首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrical charge transport through thiophene-dithiol-based molecular wires attached to gold electrodes with three different types of crystallographic orientations (<1,1,1>, <1,1,0 >?and <1,0,1?>) was investigated. Electron transport in the systems under consideration was evaluated systematically by analyzing current values, transmission spectrum, projected device density of states and zero bias orbital analysis utilizing density functional theory in conjunction with non-equilibrium Green’s function. Investigations proved that tuning of conductance in nano-molecular junctions is possible through different electrode orientations. As the HOMO–LUMO gap in the <1,1,0?>?oriented thiophene dithiol junction is drastically less than that of the other configurations under consideration, the <1,1,0?> configuration exhibited superior constructive conductance in comparison to other junction orientations. This provided us with ideas for designing pioneering hetero-cyclic nano-scale electronics devices. Also, <1,1,0?>?has been found to show negative differential conductance behavior above +2.6 V and below ?2.6 V, and hence has potential applications in oscillating and switching circuits.  相似文献   

2.
3.
Scaling up microbial fuel cells (MFCs) requires the development of compact reactors with multiple electrodes. A scalable single chamber MFC (130 mL), with multiple graphite fiber brush anodes and a single air-cathode cathode chamber (27 m2/m3), was designed with a separator electrode assembly (SEA) to minimize electrode spacing. The maximum voltage produced in fed-batch operation was 0.65 V (1,000 Ω) with a textile separator, compared to only 0.18 V with a glass fiber separator due to short-circuiting by anode bristles through this separator with the cathode. The maximum power density was 975 mW/m2, with an overall chemical oxygen demand (COD) removal of >90% and a maximum coulombic efficiency (CE) of 53% (50 Ω resistor). When the reactor was switched to continuous flow operation at a hydraulic retention time (HRT) of 8 h, the cell voltage was 0.21 ± 0.04 V, with a very high CE = 85%. Voltage was reduced to 0.13 ± 0.03 V at a longer HRT = 16 h due to a lower average COD concentration, and the CE (80%) decreased slightly with increased oxygen intrusion into the reactor per amount of COD removed. Total internal resistance was 33 Ω, with a solution resistance of 2 Ω. These results show that the SEA type MFC can produce stable power and a high CE, making it useful for future continuous flow treatment using actual wastewaters.  相似文献   

4.
A comprehensive theoretical study was carried out on a series of aryldimesityl borane (DMB) derivatives using Density Functional theory. Optimized geometries and electronic parameters like electron affinity, reorganization energy, frontiers molecular contours, polarizability and hyperpolarizability have been calculated by employing B3PW91/6-311++G (d, p) level of theory. Our results show that the Hammett function and geometrical parameters correlates well with the reorganization energies and hyperpolarizability for the series of DMB derivatives studied in this work. The orbital energy study reveals that the electron releasing substituents increase the LUMO energies and electron withdrawing substituents decrease the LUMO energies, reflecting the electron transport character of aryldimesityl borane derivatives. From frontier molecular orbitals diagram it is evident that mesityl rings act as the donor, while the phenylene and Boron atom appear as acceptors in these systems. The calculated hyperpolarizability of secondary amine derivative of DMB is 40 times higher than DMB (1). The electronic excitation contributions to the hyperpolarizability studied by using TDDFT calculation shows that hyperpolarizability correlates well with dipole moment in ground and excited state and excitation energy in terms of the two-level model. Thus the results of these calculations can be helpful in designing the DMB derivatives for efficient electron transport and nonlinear optical material by appropriate substitution with electron releasing or withdrawing substituents on phenyl ring of DMB system.  相似文献   

5.
A pilot-scale (1,000 L) continuous flow microbial electrolysis cell was constructed and tested for current generation and COD removal with winery wastewater. The reactor contained 144 electrode pairs in 24 modules. Enrichment of an exoelectrogenic biofilm required ~60 days, which is longer than typically needed for laboratory reactors. Current generation was enhanced by ensuring adequate organic volatile fatty acid content (VFA/SCOD ≥ 0.5) and by raising the wastewater temperature (31 ± 1°C). Once enriched, SCOD removal (62 ± 20%) was consistent at a hydraulic retention time of 1 day (applied voltage of 0.9 V). Current generation reached a maximum of 7.4 A/m3 by the planned end of the test (after 100 days). Gas production reached a maximum of 0.19 ± 0.04 L/L/day, although most of the product gas was converted to methane (86 ± 6%). In order to increase hydrogen recovery in future tests, better methods will be needed to isolate hydrogen gas produced at the cathode. These results show that inoculation and enrichment procedures are critical to the initial success of larger-scale systems. Acetate amendments, warmer temperatures, and pH control during startup were found to be critical for proper enrichment of exoelectrogenic biofilms and improved reactor performance.  相似文献   

6.
The electron affinities of beryllium and magnesium tetramers are calculated at the ROMP2 level employing the Dunning-type aug-cc-pVQZ basis set. The vertical electron detachment energy (VEDE) amounts to 1.685 eV for Be4 and 0.943 eV for Mg4 . The decomposition of the VEDE into physical components and an atomic orbital population analysis are used to elucidate the nature of the outer electron binding in these anions.Figure The lowest unoccupied molecular orbitals in the ground state of Mg4 : a LUMO, symmetry A1, b LUMO + 1, symmetry T2; c the highest occupied molecular orbital (HOMO), symmetry A1 in the ground state of Mg4.   相似文献   

7.
Theoretical investigations on the diblock molecular diode, thiophene–thiazole compound, have been carried out at the Hartree–Fock (HF) level by considering the interaction under the external bias. They demonstrate that the electronic structures of this kind of diode molecule are essentially different from those based on the Aviram and Ratner model, in which donor and acceptor π-conjugated segments are separated by an insulating σ-bonded segment, in terms of the energy levels of the frontier molecular orbitals as well as their spatial distributions. The introduction of the external bias modifies both the geometric and electronic structures. In particular, the spatial distributions of the frontier molecular orbitals are also shifted under the external bias. Moreover, all these features show a strong dependence on the polarity of the applied bias due to the build in intrinsic molecular asymmetric structures, which could be used to intuitively interpret the asymmetrical current–voltage behaviours of molecules.  相似文献   

8.
Using the voltage/current clamp technique in the whole-cell configuration, we studied the role of the highly tetraethylammonium (TEA) -sensitive component of integral potassium current in the generation of high-frequency tonic impulsation by rat retinal ganglion cells (RGCs). Application of 0.5 mM TEA led to a decrease in the frequency of evoked tonic impulsation by RGCs by 63% (from 55 ± 10 sec–1 in the control to 26 ± 5 sec–1 in the presence of the blocker; n = 11). In this case, the duration of single action potentials at the level of 50% their amplitude increased by 64% (from 1.1 ± 0.1 to 1.8 ± 0.1 msec; n = 11), the rate of repolarization decreased by 54% (from −101 ± 9 to −46 ± 5 mV/msec; n = 11), and the amplitude of afterhyperpolarization dropped by 62% (from −16 ± 2 to −6 ± 2 mV; n = 11). Upon the action of 0.5 mM TEA, the amplitude of the integral potassium current in RGCs decreased; the current component sensitive to the above blocker was equal to 0.41 ± 0.05 nA (n = 6), while the respective value in the control was 1.62 ± 0.14 nA (n = 12). Thus, a moderate (on average, by 25%) decrease in the amplitude of the above potassium current significantly influenced the characteristics of impulse activity generated by RGCs. The TEA-sensitive component of the current was similar to the Kv3.1/Kv3.2 potassium current described earlier. The obtained data are indicative of the key role of the highly TEA-sensitive component of the potassium current (passed probably via Kv3.1/Kv3 channels) in high-frequency tonic activity generated by RGCs.  相似文献   

9.
10.
In light of the performance of the SD2 pigments in DSSC, in order to expand the absorption spectral scope, decrease the energy difference between the highest occupied and the lowest unoccupied molecular orbitals, with SD2 dye molecular electron donor and electron acceptor as the fundamental framework, the indole fragment and thiophene derivative in the prototype dye molecule were replaced by the two π-bridges (labeled PA, PB, respectively) and the four auxiliary electron acceptors (labeled A1, A2, A3, A4, respectively). For the sake of characterizing dye molecules as thoroughly as possible in DSSC, the frontier orbital energy levels, ultraviolet absorption spectra, natural bond orbital analysis, intramolecular charge transfer, charge and hole reorganization energies, parameters influencing the short-circuit current density and the open-circuit photovoltage for these eight individual dye molecules are carried out to try to fully characterize the properties of these dye molecules. According to these computational results of physical quantities and based on the performance of these dye molecules in the above aspects, in this paper, six free molecular models were picked out to combine with titanium dioxide cluster to calculate their geometrical structures, frontier orbital distributions, electron excitation energies, ultraviolet absorption spectra and the composition of the electronic transitions in chloroform solvent with polarizable continuum model. The results of these calculations show that the PA-A2 and PB-A4 dye molecule has better properties in electron transfer and spectral absorption range before and after the adsorption on the titanium dioxide.  相似文献   

11.
12.
We have carried out a structural and vibrational study for 5-phenyl-1,3,4-oxadiazole-2-thiol by using the infrared (IR) spectrum and theoretical calculations. For a complete assignment of the compound IR spectrum, density functional theory calculations were combined with Pulay's scaled quantum mechanical force field methodology in order to fit the theoretical wavenumber values to the experimental ones. An agreement between theoretical and available experimental results was found. The theoretical vibrational calculations allowed us to obtain a set of scaled force constants fitting the observed wavenumbers. The results were then used to predict the Raman spectra, for which there are no experimental data. The nature of the benzyl and oxadiazole rings was studied by means of natural bond order and atoms in molecules theory calculations. In addition, the frontier molecular (highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)) orbitals were analysed and compared with those calculated for the oxadiazole molecule.  相似文献   

13.
We studied the effect of “chemical” (induced by the action of sodium thiosulfate, STS) hypoxia on the potassium conductance of the membrane of pheochromocytoma cells. Application of 1 to 10 mM STS decreased in a dose-dependent manner the amplitude of integral potassium current without changes in the voltage dependence of its activation. The concentration dependence of the action of STS on the amplitude of potassium current was estimated using the Boltzmann equation. The value of concentration for 50% inhibition was 2.7 ± 0.2 mM, while the slope coefficient was 0.9 ± 0.2 mM−1. In the presence of 10 mM STS, the decrease in the amplitude of potassium current reached, on average, 55%. Therefore, “chemical” hypoxia influences rather significantly the potassium conductance of the membrane of pheochromocytoma PC12 cells.  相似文献   

14.
An ab initio approach was utilized to explore the electronic transport properties of 4′-thiolate-biphenyl-4-dithiocarboxylate (TBDT) sandwiched between two electrodes made of various materials X (X?=?Cu, Ag, and Au). Analysis of current–voltage (I–V) characteristics, rectification performance, transmission functions, and the projected density of states (PDOS) under various external voltage biases showed that the transport properties of these constructed systems are markedly impacted by the choice of electrode materials. Further, Cu electrodes yield the best rectifying behavior, followed by Ag and then Au electrodes. Interestingly, the rectification effects can be tuned by changing the torsion angle between the two phenyl rings, as well as by stretching the contact distances between the end group and the electrodes. For Cu, the maximum rectifying ratio increases by 37 % as the contact distance changes from 1.7 Å to 1.9 Å. This is due to an increase in coupling strength asymmetry between the molecule and the electrodes. Our findings are compared with the results reported for other systems. The present calculations are helpful not only for predicting the optimal electrode material for practical applications but also for achieving better control over rectifying performance in molecular devices.  相似文献   

15.
Two-phase partitioning bioreactors in environmental biotechnology   总被引:3,自引:0,他引:3  
Operation of microbial electrolysis cells (MECs) without an ion exchange membrane could help to lower the construction costs while lowering the ohmic cell resistance and improving MEC conversion rates by minimizing the pH gradient between anode and cathode. In this research, we demonstrate that membraneless MECs with plain graphite can be operated for methane production without pH adjustment and that the ohmic cell resistance could be lowered with approximately 50% by removing the cation exchange membrane. As a result, the current production increased from 66 ± 2 to 156 ± 1 A m−3 MEC by removing the membrane with an applied voltage of −0.8 V. Methane was the main energetic product despite continuous operation under carbonate-limited and slightly acidified conditions (pH 6.1–6.2). Our results suggest that continuous production of hydrogen in membraneless MECs will be challenging since methane production might not be avoided easily. The electrical energy invested was not always completely recovered under the form of an energy-rich biogas; however, our results indicate that membraneless MECs might be a viable polishing step for the treatment of the effluent of anaerobic digesters as methane was produced under low organic loading conditions and at room temperature. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The current research work investigates the potential of solid lipid nanoparticles (SLNs) in improving the oral bioavailability of paclitaxel. Paclitaxel-loaded SLNs (PTX-SLNs) were prepared by modified solvent injection method using stearylamine as lipid, soya lecithin and poloxamer 188 as emulsifiers. SLNs were characterized in terms of surface morphology, size and size distribution, surface chemistry and encapsulation efficiency. Pharmacokinetics and bioavailability studies were conducted in male Swiss albino mice after oral administration of PTX-SLNs. SLNs exhibited spherical shape with smooth surface as analyzed by transmission electron microscopy (TEM). The mean particle size of SLNs was 96 ± 4.4 nm with a low polydispersity index of 0.162 ± 0.04 and zeta potential of 39.1 ± 0.8 mV. The drug entrapment efficiency was found to be 75.42 ± 1.5% with a loading capacity of 31.5 ± 2.1% (w/w). Paclitaxel showed a slow and sustained in vitro release profile and followed Higuchi kinetic equations. After oral administration of the PTX-SLNs, drug exposure in plasma and tissues was ten- and twofold higher, respectively, when compared with free paclitaxel solution. PTX-SLNs produced a high mean C max (10,274 ng/ml) compared with that of free paclitaxel solution (3,087 ng/ml). The absorbed drug was found to be distributed in liver, lungs, kidneys, spleen, and brain. The results suggested that PTX-SLNs dispersed in an aqueous environment are promising novel formulations that enhanced the oral bioavailability of hydrophobic drugs, like paclitaxel and were quite safe for oral delivery of paclitaxel as observed by in vivo toxicity studies.  相似文献   

17.
The metal-sulfur bonding present in the transition metal-thiolate complexes CpFe(CO)2SCH3, CpFe(CO)2StBu, CpRe(NO)(PiPr3)SCH3, and CpRe(NO)(PPh3)SCH3 (Cp = η5-C5H5) is investigated via gas-phase valence photoelectron spectroscopy. For all four complexes a strong dπ-pπ interaction exists between a filled predominantly metal d orbital of the [CpML2]+ fragment and the purely sulfur 3pπ lone pair of the thiolate. This interaction results in the highest occupied molecular orbital having substantial M-S π antibonding character. In the case of CpFe(CO)2SCH3, the first (lowest energy) ionization is from the Fe-S π orbital, the next two ionizations are from predominantly metal d orbitals, and the fourth ionization is from the Fe-S π orbital. The pure sulfur pπ lone pair of the thiolate fragment is less stable than the filled metal d orbitals of the [CpFe(CO)2]+ fragment, resulting in a Fe-S π combination that is higher in sulfur character than the Fe-S π combination. Interestingly, substitution of a tert-butyl group for the methyl group on the thiolate causes little shift in the first ionization, in contrast to the shift observed for related thiols. This is a consequence of the delocalization and electronic buffering provided by the Fe-S dπ-pπ interaction. For CpRe(NO)(PiPr3)SCH3 and CpRe(NO)(PPh3)SCH3, the strong acceptor ability of the nitrosyl ligand rotates the metal orbitals for optimum backbonding to the nitrosyl, and the thiolate rotates along with these orbitals to a different preferred orientation from that of the Fe complexes. The initial ionization is again the M-S π combination with mostly sulfur character, but now has considerable mixing among several of the valence orbitals. Because of the high sulfur character in the HOMO, ligand substitution on the metal also has a small effect on the ionization energy in comparison to the shifts observed for similar substitutions in other molecules. These experiments show that, contrary to the traditional interpretation of oxidation of metal complexes, removal of an electron from these metal-thiolate complexes is not well represented by an increase in the formal oxidation state of the metal, nor by simple oxidation of the sulfur, but instead is a variable mix of metal and sulfur content in the highest occupied orbital.  相似文献   

18.
Fukushima K  Wada M  Sakurai M 《Proteins》2008,71(4):1940-1954
In this study, we explored the general relationship between the three-dimensional (3D) structures of enzymes and their electronic wave functions. Furthermore, we developed a method for the prediction of their functionally important sites. For this purpose, we first performed linear-scaling molecular orbital calculations for 112 nonredundant, non-homologous enzymes with known structure and function. In consequence, we showed that the canonical molecular orbitals (MOs) of the enzymes could be classified into three groups according to the degree of electron delocalization: highly localized orbitals (Group A), highly delocalized orbitals whose electrons are distributed over almost the whole molecule (Group B), and moderately delocalized orbitals (Group C). The MOs belonging to Group A are located near the HOMO-LUMO band gap, and thereby include the frontier orbitals of a given enzyme. We inferred that the MOs of Group B play a role in stabilizing the 3D structure of the enzyme, while those of Group C contribute to constructing the covalent bond framework of the enzyme. Next, we investigated whether the frontier orbitals of enzymes could be used for identifying their potential functional sites. As a result, we found that the frontier orbitals of the 112 enzymes have a high propensity to be colocalized with the known functional sites, especially when the enzymes are hydrated. Such a propensity is shown to be remarkable when Glu or Asp is a functional site residue. On the basis of these results, we finally propose a protocol for the prediction of functional sites of enzymes.  相似文献   

19.
The geometries have been optimized by using density functional theory. The highest occupied molecular orbitals are delocalized on triphenylamine moiety while lowest unoccupied molecular orbital are localized on anchoring group. Intramolecular charge transfer has been observed from highest occupied molecular orbitals to lowest unoccupied molecular orbital. By replacing the vinyl hydrogens with methoxy as well as one benzene ring as bridge leads to a raised energy gap while extending the bridge decreases the energy gap compared to parent molecule. The HOMO energies bump up by extending the bridge. The LUMO energies of all the investigated dyes are above the conduction band of TiO(2) and HOMOs are below the redox couple except 3c. The distortion between anchoring group and triphenylamine can hamper the recombination reaction.  相似文献   

20.
A series of zinc complexes with salicylidene-aniline and its derivatives as ligands have been designed and synthesized for electron transport in organic light-emitting diodes (OLEDs). A systematic study on their thermal, photophysical, electrochemical and electron transport properties has been carried out and demonstrated that the substitution of −CH3, −OCH3, −CN and −N(CH3)2 on aniline ring of ligands can finely tune the properties of the corresponding zinc complexes. The density functional theory calculations of location and distribution of the frontier molecular orbital states unveiled the relationships between the substituents and the photophysical and electrochemical properties of these complexes. OLEDs with bis(salicylidene-p-methylaniline)zinc(II) (Zn(sama)2) as the electron transport layer exhibited high current efficiency, indicating its great potential as a useful electron transport material for OLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号