well studied. Cytosolic hnRNP A2 overexpression has also been noted in brain tumors, in which it has been correlated with translational repression of Glucose Transporter-1 expression. We now examine the role of arginine methylation on the nucleocytoplasmic localization of hnRNP A2 in the HEK-293 and NIH-3T3 mammalian cell lines. Treatment of either cell line with the methyltransferase inhibitor adenosine dialdehyde dramatically shifts hnRNP A2 localization from the nuclear to the cytoplasmic compartment, as shown both by immunoblotting and by immunocytochemistry. In vitro radiolabeling with [(3)H]AdoMet of GST-tagged hnRNP A2 RGG mutants, using recombinant protein arginine methyltransferase (PRMT1), shows (i) that hnRNP A2 is a substrate for PRMT1 and (ii) that methylated residues are found only in the RGG domain. Deletion of the RGG domain (R191-G253) of hnRNP A2 results in a cytoplasmic localization phenotype, detected both by immunoblotting and by immunocytochemistry. These studies indicate that the RGG domain of hnRNP A2 contains sequences critical for cellular localization of the protein. The data suggest that hnRNP A2 may contain a novel nuclear localization sequence, regulated by arginine methylation, that lies in the R191-G253 region and may function independently of the M9 transportin-1-binding region in hnRNP A2.  相似文献   

7.
Shi ST  Yu GY  Lai MM 《Journal of virology》2003,77(19):10584-10593
Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 has previously been shown to bind mouse hepatitis virus (MHV) RNA at the 3' end of both plus and minus strands and modulate MHV RNA synthesis. However, a mouse erythroleukemia cell line, CB3, does not express hnRNP A1 but still supports MHV replication, suggesting that alternative proteins can replace hnRNP A1 in cellular functions and viral infection. In this study, we set out to identify these proteins. UV cross-linking experiments revealed that several CB3 cellular proteins similar in size to hnRNP A1 interacted with the MHV RNA. These proteins were purified by RNA affinity column with biotinylated negative-strand MHV leader RNA and identified by mass spectrometry to be hnRNP A2/B1, hnRNP A/B, and hnRNP A3, all of which belong to the type A/B hnRNPs. All of these proteins contain amino acid sequences with strong similarity to the RNA-binding domains of hnRNP A1. Some of these hnRNPs have previously been shown to replace hnRNP A1 in regulating RNA splicing. These proteins displayed MHV RNA-binding affinity and specificity similar to those of hnRNP A1. hnRNP A2/B1, which is predominantly localized to the nucleus and shuttles between the nucleus and the cytoplasm, was shown to relocalize to the cytoplasm in MHV-infected CB3 cells. Furthermore, overexpression of hnRNP A/B in cells enhanced MHV RNA synthesis. Our findings demonstrate that the functions of hnRNP A1 in MHV RNA synthesis can be replaced by other closely related hnRNPs, further supporting the roles of cellular proteins in MHV RNA synthesis.  相似文献   

8.
Beta-adrenergic receptors (beta-ARs), like other G-protein-coupled receptors, can undergo post-transciptional regulation at the level of mRNA stability. In particular, the human beta(1)- and beta(2)-ARs and the hamster beta(2)-AR mRNA undergo beta-agonist-mediated destabilization. By UV cross-linking, we have previously described an approximately M(r) 36,000 mRNA-binding protein, betaARB, that binds to A/C+U-rich nucleotide regions within 3'-untranslated regions. Further, we have demonstrated previously that betaARB is immunologically distinct from AUF1/heterogeneous nuclear ribonucleoprotein (hnRNP) D, another mRNA-binding protein associated with destabilization of A+U-rich mRNAs (Pende, A., Tremmel, K. D., DeMaria, C. T., Blaxall, B. C., Minobe, W., Sherman, J. A., Bisognano, J., Bristow, M. R., Brewer, G., and Port, J. D. (1996) J. Biol. Chem. 271, 8493-8501). In this report, we describe the peptide composition of betaARB. Mass spectrometric analysis of an approximately M(r) 36,000 band isolated from ribosomal salt wash proteins revealed the presence of two mRNA-binding proteins, hnRNP A1, and the elav-like protein, HuR, both of which are known to bind to A+U-rich nucleotide regions. By immunoprecipitation, HuR appears to be the biologically dominant RNA binding component of betaARB. Although hnRNP A1 and HuR can both be immunoprecipitated from ribosomal salt wash proteins, the composition of betaARB (HuR alone versus HuR and hnRNP A1) appears to be dependent on the mRNA probe used. The exact role of HuR and hnRNP A1 in the regulation of beta-AR mRNA stability remains to be determined.  相似文献   

9.
Many hnRNP proteins and snRNPs interact with hnRNA in the nucleus of eukaryotic cells and affect the fate of hnRNA and its processing into mRNA. There are at least 20 abundant proteins in vertebrate cell hnRNP complexes and their structure and arrangement on specific hnRNAs is likely to be important for the processing of pre-mRNAs. hnRNP I, a basic protein of ca. 58,000 daltons by SDS-PAGE, is one of the abundant hnRNA-binding proteins. Monoclonal antibodies to hnRNP I were produced and full length cDNA clones for hnRNP I were isolated and sequenced. The sequence of hnRNP I (59,632 daltons and pI 9.86) demonstrates that it is identical to the previously described polypyrimidine tract-binding protein (PTB) and shows that it is highly related to hnRNP L. The sequences of these two proteins, I and L, define a new family of hnRNP proteins within the large superfamily of the RNP consensus RNA-binding proteins. Here we describe experiments which reveal new and unique properties on the association of hnRNP I/PTB with hnRNP complexes and on its cellular localization. Micrococcal nuclease digestions show that hnRNP I, along with hnRNP S and P, is released from hnRNP complexes by nuclease digestion more readily than most other hnRNP proteins. This nuclease hypersensitivity suggests that hnRNP I is bound to hnRNA regions that are particularly exposed in the complexes. Immunofluorescence microscopy shows that hnRNP I is found in the nucleoplasm but in addition high concentrations are detected in a discrete perinucleolar structure. Thus, the PTB is one of the major proteins that bind pre-mRNAs; it is bound to nuclease-hypersensitive regions of the hnRNA-protein complexes and shows a novel pattern of nuclear localization.  相似文献   

10.
Conclusions The isolation of hnRNP complexes has identified many new proteins and their characterization has led to the identification of several motifs that are important for RNA binding. These motifs are present in a wide variety of proteins including splicing factors, ribosomal proteins, and several proteins of unknown function. These findings have blurred the lines of demarcation between proteins previously thought of as RNA packaging proteins and RNA processing factors. Recent findings on hnRNP proteins have suggested a plethora of possible functions along the pathway of mRNA metabolism. It can be expected that the next few years will see the unraveling of the detailed functions of hnRNP proteins.  相似文献   

11.
The hnRNP A/B family contains abundant nuclear proteins with major roles in alternative splicing and the ability for nucleo-cytoplasmic shuttling. Compared to the best known members of this family (hnRNP A1, A2/B1), hnRNP A3 is a relatively less known protein. We report herein immunochemical studies with the hnRNP A3 isoforms (A3a and A3b) that provided evidence for species-specific expression. The unspliced A3a was found in human and murine cells, while the spliced A3b was a unique and abundant isoform in mouse/rat. In addition, a tissue-specific variation was observed in mice, as the brain was the only tissue found to overexpress hnRNP A3a. Both hnRNP A3a and A3b were able to stably associate with immunoselected hnRNP and mRNP complexes. Use of the auxiliary domain of hnRNP A3 in pull-down assays on human cell extracts revealed its unique ability to form a network of interactions not only with other A/B proteins but also with additional hnRNPs. All interactions, except those of hnRNP A1, were highly enhanced by previous RNase A digestion of the extracts. Our findings revealed novel characteristics of hnRNP A3 and supported its extensive involvement in the many aspects of mRNA maturation processes along with the other hnRNP A/B proteins.  相似文献   

12.
13.
Summary Antibodies raised against D. melanogaster ribosomal proteins were used to examine possible structural relationships between eukaryotic and prokaryotic ribosomal proteins. The antisera were raised against either groups of ribosomal proteins or purified individual ribosomal proteins from D. melanogaster. The specificity of each antiserum was confirmed and the identity of the homologous E. coli ribosomal protein was determined by immunochemical methods. Immuno-overlay assays indicated that the antiserum against the D. melanogaster small subunit protein S14 (anti-S14) was highly specific for protein S14. In addition, anti-S14 showed a cross-reaction with total E. coli ribosomal proteins in Ouchterlony double immunodiffusion assays and with only E. coli protein S6 in immuno-overlay assays. From these and other experiments with adsorption of anti-S14 with individual purified proteins, the E. coli protein homologous to the D. melanogaster protein S14 was established as protein S6.  相似文献   

14.
Ribonucleoprotein particles containing either heterogeneous nuclear RNA or polyribosomal messenger RNA were isolated from growing HeLa cells in order to compare their respective protein components. The major obstacle to analysing the proteins bound to HeLa cell mRNA proved to be the cosedimentation of a large fraction of the mRNP2 particles with ribosomal subunits following puromycin or EDTA disassembly of polyribosomes. This was circumvented by oligo(dT)-cellulose chromatography, in which essentially all of the ribosomal subunits passed through the column without retention, while approximately 80% of the pulse-labeled, poly(A)-containing mRNP became bound and could be eluted with formamide. Polyacrylamide gel electrophoresis of the non-bound fraction (ribosomal subunits) revealed polypeptides between 15,000 and 55,000 molecular weight, with no detectable components greater than 55,000. The oligo-(dT)-bound mRNP contained a much simpler protein complement, consisting of three major components having molecular weights of 120,000, 76,000 and 52,000.In the case of the nuclear ribonucleoprotein particles that contain heterogeneous nuclear RNA, oligo(dT)-cellulose chromatography revealed two classes of particles. The first contained 10 to 20% of the hnRNA, did not bind to oligo(dT)-cellulose in 0.25 m-NaCl, 10 mm-sodium phosphate buffer, pH 7.0 (4 °C), and contained primarily a single polypeptide component having an estimated molecular weight of 40,000 (“informofers”). A second population of hnRNP particles comprised approximately 80% of the hnRNA, displayed strong binding to oligo(dT)-cellulose at 0.25 m-NaCl, and contained a very complex population of proteins, having molecular weights between 40,000 and 180,000, the same as unfractionated hnRNP. The results indicate that, at the resolution of gel electrophoresis and at the sensitivity of Coomassie blue dye, the proteins bound to HeLa cell hnRNA are qualitatively distinct from those bound to polyribosomal mRNA and, in addition, that the hnRNP proteins are the more complex of the two. These results are discussed in relation to the possible nucleotide sequence elements in hnRNA and mRNA to which these specific proteins are bound.  相似文献   

15.
KH domain: one motif, two folds   总被引:12,自引:3,他引:9       下载免费PDF全文
The K homology (KH) module is a widespread RNA-binding motif that has been detected by sequence similarity searches in such proteins as heterogeneous nuclear ribonucleoprotein K (hnRNP K) and ribosomal protein S3. Analysis of spatial structures of KH domains in hnRNP K and S3 reveals that they are topologically dissimilar and thus belong to different protein folds. Thus KH motif proteins provide a rare example of protein domains that share significant sequence similarity in the motif regions but possess globally distinct structures. The two distinct topologies might have arisen from an ancestral KH motif protein by N- and C-terminal extensions, or one of the existing topologies may have evolved from the other by extension, displacement and deletion. C-terminal extension (deletion) requires β-sheet rearrangement through the insertion (removal) of a β-strand in a manner similar to that observed in serine protease inhibitors serpins. Current analysis offers a new look on how proteins can change fold in the course of evolution.  相似文献   

16.
Nascent pre-mRNAs associate with hnRNP proteins in hnRNP complexes, the natural substrates for mRNA processing. Several lines of evidence indicate that hnRNP complexes undergo substantial remodeling during mRNA formation and export. Here we report the isolation of three distinct types of pre-mRNP and mRNP complexes from HeLa cells associated with hnRNP A1, a shuttling hnRNP protein. Based on their RNA and protein compositions, these complexes are likely to represent distinct stages in the nucleocytoplasmic shuttling pathway of hnRNP A1 with its bound RNAs. In the cytoplasm, A1 is associated with its nuclear import receptor (transportin), the cytoplasmic poly(A)-binding protein, and mRNA. In the nucleus, A1 is found in two distinct types of complexes that are differently associated with nuclear structures. One class contains pre-mRNA and mRNA and is identical to previously described hnRNP complexes. The other class behaves as freely diffusible nuclear mRNPs (nmRNPs) at late nuclear stages of maturation and possibly associated with nuclear mRNA export. These nmRNPs differ from hnRNPs in that while they contain shuttling hnRNP proteins, the mRNA export factor REF, and mRNA, they do not contain nonshuttling hnRNP proteins or pre-mRNA. Importantly, nmRNPs also contain proteins not found in hnRNP complexes. These include the alternatively spliced isoforms D01 and D02 of the hnRNP D proteins, the E0 isoform of the hnRNP E proteins, and LRP130, a previously reported protein with unknown function that appears to have a novel type of RNA-binding domain. The characteristics of these complexes indicate that they result from RNP remodeling associated with mRNA maturation and delineate specific changes in RNP protein composition during formation and transport of mRNA in vivo.  相似文献   

17.
Telomeres are dynamic DNA-protein complexes at the end of linear chromosomes. Maintenance of functional telomeres is required for chromosome stability, and to avoid the activation of DNA damage response pathway and cell cycle arrest. Telomere-binding proteins play crucial roles in the maintenance of functional telomeres. In this study, we employed affinity pull-down and proteomic approach to search for novel proteins that interact with the single-stranded telomeric DNA. The proteins identified by two-dimensional gel electrophoresis were further characterized by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and MALDI-TOF-TOF tandem MS. Among the five identified proteins, we report here the biochemical properties of a novel protein, hnRNP A3. The purified hnRNP A3 bound specifically to G-rich strand, but not to C-rich strand or double-stranded telomeric DNA. The RRM1 (RNA recognition motif 1) domain, but not RRM2, of hnRNP A3 is sufficient to confer specific binding to the telomeric sequence. In addition, we present evidence that hnRNP A3 can inhibit telomerase extension in vitro. These biochemical properties of hnRNP A3 suggest that hnRNP A3 can participate in telomere regulation in vivo.  相似文献   

18.
The cis-acting response element, A2RE, which is sufficient for cytoplasmic mRNA trafficking in oligodendrocytes, binds a small group of rat brain proteins. Predominant among these is heterogeneous nuclear ribonucleoprotein (hnRNP) A2, a trans-acting factor for cytoplasmic trafficking of RNAs bearing A2RE-like sequences. We have now identified the other A2RE-binding proteins as hnRNP A1/A1(B), hnRNP B1, and four isoforms of hnRNP A3. The rat and human hnRNP A3 cDNAs have been sequenced, revealing the existence of alternatively spliced mRNAs. In Western blotting, 38-, 39-, 41-, and 41.5-kDa components were all recognized by antibodies against a peptide in the glycine-rich region of hnRNP A3, but only the 41- and 41.5-kDa bands bound antibodies to a 15-residue N-terminal peptide encoded by an alternatively spliced part of exon 1. The identities of these four proteins were verified by Edman sequencing and mass spectral analysis of tryptic fragments generated from electrophoretically separated bands. Sequence-specific binding of bacterially expressed hnRNP A3 to A2RE has been demonstrated by biosensor and UV cross-linking electrophoretic mobility shift assays. Mutational analysis and confocal microscopy data support the hypothesis that the hnRNP A3 isoforms have a role in cytoplasmic trafficking of RNA.  相似文献   

19.
20.
Flavonoids are widely distributed natural products with broad biological activities. Apigenin is a dietary flavonoid that has recently been demonstrated to interact with heterogeneous nuclear ribonucleoproteins (hnRNPs) and interferes with their RNA editing activity. We investigated whether apigenin possessed antiviral activity against enterovirus-71 (EV71) infection since EV71 infection requires of hnRNP proteins. We found that apigenin selectively blocks EV71 infection by disrupting viral RNA association with hnRNP A1 and A2 proteins. The estimated EC50 value for apigenin to block EV71 infection was determined at 10.3 µM, while the CC50 was estimated at 79.0 µM. The anti-EV71 activity was selective since no activity was detected against several DNA and RNA viruses. Although flavonoids in general share similar structural features, apigenin and kaempferol were among tested compounds with significant activity against EV71 infection. hnRNP proteins function as trans-acting factors regulating EV71 translation. We found that apigenin treatment did not affect EV71-induced nucleocytoplasmic redistribution of hnRNP A1 and A2 proteins. Instead, it prevented EV71 RNA association with hnRNP A1 and A2 proteins. Accordingly, suppression of hnRNP A1 and A2 expression markedly reduced EV71 infection. As a positive sense, single strand RNA virus, EV71 has a type I internal ribosome entry site (IRES) that cooperates with host factors and regulates EV71 translation. The effect of apigenin on EV71 infection was further demonstrated using a bicistronic vector that has the expression of a GFP protein under the control of EV71 5′-UTR. We found that apigenin treatment selectively suppressed the expression of GFP, but not a control gene. In addition to identification of apigenin as an antiviral agent against EV71 infection, this study also exemplifies the significance in antiviral agent discovery by targeting host factors essential for viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号