首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cervical cancer is caused by high-risk, cancer-causing human papillomaviruses (HPV) and is the second highest cause of cancer deaths in women globally. The majority of cervical cancers express well-characterized HPV oncogenes, which are potential targets for immunotherapeutic vaccination. Here we develop a rabbit haemorrhagic disease virus (RHDV) virus-like particle (VLP)-based vaccine designed for immunotherapy against HPV16 positive tumours. An RHDV-VLP, modified to contain the universal helper T cell epitope PADRE and decorated with an MHC I-restricted peptide (aa 48–57) from the HPV16 E6, was tested for its immunotherapeutic efficacy against the TC-1 HPV16 E6 and E7-expressing tumour in mice. The E6-RHDV-VLP-PADRE was administered therapeutically for the treatment of a pre-existing TC-1 tumour and was delivered with antibodies either to deplete regulatory T cells (anti-CD25) or to block T cell suppression mediated through CTLA-4. As a result, the tumour burden was reduced by around 50% and the median survival time of mice to the humane endpoint was almost doubled the compared to controls. The incorporation of PADRE into the RHDV-VLP was necessary for an E6-specific enhancement of the anti-tumour response and the co-administration of the immune modifying antibodies contributed to the overall efficacy of the immunotherapy. The E6-RHDV-VLP-PADRE shows immunotherapeutic efficacy, prolonging survival for HPV tumour-bearing mice. This was enhanced by the systemic administration of immune-modifying antibodies that are commercially available for use in humans. There is potential to further modify these particles for even greater efficacy in the path to development of an immunotherapeutic treatment for HPV precancerous and cancer stages.  相似文献   

2.
Human papillomavirus (HPV), particularly type 16 (HPV-16), is present in more than 99% of cervical cancers. The HPV oncoproteins E6 and E7 are constantly expressed and therefore represent ideal targets for HPV vaccine development. We previously developed DNA vaccines encoding calreticulin (CRT) linked to HPV-16 E7 and generated potent E7-specific CD8(+) T-cell immune responses and antitumor effects against an E7-expressing tumor. Since vaccines targeting E6 also represent an important strategy for controlling HPV-associated lesions, we developed a DNA vaccine encoding CRT linked to E6 (CRT/E6). Our results indicated that the CRT/E6 DNA vaccine, but not a wild-type E6 DNA vaccine, generated significant E6-specific CD8(+) T-cell immune responses in vaccinated mice. Mapping of the immunodominant epitope of E6 revealed that an E6 peptide comprising amino acids (aa) 48 to 57 (E6 aa48-57), presented by H-2K(b), is the optimal peptide and that the region of E6 comprising aa 50 to 57 represents the minimal core sequence required for activating E6-specific CD8(+) T lymphocytes. We also demonstrated that E6 aa48-57 contains cytotoxic T-lymphocyte epitopes naturally presented by E6-expressing TC-1 cells. Vaccination with a CRT/E6 but not a CRT/mtE6 (lacking aa 50 to 57 of E6) DNA vaccine could protect vaccinated mice from challenge with E6-expressing TC-1 tumors. Thus, our data indicate that E6 aa48-57 contains the immunodominant epitope and that a CRT/E6 DNA vaccine may be useful for control of HPV infection and HPV-associated lesions.  相似文献   

3.
4.
Human papillomavirus type 16 (HPV16) E6 and E7 oncoproteins are required for cellular transformation and represent candidate targets for HPV-specific and major histocompatibility complex class I-restricted CD8(+)-T-cell responses in patients with cervical cancer. Recent evidence suggests that cross-reactivity represents the inherent nature of the T-cell repertoire. We identified HLA-A2 binding HPV16 E7 variant peptides from human, bacterial, or viral origin which are able to drive CD8(+)-T-cell responses directed against wild-type HPV16 E7 amino acid 11 to 19/20 (E7(11-19/20)) epitope YMLDLQPET(T) in vitro. CD8(+) T cells reacting to the HLA-A2-presented peptide from HPV16 E7(11-19(20)) recognized also the HLA-A2 binding peptide TMLDIQPED (amino acids 52 to 60) from the human coronavirus OC43 NS2 gene product. Establishment of coronavirus NS2-specific, HLA-A2-restricted CD8(+)-T-cell clones and ex vivo analysis of HPV16 E7 specific T cells obtained by HLA-A2 tetramer-guided sorting from PBL or tumor-infiltrating lymphocytes obtained from patients with cervical cancer showed that cross-reactivity with HPV16 E7(11-19(20)) and coronavirus NS2(52-60) represents a common feature of this antiviral immune response defined by cytokine production. Zero of 10 patients with carcinoma in situ neoplasia and 3 of 18 patients with cervical cancer showed > or =0.1% HPV16 E7-reactive T cells in CD8(+) peripheral blood lymphocytes. In vivo priming with HPV16 was confirmed in patients with cervical cancer or preinvasive HPV16-positive lesions using HLA-A2 tetramer complexes loaded with the E6-derived epitope KLPQLCTEL. In contrast, we could not detect E6-reactive T cells in healthy individuals. These data imply that the measurement of the HPV16 E7(11-19(20)) CD8(+)-T-cell response may reflect cross-reactivity with a common pathogen and that variant peptides may be employed to drive an effective cellular immune response against HPV.  相似文献   

5.
6.
Summary The HPV oncoproteins E6 and E7 are consistently expressed in HPV-associated cancer cells and are responsible for their malignant transformation. Therefore, HPV E6 and E7 are ideal target antigens for developing vaccines and immunotherapeutic strategies against HPV-associated neoplasms. Recently, it has been demonstrated that codon optimization of the HPV-16 E7 gene resulted in highly efficient translation of E7 and increased the immunogenicity of E7-specific DNA vaccines. Since vaccines targeting E6 also represent an important strategy for controlling HPV-associated lesions, we developed a codon-optimized HPV-16 E6 DNA vaccine (pNGVL4a-E6/opt) and characterized the E6-specific CD8+ T cell immune responses as well as the protective and therapeutic anti-tumor effects in vaccinated C57BL/6 mice. Our data indicated that transfection of human embryonic kidney cells (293 cells) with pNGVL4a-E6/opt resulted in highly efficient translation of E6. In addition, vaccination with pNGVL4a-E6/opt significantly enhanced E6-specific CD8+ T cell immune responses in C57BL/6 mice. Mice vaccinated with pNGVL4a-E6/opt are able to generate potent protective and therapeutic antitumor effects against challenge with E6-expressing tumor cell line, TC-1. Thus, DNA vaccines encoding a codon-optimized HPV-16 E6 may be a promising strategy for improving the potency of prophylactic and therapeutic HPV vaccines with potential clinical implications.  相似文献   

7.
Infection with high-risk types of human papillomavirus (HPV) can cause the development of malignant tumors. To study mechanisms responsible for immune escape of tumor cells infected with HPV16, we previously used mouse oncogenic TC-1 cells producing HPV16 E6 and E7 oncoproteins to derive TC-1 clones resistant to immunization against E7. We have found immunoresistance of the clones to correlate with the point mutation in the E7 oncogene, which resulted in the N53S substitution in the immunodominant epitope RAHYNIVTF (aa 49–57). Here, we have shown that this mutation reduced stabilization of H-2Db molecules on RMA-S cells and eliminated immunogenicity of E7. The resistance of TC-1 clones was E7-specific as immunization against E6 inhibited tumor growth. Transduction of the TC-1/F9 clone carrying the mutated epitope with the wild-type E7 gene restored susceptibility to immunization against E7. Our results suggest that mutagenesis of tumor antigens can lead to the escape of malignant cells and should be considered in the development and evaluation of cancer immunotherapy.  相似文献   

8.
The safety and immunogenicity of the human papillomavirus type 16 (HPV16) or HPV18 (HPV16/18) E7 antigen-pulsed mature dendritic cell (DC) vaccination were evaluated for patients with stage IB or IIA cervical cancer. Escalating doses of autologous DC (5, 10, and 15 × 106 cells for injection) were pulsed with recombinant HPV16/18 E7 antigens and keyhole limpet hemocyanin (KLH; an immunological tracer molecule) and delivered in five subcutaneous injections at 21-day intervals to 10 cervical cancer patients with no evidence of disease after they underwent radical surgery. Safety, toxicity, delayed-type hypersensitivity (DTH) reaction, and induction of serological and cellular immunity against HPV16/18 E7 and KLH were monitored. DC vaccination was well tolerated, and no significant toxicities were recorded. All patients developed CD4+ T-cell and antibody responses to DC vaccination, as detected by enzyme-linked immunosorbent spot (ELISpot) and enzyme-linked immunosorbent assays (ELISA), respectively, and 8 out of 10 patients demonstrated levels of E7-specific CD8+ T-cell counts, detected by ELISpot during or immediately after immunization, that were increased compared to prevaccination baseline levels. The vaccine dose did not predict the magnitude of the antibody or T-cell response or the time to detection of HPV16/18 E7-specific immunity. DTH responses to intradermal injections of HPV E7 antigen and KLH were detected for all patients after vaccination. We conclude that HPV E7-loaded DC vaccination is safe and immunogenic for stage IB or IIA cervical cancer patients. Phase II E7-pulsed DC-based vaccination trials with cervical cancer patients harboring a limited tumor burden, or who are at significant risk of tumor recurrence, are warranted.  相似文献   

9.
Human papillomavirus (HPV) type 16 (HPV 16) and HPV type 18 (HPV 18) are implicated in the induction and progression of the majority of cervical cancers. Since the E6 and E7 oncoproteins of these viruses are expressed in these lesions, such proteins might be potential tumor-specific targets for immunotherapy. In this report, we demonstrate that recombinant, full-length E7-pulsed autologous dendritic cells (DC) can elicit a specific CD8(+) cytotoxic T-lymphocyte (CTL) response against autologous tumor target cells in three patients with HPV 16- or HPV 18-positive cervical cancer. E7-specific CTL populations expressed strong cytolytic activity against autologous tumor cells, did not lyse autologous concanavalin A-treated lymphoblasts or autologous Epstein-Barr virus-transformed lymphoblastoid cell lines (LCL), and showed low levels of cytotoxicity against natural killer cell-sensitive K562 cells. Cytotoxicity against autologous tumor cells could be significantly blocked by anti-HLA class I (W6/32) and anti-CD11a/LFA-1 antibodies. Phenotypically, all CTL populations were CD3(+)/CD8(+), with variable levels of CD56 expression. CTL induced by E7-pulsed DC were also highly cytotoxic against an allogeneic HLA-A2(+) HPV 16-positive matched cell line (CaSki). In addition, we show that specific lymphoproliferative responses by autologous CD4(+) T cells can also be induced by E7-pulsed autologus DC. E7-specific CD4(+) T cells proliferated in response to E7-pulsed LCL but not unpulsed LCL, and this response could be blocked by anti-HLA class II antibody. Finally, with two-color flow cytometric analysis of intracellular cytokine expression at the single-cell level, a marked Th1-like bias (as determined by the frequency of gamma interferon- and interleukin 4-expressing cells) was observable for both CD8(+) and CD4(+) E7-specific lymphocyte populations. Taken together, these data demonstrate that full-length E7-pulsed DC can induce both E7-specific CD4(+) T-cell proliferative responses and strong CD8(+) CTL responses capable of lysing autologous naturally HPV-infected cancer cells in patients with cervical cancer. These results may have important implications for the treatment of cervical cancer patients with active or adoptive immunotherapy.  相似文献   

10.
 Human papillomaviruses (HPV) are present in approximately 95% of all cervical carcinomas and the HPV E6 and E7 genes are continuously expressed in these lesions. There is also circumstantial evidence that often natural immunity against HPV is generated and that this is of influence on HPV-induced lesions. Stimulation of the immune system by proper presentation of relevant HPV antigens might, therefore, lead to a prophylactic or therapeutic immunological intervention for HPV-induced lesions. For this purpose we have expressed the E6 and E7 protein of HPV 16 in an attenuated strain of Salmonella typhimurium (SL3261, aroA mutation), which has been used extensively as a live vector. Live recombinant Salmonella vaccines have the ability to elicit humoral, secretory and cell-mediated immune responses, including cytotoxic T cells, against the heterologous antigens they express. This report describes the construction of recombinant Salmonella strains expressing the HPV 16 E6 and E7 proteins, and the induction of an HPV-16-specific immune response in mice after immunization with these live vectors. Received: 25 June 1996 / Accepted: 6 August 1996  相似文献   

11.
12.
Peptide-based vaccines aimed at the induction of effective T cell responses against established cancers have so far only met with limited clinical success and clearly need to be improved. In a preclinical model of human papillomavirus (HPV)16-induced cervical cancer we show that prime-boost vaccinations with the HPV16-derived 35 amino-acid long peptide E7(43-77), containing both a CTL epitope and a Th epitope, resulted in the induction of far more robust E7-specific CD8(+) T cell responses than vaccinations with the minimal CTL epitope only. We demonstrate that two distinct mechanisms are responsible for this effect. First, vaccinations with the long peptide lead to the generation of E7-specific CD4(+) Th cells. The level of the induced E7-specific CD8(+) T cell response proved to be dependent on the interactions of these Th cells with professional APC. Second, we demonstrate that vaccination with the long peptide and dendritic cell-activating agents resulted in a superior induction of E7-specific CD8(+) T cells, even when T cell help was excluded. This suggests that, due to its size, the long peptide was preferably endocytosed, processed, and presented by professional APCs. Moreover, the efficacy of this superior HPV-specific T cell induction was demonstrated in therapeutic prime-boost vaccinations in which the long peptide admixed with the dendritic cell-activating adjuvant oligodeoxynucleotide-CpG resulted in the eradication of large, established HPV16-expressing tumors. Because the vaccine types used in this study are easy to prepare under good manufacturing practice conditions and are safe to administer to humans, these data provide important information for future clinical trials.  相似文献   

13.
HPV16型E7复制型DNA疫苗诱发的抗肿瘤免疫反应   总被引:5,自引:0,他引:5  
为了研制有效的疫苗 ,用于HPV16型重度感染和与其感染相关的宫颈癌晚期病人手术后的免疫治疗 ,用复制型DAN疫苗载体 pSCA1,在其CMVIE启动子之下插入修饰的HPV16型E7基因mE7- 3( 2 4G、2 6G、6 7R) ,构建成 pSCA1mE7- 3复制型DNA疫苗。以重组质粒免疫C5 7BL/ 6小鼠 ,检测诱发的特异性CTL活性 ;将免疫后的小鼠用TC - 1肿瘤细胞攻击 ,观察免疫保护效果。实验结果显示 :pSCA1mE7- 3复制型DNA疫苗能诱导小鼠产生针对TC - 1肿瘤细胞的特异性CTL反应 ;复制型DNA疫苗免疫后的小鼠能耐受 1× 10 4 TC - 1细胞的攻击 ,成瘤时间推迟 ,并且成瘤率明显下降 ,部分小鼠得到保护能免受肿瘤攻击。因此pSCA1mE7- 3复制型DNA疫苗可作为HPV16相关肿瘤的癌前病变及中晚期病人术后免疫治疗的候选疫苗。  相似文献   

14.
Persistent infection with the high-risk Human Papillomavirus type 16 (HPV 16) is the causative event for the development of cervical cancer and other malignant tumors of the anogenital tract and of the head and neck. Despite many attempts to develop therapeutic vaccines no candidate has entered late clinical trials. An interesting approach is a DNA based vaccine encompassing the nucleotide sequence of the E6 and E7 viral oncoproteins. Because both proteins are consistently expressed in HPV infected cells they represent excellent targets for immune therapy. Here we report the development of 8 DNA vaccine candidates consisting of differently rearranged HPV-16 E6 and E7 sequences within one molecule providing all naturally occurring epitopes but supposedly lacking transforming activity. The HPV sequences were fused to the J-domain and the SV40 enhancer in order to increase immune responses. We demonstrate that one out of the 8 vaccine candidates induces very strong cellular E6- and E7- specific cellular immune responses in mice and, as shown in regression experiments, efficiently controls growth of HPV 16 positive syngeneic tumors. This data demonstrates the potential of this vaccine candidate to control persistent HPV 16 infection that may lead to malignant disease. It also suggests that different sequence rearrangements influence the immunogenecity by an as yet unknown mechanism.  相似文献   

15.
The aim of this study was to investigate the capacity of an HPV16 E6/E7 synthetic overlapping long-peptide vaccine to stimulate the HPV16-specific T-cell response, to enhance the infiltration of HPV16-specific type 1 T cells into the lesions of patients with HPV16+ high-grade cervical squamous intraepithelial lesion (HSIL) and HPV clearance. This was a placebo-controlled randomized phase II study in patients with HPV16-positive HSIL. HPV16-specific T-cell responses were determined pre- and post-vaccination by ELISPOT, proliferation assay and cytokine assays in PBMC and HSIL-infiltrating lymphocytes, and delayed-type hypersensitivity skin tests. Motivational problems of this patient group to postpone treatment of their premalignant lesions affected the inclusion rates and caused the study to stop prematurely. Of the accrued patients, 4 received a placebo and 5 received 1-2 vaccinations. Side effects mainly were flu-like symptoms and injection site reactions. A strong HPV-specific IFNγ-associated T-cell response was detected by ELISPOT in all vaccinated patients. The outcome of the skin tests correlated well with the ELISPOT analysis. The cytokine profile associated with HPV16-specific proliferation varied from robust type 1 to dominant type 2 responses. No conclusions could be drawn on vaccine-enhanced T-cell infiltration of the lesion, and there was no HPV clearance at the time of LEEP excision. Thus, vaccination of HSIL patients results in increased HPV16-specific T-cell immunity. Further development of this type of treatment relies on the ability to motivate patients and in the reduction in the side effects.  相似文献   

16.
17.
Human papilloma virus (HPV) 16 causes cervical cancer. Induction of oncogenesis by HPV 16 is primarily dependent on the function of E6 and E7 proteins, which inactivate the function of p53 and pRB, respectively. Thus, blocking the activity of the E6 and E7 proteins from HPV 16 is critical to inhibiting oncogenesis during infection. We have expressed and purified soluble HPV 16 E6 and E7 fusion immunoglobulin (Ig), which were combined with the constant region of an Ig heavy chain, in a mammalian system. To assess whether soluble E6 and E7 fusion Igs induce effective cellular immune responses, immature dendritic cells (DCs) were treated with these fusion proteins. Soluble E6 and E7 fusion Igs effectively induced maturation of DCs. Furthermore, immunization with soluble E6 and E7 fusion Igs in mice resulted in antigen-specific activation of T helper 1 (Th1) cells. This is the first comprehensive study to show the molecular basis of how soluble HPV 16 E6 or E7 fusion Igs induces Th1 responses through the maturation of DCs. In addition, we show that DC therapy using soluble HPV E6 and E7 fusion Igs may be a valuable tool for controlling the progress of cervical cancer.  相似文献   

18.
19.
20.
Previously, safety and immunogenicity of human papillomavirus type 16 (HPV16) or 18 E7-pulsed dendritic cells (DC) vaccinations were demonstrated in a dose-escalation Phase I clinical trial which enrolled ten patients diagnosed with stage IB or IIA cervical cancer (nine HPV 16-positive, one HPV 18-positive). The goal of the study was to define the T-cell epitopes of HPV 16 or 18 E7 protein in these patients in order to develop new strategies for treating HPV-associated malignancies. This was accomplished through establishing T-cell lines by stimulating peripheral blood mononuclear cells with autologous mature DC pulsed with the HPV 16 or 18 E7 protein, examining the T-cell responses using ELISPOT assays, and isolating E7-specific T-cell clones based on IFN-γ secretion. Then, the epitope was characterized in terms of its core sequence and the restriction element. Twelve T-cell lines from eight subjects (seven HPV 16-positive, one HPV 18-positive) were evaluated. Positive T-cell responses were demonstrated in four subjects (all HPV 16-positive). All four were positive for the HPV 16 E7 46-70 (EPDRAHYNIVTFCCKCDSTLRLCVQ) region. T-cell clones specific for the E7 47–70 region were isolated from one of the subjects. Further analyses revealed a novel, naturally processed, CD4 T-cell epitope, E7 58–68 (CCKCDSTLRLC), restricted by the HLA-DR17 molecule. This work was supported by the National Institutes of Health (R21CA094507). An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号