首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of the irreversible inhibition of acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7) by diisopropyl fluorophosphate and paraoxon have been studied by the approach of following the substrate reaction continuously in the presence of both the substrate and the inhibitor based on kinetic equations previously derived (Tsou, C.-L. (1965) Acta Biochim. Biophys. Sinica 5, 387-417). From determinations of the effects of different concentrations of substrate and the inhibitors on the apparent rate constants for the irreversible inhibition reactions it can be shown that these inhibitors are of the competitive complexing type. Both the reversible dissociation constant for the enzyme inhibitor complex and the rate constant for the subsequent phosphorylation step can be obtained from suitable plots of the experimental data.  相似文献   

2.
Rapid irreversible inhibition of enzymes constitutes a difficult problem and demands sophisticated techniques to meet contemporary expectations of accuracy and precision. Modern computerized, analytical techniques now allow inhibition to be measured in the presence of a chromogenic substrate, the decomposition product of which can be followed by a conventional method and in a continuous mode. This article has been written to fulfill a need for guidelines to aid the designer of experiments for the irreversible inhibition of enzymes. Thus the scope and limitations of the continuous competitive method for the irreversible inhibition of enzymes is examined here. Examples of acetylcholinesterase inhibition by two diagonally different phosphonate inhibitors are used for illustrating accuracy and precision of the competitive irreversible inhibition technique at different levels of enzyme saturation with inhibitor and substrate.  相似文献   

3.
Abstract

Rapid irreversible inhibition of enzymes constitutes a difficult problem and demands sophisticated techniques to meet contemporary expectations of accuracy and precision. Modern computerized, analytical techniques now allow inhibition to be measured in the presence of a chromogenic substrate, the decomposition product of which can be followed by a conventional method and in a continuous mode. This article has been written to fulfill a need for guidelines to aid the designer of experiments for the irreversible inhibition of enzymes. Thus the scope and limitations of the continuous competitive method for the irreversible inhibition of enzymes is examined here. Examples of acetylcholinesterase inhibition by two diagonally different phosphonate inhibitors are used for illustrating accuracy and precision of the competitive irreversible inhibition technique at different levels of enzyme saturation with inhibitor and substrate.  相似文献   

4.
分析了滞后酶解离-聚合的动力学过程,提出了区分解离和聚合机制的动力学方法。这一方法不仅可用于滞后酶本身的研究,确定滞后酶解离态和聚合态的动力学常数,也可以用于判别变性剂引起寡聚酶的失活过程是否由亚基的解离或聚合所致。  相似文献   

5.
Kinetic studies of irreversible inhibition in recent years have received growing attention owing to their relevance to problems of basic scientific interest as well as to their practical importance. Our studies have been devoted to the characterization of the effects that well-known acetylcholinesterase irreversible inhibitors exert on a carboxylesterase (EST2) from the thermophilic eubacterium Alicyclobacillus acidocaldarius. In particular, sulfonyl inhibitors and the organophosphorous insecticide diethyl-p-nitrophenyl phosphate (paraoxon) have been studied. The incubation of EST2 with sulfonyl inhibitors resulted in a time-dependent inactivation according to a pseudo-first-order kinetics. On the other hand, the EST2 inactivation process elicited by paraoxon, being the inhibition reaction completed immediately after the inhibitor addition, cannot be described as a pseudo-first-order kinetics but is better considered as a high affinity inhibition. The values of apparent rate constants for paraoxon inactivation were determined by monitoring the enzyme/substrate reaction in the presence of the inhibitor, and were compared with those of the sulfonyl inhibitors. The protective effect afforded by a competitive inhibitor on the EST2 irreversible inhibition, and the reactivation of a complex enzyme/irreversible-inhibitor by hydroxylamine and 2-PAM, were also investigated. The data have been discussed in the light of the recently described dual substrate binding mode of EST2, considering that the irreversible inhibitors employed were able to discriminate between the two different binding sites.  相似文献   

6.
Alternative substrates, such as those isotopically-labeled, which differ in their rate constants of catalysis but not in their rate constants of binding, generate identical values of V/Ka in ordered kinetic mechanisms of bireactant enzymes. This is shown to be true even for the rapid-equilibrium ordered mechanism in which an abortive complex between free enzyme and the second substrate is formed. In contrast, rapid-equilibrium random mechanisms have non-identical values for V/Ka. Consequently, the effect of alternative substrates or isotope effects on V/Ka provides a means to distinguish between these nearly identical kinetic mechanisms.  相似文献   

7.
Abstract

A systematic procedure for the kinetic study of irreversible inhibition when the enzyme is consumed in the reaction which it catalyses, has been developed and analysed. Whereas in most reactions the enzymes are regenerated after each catalytic event and serve as reusable transacting effectors, in the consumed enzymes each catalytic center participates only once and there is no enzyme turnover. A systematic kinetic analysis of irreversible inhibition of these enzyme reactions is presented. Based on the algebraic criteria proposed in this work, it should be possible to evaluate either the mechanism of inhibition (complexing or non-complexing), or the type of inhibition (competitive, non-competitive, uncompetitive, mixed non-competitive). In addition, all kinetic constants involved in each case could be calculated. An experimental application of this analysis is also presented, concerning peptide bond formation in vitro. Using the puromycin reaction, which is a model reaction for the study of peptide bond formation in vitro and which follows the same kinetic law as the enzymes under study, we have found that: (i) the antibiotic spiramycin inhibits the puromycin reaction as a competitive irreversible inhibitor in a one step mechanism with an association rate constant equal to 1.3 × 104M-1s-1 and, (ii) hydroxylamine inhibits the same reaction as an irreversible non-competitive inhibitor also in a one step mechanism with a rate constant equal to 1.6 × 10-3 M-1s-1.  相似文献   

8.
The kinetics of thermal inactivation of Penaeus penicillatus acid phosphatase have been studied using a kinetic method related to the substrate reaction during irreversible inhibition of the enzyme activity as previously described by Tsou (Adv. Enzymol. Relat. Areas Mol. Biol. (1988) 61, 381-436). The kinetics of thermal inactivation of the enzyme show that the reaction is irreversible. The microscopic rate constants were determined for thermal inactivation of free enzyme and the enzyme--substrate complex. The results show that the presence of substrate has a significant protective effect against thermal inactivation of the enzyme.  相似文献   

9.
The kinetics of thermal inactivation of rabbit muscle lactate dehydrogenase at different temperatures has been studied using the kinetic method for the substrate reaction during irreversible inhibition of enzyme activity previously described by Tsou [Adv. Enzymol. Relat. Areas Mol. Biol. (1988), 61, 381–436]. The results show that thermal inactivation of the enzyme is an irreversible reaction. Microscopic rate constants were determined for thermal inactivation of the free enzyme and the enzyme–substrate complex. The inactivation rate constant of the free enzyme is much larger than the rate constant of the enzyme–substrate complex. The results suggest that the presence of the substrate has a certain protective effect against thermal inactivation of the enzyme.  相似文献   

10.
A theory and experimental method are presented to characterize the kinetics of fast-acting, irreversible proteinase inhibitors. The theory is based upon formal analysis of the case of an irreversible inhibitor competing with a substrate for the active-site of a proteinase. From this theory, an experimental method is described by which the individual microscopic kinetic constants for the interaction of the inhibitor with the proteinase can be determined. These are, for a two-step inhibition reaction sequence, the equilibrium dissociation constant and the first-order rate constant for inhibition, and, for a one-step inhibition reaction sequence, the second-order rate constant for inhibition. The theory and experimental method were validated by an analysis of the inhibition of trypsin by the two-step synthetic inhibitor p-nitrophenyl p-guanidinobenzoate and the one-step protein inhibitor bovine pancreatic trypsin inhibitor. The substrate used in these experiments is a new, fluorogenic substrate for trypsin-like serine proteinases (Cbz-Ile-Pro-Arg-NH)2-Rhodamine, the synthesis and properties of which are described.  相似文献   

11.
A new model of enzymatic 1,3-specific alcoholysis of triacylglycerols has been developed. The irreversibility of the acyl bounds cleavage in glycerides, a reversible monoglycerides isomerization and an irreversible enzyme deactivation have been assumed. The Ping Pong Bi Bi mechanism with competitive inhibition by alcohol has been applied to describe rates of acyl bonds cleavage. The enzymatic propanolysis and iso-propanolysis of triacetin and tricaprylin catalyzed by immobilized lipase B from Candida antarctica (Novozym 435) have been investigated to verify the model. Good agreement between experimental data and calculations has been obtained. It was shown that the rate of tricaprylin alcoholysis is higher than the triacetin alcoholysis and that the rate of iso-propanolysis reactions are higher than propanolysis. The irreversible enzyme deactivation affects the conversion of glycerides whereas the competitive alcohol inhibition may be neglected. Empirical correlations of rates for monoglycerides isomerization and enzyme deactivation have been proposed.  相似文献   

12.
A new relationship is derived between the amount of monomer incorporated and the amount of initiated primer in an irreversible polymerization where the first step, initiation, has a rate constant differing from the elongation rate constants. It is valid for template directed and template independent polymerization. This relationship can be used in kinetic simulation. It suggests a simpler curve fitting technique to attain rate constants from a relatively small data set. Our analysis reveals some limitations of the model of irreversible polymerization; these limitations have not been obvious previously. For example, the initiation rate constant is not attainable from simple monomer incorporation data. Reliable rate constants can be obtained with minimal time course studies.  相似文献   

13.
Kinetics of production of biodiesel by enzymatic methanolysis of vegetable oils using lipase has been investigated. A mathematical model taking into account the mechanism of the methanolysis reaction starting from the vegetable oil as substrate, rather than the free fatty acids, has been developed. The kinetic parameters were estimated by fitting the experimental data of the enzymatic reaction of sunflower oil by two types of lipases, namely, Rhizomucor miehei lipase (RM) immobilized on ion-exchange resins and Thermomyces lanuginosa lipase (TL) immobilized on silica gel. There was a good agreement between the experimental results of the initial rate of reaction and those predicted by the proposed model equations, for both enzymes. From the proposed model equations, the regions where the effect of alcohol inhibition fades, at different substrate concentrations, were identified. The proposed model equation can be used to predict the rate of methanolysis of vegetable oils in a batch or a continuous reactor and to determine the optimal conditions for biodiesel production.  相似文献   

14.
Various metabolic models have been studied by computer simulation in an effort to understand why allowing for the reversibility of the reaction catalysed by pyruvate kinase, normally considered as irreversible for all practical purposes, significantly altered the behaviour of the model of glycolysis in Trypanosoma brucei [Eisenthal, R. & Cornish-Bowden, A. (1998) J. Biol. Chem. 273, 5500-5505]. Studies of several much simpler models indicate that the enzymes catalysing early steps in a pathway must receive information about the concentrations of the metabolites at the end of the pathway if a model is to be able to reach a steady state; treating all internal steps as reversible is just one way of ensuring this. Feedback inhibition provides a much better way, and as long as feedback loops are present in a model it makes almost no difference to the behaviour whether the intermediate steps with large equilibrium constants are treated as irreversible. In the absence of feedback loops, ordinary product inhibition of all the enzymes in the chain can also transfer information; this is efficient for regulating fluxes but very inefficient for regulating intermediate concentrations. More complicated patterns of regulation, such as activation of a competing branch or forcing flux through a parallel route, can also serve to some degree as ways of passing information around an irreversible step. However, they normally do so less efficiently than inhibition, because the extent to which an enzyme or a pathway can be activated always has an upper limit (which may be below what is required), whereas most enzymes are inhibited completely at saturating concentrations of inhibitor.  相似文献   

15.
Inhibition of monoamine oxidase by substituted hydrazines   总被引:1,自引:1,他引:0  
1. The initial rate of inhibition of monoamine oxidase by phenethylhydrazine was shown to be similar, in pH-dependence and kinetic properties, to the oxidation of that compound by monoamine oxidase. 2. The time-course of irreversible inhibition of monoamine oxidase by phenethylhydrazine lags behind that of reversible inhibition. 3. Hydralzine was shown to be a reversible competitive inhibitor of monoamine oxidase, but phenylhydrazine is an irreversible inhibitor. Inhibition by the latter compound is not affected by the absence of oxygen, and the presence of substrate exerts no protective action. 4. Hydrazine does not inhibit monoamine oxidase unless a substrate and oxygen are present. 5. Phenethylidenehydrazine was found to be a time-dependent inhibitor of monoamine oxidase and the rate of inhibition was hindered by increasing oxygen concentration. 6. A mechanism for the inhibition of the enzyme by phenethylhydrazine is proposed in which the product of oxidation of this compound is a potent reversible inhibitor and an irreversible inhibitor of the enzyme. A computer simulation of such a mechanism predicts time-courses of inhibition that are in reasonable agreement with those observed experimentally.  相似文献   

16.
Here we present a model for maltodextrin translocation through maltoporin channels. In a first step, our theoretical analysis does consider the case of a single binding site for a given substrate in a structurally unaffected channel with a possibly different entrance barrier on either side. It is shown how by means of conventional electrical conductance measurements (including current noise analysis) the basic equilibrium and rate constants can be determined as functions of the applied voltage. Then also the net translocation rate of the substrate becomes accessible quantitatively. This most simple model mechanism has been extended to include a voltage-dependent fast conformational change of the channel that prevents the binding process. The so developed approach has been tested with experimental data for a single maltoporin trimer being reconstituted in black lipid membranes when studied in the presence of maltohexaose as the substrate. The experimental results turned out to be clearly incompatible with binding alone. They are, however, very satisfactorily fitted by pertinent theoretical curves if also inhibition of binding by a conformational transition is taken into account. Accordingly, quantitative evaluations of the underlying parameters and eventually of the translocation rate have been carried out successfully. Our analysis reveals a set of parameters necessary for an optimal translocation that nicely corresponds to natural conditions.  相似文献   

17.
The binding of a ligand to a one-dimensional lattice in the presence of a second ("rider") ligand, which binds only to the first ligand (piggy-back binding), is studied. A model derived from this study is used to analyze the effects of co-operativity on the reaction rates of enzymes activated by polymeric cofactors that provide multiple binding sites for the enzyme. It is found that in the presence of strong co-operativity, the steady-state reaction rates of polymer-activated enzymes can be very different from the Michaelis-Menten paradigm. By adjusting the co-operativity parameters and the binding constants of the ligands, the model can generate apparent auto-catalytic enhancement by substrates at low substrate concentrations and apparent substrate inhibition at high substrate concentrations. The model is shown to be able to explain the differences in the rates of ATP hydrolysis by DNA gyrase in the presence of long versus short DNA molecules and in the presence of long DNA molecules at different gyrase to DNA ratios.  相似文献   

18.
Phosphoglycolate phosphatases from spinach and human red blood cells show a number of common features not often found in enzymes. Both enzymes are activated more than 50-fold by millimolar concentrations of Cl-. Other inorganic anions and a number of carboxylic acids also activate. Each enzyme has limited substrate specificity yet each hydrolyzes P-glycolate and ethyl-P with the same maximal velocity. L-P-lactate is only a good substrate for the red cell enzyme. With both enzymes initial rate data obtained by varying both the P-glycolate and Cl- give parallel line double reciprocal plots. Similar experiments with ethyl-P as substrate give intersecting lines with both enzymes. The likelihood that both classes of substrates are acting at the same site is strengthened by the results of inhibition studies with alternative substrates and the constancy of inhibition constants for glycolate with all substrates for a given enzyme. For each substrate the experimentally observed variation in V/Km with different activators is small, suggesting that the enzyme has an ordered mechanism with the phosphorylated substrate reacting first. A mechanism that is consistent with all of the data is presented.  相似文献   

19.
A kinetic study of the irreversible inhibition of an enzyme measured in the presence of a coupling enzyme system has been carried out to assess the type of mechanism of the irreversible inhibition. By using the algebraic criteria proposed here it should be possible to discriminate between these mechanisms and to calculate their corresponding kinetic constants. An experimental design has been developed and applied to fluorescein isothiocyanate as inhibitor of the ATPase activity from sarcoplasmic reticulum.  相似文献   

20.
Bistability and irreversible transitions in a simple substrate cycle   总被引:2,自引:0,他引:2  
The dynamic properties of a simple substrate cycle involving two antagonist enzymes are investigated. One of these enzymes exhibits a non-linearity through inhibition by excess substrate. Depending either on the interconverted substrate pool concentration or the maximal activity of the non-inhibited enzyme, monostability, bistability and irreversible transitions may occur. A reversible bistable cycle is shown to present interesting features for regulatory purposes as it can respond to external (and/or internal) modulations in two different ways: A buffering effect by efficient stabilization of the steady-states, or, an increase in sensitivity by switching the system from one regime to the opposite one. The plausible biochemical and biological implications of irreversible transitions are discussed and emphasized in terms of "metabolic transitions".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号