首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The single copy parathyroid hormone-like peptide gene (Pthlh) was mapped to distal mouse chromosome 6 using genetic linkage analysis with a panel of DNA samples from interspecific backcross mice. In all 114 meiotic events examined, the Pthlh locus cosegregated with the locus for the Kirsten ras-2 gene (Kras-2) which was previously localized to distal mouse chromosome 6. In addition, Pthlh was localized to chromosome 6 band F-G and the mouse parathyroid hormone Pth was localized to chromosome 7 band F, by in situ hybridization. These studies confirm the previous localization of Pthlh to mouse chromosome 6 using somatic cell hybrids and show that the Pthlh/PTHLH locus is a part of a conserved linkage group between distal mouse chromosome 6 and the proximal segment of the short arm of human chromosome 12.  相似文献   

2.
Parental chromosome studies were referred to us after initial finding of a balanced translocation involving chromosomes 4 and 15 in their phenotypically abnormal male child (cytogenetic analysis was done at another laboratory). In addition to the same 4;15 translocation, the father also had an interstitial deletion of the long arm of one chromosome 6 and a marker chromosome. In this article, we report a neocentromere on this marker, which was determined to be composed of chromosome 6 material by FISH. The child's karyotype was re-interpreted to be unbalanced due to the presence of the abnormal chromosome 6, but without the marker. The clinical phenotype associated with the interstitial deletion of chromosome 6 is also reported.  相似文献   

3.
The Alu-polymerase chain reaction (Alu-PCR) was applied to selectively amplify DNA sequences from human chromosome 6 using a single primer (A1) directed to the human Alu consensus sequence. A specific amplification pattern was demonstrated for a panel of eight somatic cell hybrids containing different portions of chromosome 6. This PCR pattern permits the identification of submicroscopic DNA alterations and can be utilized as a reference for additional chromosome 6-specific hybrids. To obtain new chromosome 6-specific markers we established two libraries from PCR-amplified sequences using two somatic cell hybrids (MCH381.2D and 640-5A). Out of a total of 109 clones that were found to be chromosome 6 specific, 13 clones were regionally assigned. We also included a procedure that allows the isolation of chromosome 6-specific markers from hybrids that contain human chromosomes other than 6. Our results will contribute to the molecular characterization of chromosome 6 by fostering characterization of somatic cell hybrids and by the generation of new regionally assigned DNA markers.  相似文献   

4.
Human gene mapping using an X/autosome translocation.   总被引:1,自引:0,他引:1  
Human fibroblasts containing a translocation between the X chromosome and chromosome 15 were fused with the 6-thioguanine-resistant mouse cell line, IR. Resulting hybrids, selected in HAT medium, retained the X/15 chromosome. Hybrids which were counterselected in 6-thioguanine lost this chromosome. The X-linked markers glucose-6-phosphate dehydrogenase (G6PD), phosphoglycerate kinase (PGK), and hypoxanthine phosphoribosyl transferase (HPRT), and the non-X-linked markers pyruvate kinase (PKM2) mannose phosphate isomerase (MPI), N-acetyl hexosaminidase A (HEXA) and beta2-microglubulin (beta2-m) all segregated in concordance with the X/15 translocation chromosome. The latter markers have been assigned to chromosome 15. Selection against the X/15 chromosome was done using antihuman beta2-m serum. Electrophoretic and immunochemical analyses of the N-acetyl hexosaminidases A and B in these hybrids were performed.  相似文献   

5.
G A Rappold  J Trowsdale  P Lichter 《Genomics》1992,13(4):1337-1339
The gene TCTE3 from the mouse t-complex region is expressed specifically in testicular germ cells. It maps in the central subregion of the t-complex on mouse chromosome 17 containing loci involved in transmission ratio distortion and male sterility. In this study, somatic cell hybrid lines have been used to map the human homologue, TCTE3, to the long arm of chromosome 6. CISS hybridization with the human lambda clone h117 refined this chromosome assignment to the very distal position of chromosome 6q27, thus providing further evidence that loci from the t-complex of mouse chromosome 17 can map to opposite arms of human chromosome 6.  相似文献   

6.
The occurrence of hairless piebald mice trisomic for the chromosome segments of the T6M chromosome has shown that the LG III loci hr and s are not located on T6M. The T6 breakpoint in LG III is therefore in the position hr-s-T6. T6M must carry the gene Fkl, which is located on the far side of the T6 breakpoint from hr in LG III.-T6 reduces recombination in the hr-s region.-Trisomy for the chromosome segments of the T6M chromosome appears to severely reduce viability.-The gene hr has been shown to lie between the centromere and the T6 breakpoint. The order of loci in LG III is therefore: centromere-hr-s-T6.-Equations are given for the relation between the frequency of adjacent-2 segregation and the frequency of recovery of complementation zygotes for the case in which the translocation heterozygote can form either quadrivalent or univalent-trivalent configurations at meiosis.-Linkage Group III is carried on chromosome 14. LG VI is the other linkage group involved in T6, and is carried on chromosome 15.  相似文献   

7.
8.
T. Tsuchiya 《Chromosoma》1969,26(2):130-139
In the progeny of a trisomic type for chromosome 6, Purple, a 16-chromosome type was obtained, which had a pair of new metacentric chromosome 6 in excess. The new metacentric chromosome 6 was shorter than any of the 14 chromosomes of normal barley complement and showed a heteropycnotic nature at late prophase in somatic mitosis. At metaphase I in the plants with 14+one metacentric chromosome 6 (2n=15) the chromosome configuration was exclusively 7II+1I indicating that the extra metacentric chromosome 6 could not associate with the normal chromosome 6. At diakinesis and metaphase I in the new 16-chromosome plants most of the sporocytes showed 8IIor 7II+2I. Neither tetravalents nor trivalents were observed at meiosis. The chromosome behaviour at anaphase I and later stages of meiosis was regular in general, resulted in a fairly high pollen fertility of about 61 per cent. Seed fertility however, was very low. The transmission rate of the new metacentric chromosome 6 through the pollen was extremely low in 16-chromosome plants. Possible origin of new basic number and B-chromosome in diploid level through trisomic condition was suggested (Summary see p. 138).Contribution No. 141 of the Department of Plant Science, University of Manitoba.  相似文献   

9.
Kota RS  Dvorak J 《Genetics》1988,120(4):1085-1094
A massive restructuring of chromosomes was observed during the production of a substitution of chromosome 6B(s) from Triticum speltoides (Tausch) Gren. ex Richter for chromosome 6B of Chinese Spring wheat (Triticum aestivum L.). Deletions, translocations, ring chromosomes, dicentric chromosomes and a paracentric inversion were observed. Chromosome rearrangements occurred in both euchromatic and heterochromatic regions. Chromosome rearrangements were not observed either in the amphiploid between Chinese Spring and T. speltoides or in Chinese Spring. No chromosome rearrangements were observed in the backcross derivatives; however, after self-pollination of a monosomic substitution (2n = 41) of chromosome 6B(s) for wheat chromosome 6B, 49 of the 138 plants carried chromosome aberrations. Chromosome rearrangements were observed in both wheat and T. speltoides chromosomes. The frequency of chromosome rearrangements was high among the B-genome chromosomes, moderate among the A-genome chromosomes, and low among the D-genome chromosomes. In the B genome, the rearrangements were nonrandom, occurring most frequently in chromosomes 1B and 5B. Chromosome rearrangements were also frequent for the 6B(s) chromosome of T. speltoides. An intriguing aspect of these observations is that they indicate that wheat genomes can be subject to uneven rates of structural chromosome differentiation in spite of being in the same nucleus.  相似文献   

10.
Localization of Calliphora erythrocephala chromosome 6 in a 3D nuclear space at different stages of nurse cell chromatin polytenization was analyzed by fluorescence in situ hybridization and 3D microscopy. The obtained results suggest a large-scale chromatin relocation in the C. erythrocephala nurse cell nuclei, which is accompanied by a change in the chromosome territory of chromosome 6 associated with the change in expression activity of the nucleus and formation of reticular chromatin structure. It was revealed that the relocation of chromosome 6 (nucleolus organizer chromosome) is accompanied by fragmentation of the single large nucleolus into micronucleoli, which are spread over the entire nuclear space being associated with their nucleolar organizer regions. Presumably, the chromosome 6 material during transition to a highly polytenized structure is redistributed in the nucleus so that the inactive pericentromeric regions are displaced to the nuclear periphery, while the chromosome regions carrying rDNA sequences loop out beyond the chromosome territory. Being dispersed over the entire nuclear space, rDNA sequences are likely to be amplified, thereby providing numerous small signals from the chromosome 6-specific DNA probe. Micronucleoli are formed around the actively transcribed nucleolar organizer regions.  相似文献   

11.
The influence of rad2 mutation blocking incision of pyrimidine dimers on frequency of UV-light and 6-hydroxylaminopurine (6-GAP)-induced adenine-independent revertants was studied in the strains of Saccharomyces cerevisiae containing the same mutant allele of gene ADE2 in episomic plasmid and in chromosome. It was shown that the strains carrying the ade2 mutation in chromosome and in plasmid did not differ in sensitivity to lethal action of UV-light and 6-GAP. However, in the plasmid rad2 strain reversions were induced by UV-light more frequently (approximately 100 times), as compared to the chromosome strain. We observed no significant differences between reversion frequencies in plasmid and chromosome RAD strains. The tendency to enhanced 6-GAP-induced mutagenesis, less sharply expressed, was observed in the chromosome rad2 strain, as compared to the plasmid one. However, the plasmid RAD strain was characteristic of higher reversion frequency induced by 6-GAP, as compared to the chromosome strain. The possible mechanisms of these phenomena are discussed.  相似文献   

12.
The met proto-oncogene was mapped in the mouse and cat genomes with the use of mouse X hamster and cat X rodent somatic cell hybrid DNA panels. Based on these analyses we assigned the met gene to mouse chromosome 6 and to cat chromosome A2. We also assigned the cat raf-1 proto-oncogene to the A2 chromosome; met and raf-1 are the first cloned DNAs mapped to this linkage group. Using an interspecies backcross we further localized met on mouse chromosome 6 to a position proximal to the beta chain of the T-cell receptor. This places met near the obese locus in a region of mouse chromosome 6 that appears to be homologous with the long arm of human chromosome 7. The close linkage of met to the gene responsible for cystic fibrosis in humans suggests that further genetic analysis of mouse chromosome 6 may be useful in developing a mouse model for the disease.  相似文献   

13.
Multicolor 3D fluorescence in situ hybridization was used to study arrangement of rRNA genes in Calliphora erythrocephala nurse cell nuclei with different levels of polyteny. It has been shown that the rRNA genes are exclusively localized to chromosome 6, suggesting that chromosome 6 is the only C. erythrocephala chromosome responsible for nucleolar formation. We have also described changes in localization of ribosomal genes within the chromosome territory during polytenization, namely, that rDNA signals are detected in the peripheral region of chromosome territory starting from the stage of polytene chromosomes. In addition, it has emerged that large nucleolus associated with chromosome 6 starts to develop in the central nuclear region in the C. erythrocephala nurse cell nuclei at the stage of a primary reticular structure. The central position and nucleolar structure are retained at the stages when chromosome 6 occupies the central position, that is, at the stages of polytene and bloblike chromosomes. When the nucleus restores a reticular structure but at a higher polyteny level, the displacement of chromosome 6 to the nuclear periphery is accompanied by disruption of the large nucleolus into micronucleoli. The micronucleoli are distributed in the nuclear space retaining their association with the nucleolar-organizing regions of chromosome 6. Thus, our data suggest that the large-scale alterations in the organization of chromosome 6 and the nucleolus during polytenization are the correlated processes directly dependent on the rRNA gene activity. The earlier described dynamics of nucleolar-organizing chromosome territory and nucleolus in the nuclear space is likely to be associated with the change in the total expression activity of the nucleus, which complies with the hypothesis on the correlation between spatial nuclear organization and expression regulation of genetic material.  相似文献   

14.
Using a human-mouse monochromosomal hybrid, BG15-6, that contains an intact human chromosome 5, we isolated four monoclonal antibodies, 2A10, 3H9, 5G9, and 6G12, as chromosome marker antibodies recognizing cell surface antigens specific for human chromosome 5. The binding patterns of these antibodies to BG15 subclones containing fragments of human chromosome 5 indicated that 2A10, 3H9, and 6G12 recognized the antigens produced by genes located on 5pterq22, and that 5G9 recognized the antigen produced by a gene located on 5q23. Cells containing human chromosome 5 were very effectively sorted in a fluorescence-activated cell sorter (FACS) using monoclonal antibody 6G12. This method for sorting cells containing human chromosome 5 or an appropriate fragment of this chromosome from among human-rodent hybrid cells should be very useful in studies on gene expression, gene cloning and gene mapping.by M. Trendelenburg  相似文献   

15.
By combining ten second and ten third chromosomes, we investigated chromosomal interaction with respect to the action of the modifier factors on G6PD and 6PGD activities in Drosophila melanogaster. Analysis of variance revealed that highly significant chromosomal interaction exists for both enzyme activities. From the estimated variance components, it was concluded that the variation in enzyme activity attributed to the interaction is as great as the variation attributed to the second chromosome but less than attributed to the third chromosome. The interaction is not explained by the variation of body size (live weight). The interaction is generated from both the lack of correlation of second chromosomes for third chromosome backgrounds and the heterogeneous variance of second chromosomes for different third chromosome backgrounds. Large and constant correlation between G6PD and 6PGD activities were found for third chromosomes with any second chromosome background, whereas the correlations for second chromosomes were much smaller and varied considerably with the third chromosome background. This result suggests that the activity modifiers on the second chromosome are under the influence of third chromosome factors.  相似文献   

16.
Mitotic or meiotic chromosome studies are reported for 39 species or subspecies of Oxalis from South America belonging to 14 sections. Chromosome numbers of 34 of these taxa are reported for the first time. Diploids and polyploids with six different basic chromosome numbers x=5, 6, 7, 8, 9 and 11 are described. Thirteen species of subgenus lhamnoxys were analysed and two new basic chromosome numbers were observed in diploid entities of this subgenus, x = 6 and x=9. The underground stem-bearing entities of Oxalis subgenus Oxalis studied (in sections Articulatae, Jonoxalis and Palmatifoliae) are mostly diploids and polyploids with a basic chromosome number x=7. Five species of section Carnosa are diploids with x = 9. In species of sections Rosea, Ortgieseae, Clematodes and Laxae the basic chromosome numbers x = 6, 7, 8 and 9 were observed. Groups of related species sharing the same chromosome number are discussed with the aim of improving the infrageneric delimitation of the genus. The basic chromosome number x=6 seems to be primitive in the genus and other basic chromosome numbers probably appeared several times in the course of chromosome evolution of Oxalis .  相似文献   

17.
Although basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are very common skin tumours, the incidence of chromosome aneuploidy with regard to the eyelid has not been investigated. We aimed to find the frequency of chromosome 6 and 17 aneuploidies in eyelid tumours' interphase nuclei with fluorescence in situ hybridization (I-FISH) with chromosome specific DNA probes. I-FISH with chromosome 6 and 17 centromere specific DNA probes was used in the eyelids of 10 patients with BCC or SCC and the peripheral blood cells of 10 healthy donors as controls. The frequency of chromosome 6 and 17 aneuploidies was significantly higher in 7 out of 10 patients and 5 out of 10 patients, respectively, than in controls, indicating a higher frequency of aneuploidy in BCC than in SCC of the eyelid. Distribution of hybridization signals for chromosome 6 and 17 was wide ranging, indicating heterogeneity of cell populations with aneuploidy between patients. These findings indicate that acquisition of chromosome aneuploidies in eyelid tumours may have an important pathogenic role in both BCC and SCC of the eyelid area.  相似文献   

18.
We report on a girl with psychomotor retardation, severe speech developmental delay and mild dysmorphic features. Molecular cytogenetic analysis showed that the patient was carrier of an insertion (6)(p22.5-->22.4) in chromosome 12. Analysis of the chromosomes of the mother revealed the presence of a complex chromosomal rearrangement. In addition to the insertion (6)(p22.5-->22.4) in chromosome 12 and a pericentric inversion in chromosome 12, the 6p subtelomeric region was absent in the mother. This is, to our knowledge, the smallest pure duplication of chromosome 6p as well as the smallest cryptic subtelomeric 6pter deletion thus far reported.  相似文献   

19.
20.
Similarity of G-band patterns between the long arm of Chinese hamster chromosome 6 and mouse chromosome 2, combined with the assignments of AK1, ADA, and ITPA to hamster chromosome 6 and AK1 to mouse chromosome 2, suggested mouse chromosome 2 also might contain ADA and ITPA. Here, concordant segregation analysis of enzyme loci and chromosomes in mouse spleen X CHO as well as mouse microcell X CHO somatic cell hybrids established the assignments of ADA and ITPA onto mouse chromosome 2 in the region between the first G-band and the terminus (C1----ter). This assignment presents a demonstration of the conservation and evolution of enzyme and proto-oncogene loci linkage since two cellular homologs of viral oncogenes--c-src and c-abl--also map to mouse chromosome 2. In humans c-src, ADA, and ITPA remain conserved on chromosome 20, whereas AK1 and c-abl are together on chromosome 9. These observations and concepts are discussed with respect to the role of proto-oncogenes in chromosomal evolution and suggest the long arm of chromosome 6 as a fruitful place to look for c-src and c-abl in the Chinese hamster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号