首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 The 5.8 S subunit and flanking internal transcribed spacer (ITS) regions in nuclear ribosomal DNA (rDNA) from spores of Glomus mosseae FL156 and UK118 were amplified by polymerase chain reaction (PCR) using ITS1 and ITS4 as primers. The amplification product from template DNA of UK118 was cloned and sequenced (569 bp); the amplified DNA from FL156 was sequenced directly (582 bp). There was a 95% sequence similarity between DNAs amplified from the two isolates; in contrast, major dissimilarities with partial sequences of seven other glomalean taxa were observed. Four oligonucleotide sequences unique to Glomus mosseae were identified as potential primers. Their specificity to Glomus mosseae was assessed by PCR amplification of genomic DNA from spores from 36 glomalean fungi: 13 isolates of Glomus mosseae, two Glomus monosporum, 10 other Glomus isolates, and 11 other glomalean taxa from each of four other genera. The Glomus mosseae isolates were from a broad range of temperate zone agricultural soils. Oligonucleotide pair GMOS1 : GMOS2 primed specific amplification of an oligonucleotide sequence (approximately 400 bp) present in all Glomus mosseae isolates and two isolates of the closely related Glomus monosporum. This primer pair did not prime PCR when the template consisted of DNA from any of the other glomalean fungi or any of the nonmycorrhizal controls. In addition, a 24-mer oligonucleotide, designated GMOS5, hybridized with Glomus mosseae and Glomus monosporum DNA amplified by PCR using primer pairs ITS1 : ITS4 and GMOS1 : GMOS2. Colony-blot assays showed that GMOS5 hybridized to 100% and 97% of E. coli pUC19 clones of amplification products from Glomus mosseae FL156 and UK118 DNA templates, respectively, indicating that nearly all clones contained an homologous sequence. GMOS5 was used successfully to detect specifically Glomus mosseae in DNA extracted from colonized sudan grass (Sorghum sudanense L.) roots and amplified by PCR using the primer pair GMOS1 : GMOS2. The results confirm several previous indications that Glomus mosseae and Glomus monosporum are indistinguishable taxonomic entities. Accepted: 14 February 1998  相似文献   

2.
Pyranose 2-oxidase (P2O) was purified 43-fold to apparent homogeneity from the basidiomycete Phanerochaete chrysosporium using liquid chromatography on phenyl Sepharose, Mono Q (twice) and phenyl Superose. The native enzyme has a molecular mass of about 250 kDa (based on native PAGE) and is composed of four identical subunits of 65 kDa. It contains three isoforms of isoelectric point (pI) 5.0, 5.05 and 5.15 and does not appear to be a glycoprotein. P2O is optimally stable at pH 8.0 and up to 60 °C. It is active over a broad pH range (5.0–9.0) with maximum activity at pH 8.0–8.5 and at 55 °C, and a broad substrate specificity. d-Glucose is the preferred substrate, but 1-β-aurothioglucose, 6-deoxy-d-glucose, l-sorbose, d-xylose, 5-thioglucose, d-glucono-1,5-lactone, maltose and 2-deoxy-d-glucose are also oxidised at relatively high rates. A Ping Pong Bi Bi mechanism was demonstrated for the P2O reaction at pH 8.0, with a catalytic constant (k cat) of 111.0 s−1 and an affinity constant (K m) of 1.43 mM for d-glucose and 83.2 μM for oxygen. Whereas the steady-state kinetics for glucose oxidation were unaffected by the medium at pH ≥ 7.0, at low pH both pH and buffer composition affected the P2O kinetics with the k cat/K m value decreasing with decreasing pH. The greatest effect was observed in acetate buffer (0.1 M, pH 4.5), where the k cat decreased to 60.9 s−1 and the K m increased to 240 mM. The activity of P2O was completely inhibited by 10 mM HgCl2, AgNO3 and ZnCl2, and 50% by lead acetate, CuCl2 and MnCl2. Received: 28 August 1996 / Received revision: 25 November 1996 / Accepted: 29 November 1996  相似文献   

3.
Calcium-dipicolinate (Ca-DPA)-rich and Ca-DPA-deficientBacillus cereus spores were incubated in a synthetic medium with germination stimulants and in bactopeptone medium with a fairly high calcium ion concentration. In the complex medium the germination of Ca-DPA-rich spores was completely blocked at a concentration of 0.5m CaCl2, whereas the complete blockage of germination in the synthetic medium required higher concentrations (0.6–0.8m) of calcium chloride. Ca-DPA-deficient spores germinated more slowly and less completely in the synthetic medium than in the bactopeptone medium. The germination of these spores took place, however, even at higher calcium ion concentrations (0.6–0.8m). On the contrary, lower calcium chloride concentrations (0.1–0.4m) accelerated the germination of these spores in the synthetic medium and the final percentage of phase-dark and stainable spores was higher. “H-forms” of the Ca-DPA-rich and Ca-DPA-deficient spores prepared by acid titration germinated in both media. The germination of the latter spores being slower and proceeding less completely. “H-forms” germinated completely or partially in media with a high concentration of calcium chloride. The percentage of germinated spores, however, was strongly influenced by the concentration of this cation, especially the “H-forms” of Ca-DPA-deficient spores. Moreover, the germination of Ca-DPA-deficient spores in this medium was affected by the length of previous storage and, in the case of “H-forms” by the pH at which they were titrated. It was assumed that the increased permeability of calcium into the calciumundersaturated spore periphery in Ca-DPA-deficient and in “H-forms” of spores of both types co-determines (in the presence of germinants) the germinability of bacterial spores.  相似文献   

4.
 The Glomus mosseae 3-phosphoglycerate kinase (PGK) gene encodes a polypeptide of 416 amino acids. A synthetic peptide was designed to the C-terminus of the polypeptide for the production of a polyclonal antibody. The antibody was tested against the synthetic peptide in an immuno-dot blot and was then used to investigate the asymbiotic and symbiotic accumulation of the PGK protein. Western blot analysis revealed that a polypeptide of approximately 45 kDa accumulated in G. mosseae-colonised tomato roots; this is similar to the theoretical molecular weight of 44.764 kDa. The protein was not detected in non-mycorrhizal roots. Quantitative immuno-dot blotting revealed that the polypeptide accumulated in germinating spores and hyphae of G. mosseae and also in tomato roots colonised by G. mosseae. The amount detected in the mycorrhizal root system was significantly higher than that found in germinating sporocarps. The variation in the levels of glycolytic activity in the symbiotic and asymbiotic developmental stages of G. mosseae is discussed. Accepted: 20 April 2000  相似文献   

5.
A number of nutritional factors influencing growth and glucose oxidase (EC 1.1.3.4) production by a newly isolated strain of Penicillium pinophilum were investigated. The most important factors for glucose oxidase production were the use of sucrose as the carbon source, and growth of the fungus at non-optimal pH 6.5. The enzyme was purified to apparent homogeneity with a yield of 74%, including an efficient extraction step of the mycelium mass at pH 3.0, cation-exchange chromatography and gel filtration. The relative molecular mass (M r) of native glucose oxidase was determined to be 154 700 ± 4970, and 77 700 for the denatured subunit. Electron-microscopic examinations revealed a sandwich-shaped dimeric molecule with subunit dimensions of 5.0 × 8.0 nm. Glucose oxidase is a glycoprotein that contains tightly bound FAD with an estimated stoichiometry of 1.76 mol/mol enzyme. The enzyme is specific for d-glucose, for which a K m value of 6.2 mM was determined. The pH optimum was determined in the range pH 4.0–6.0. Glucose oxidase showed high stability on storage in sodium citrate (pH 5.0) and in potassium phosphate (pH 6.0), each 100 mM. The half-life of the activity was considerably more than 305 days at 4 °C and 30 °C, and 213 days at 40 °C. The enzyme was unstable at temperatures above 40 °C in the range pH 2.0–4.0 and at a pH above 7.0. Received: 18 November 1996 / Received revision: 3 March 1997 / Accepted: 7 March 1997  相似文献   

6.
 Applications of high levels of MgSO4 resulted in reduced root colonization and sporulation by Glomus sp. (INVAM isolate FL329) with sweet potato and onion in aeroponic and sand culture, respectively. Onion shoot-Mg concentrations were elevated when a nutrient solution containing 2.6 or 11.7 mm MgSO4 was applied. Magnesium application depressed tissue-Ca levels. With lower Ca in the tissue, colonization was reduced from > 30% of root length to < 10%, and sporulation from > 1200 to ca. 200 spores per plant, 10 weeks after transplantation and the start of nutrient application. These effects on colonization and sporulation were independent of changes in tissue-P concentration. High Mg/low Ca tissue concentrations induced premature root senescence, which may have disrupted the mycorrhizal association. Our results confirm the importance of Ca for the maintenance of a functioning mycorrhiza. Accepted: 3 October 1997  相似文献   

7.
Glomus claroideum (Schenck & Smith emend. Walker & Vestberg) were investigated for ability to form arbuscular mycorrhiza-like symbioses with the hornwort Anthoceros punctatus (L.). Spores were transferred to a cellulose acetate filter on water agar and a small portion of an Anthoceros thallus was placed directly upon the spores. Light-microscope observations 20 days after inoculation revealed branched hyphae growing within the thallus. After 45 days, arbuscules and vesicles were studied by light- and electron-microscopy. After 60 days in water agar culture, the colonised Anthoceros thalli were transferred to a low-nutrient medium agar. Hyphae spread in the agar and newly formed spores were observed 5 weeks after the transfer. After 4 months, about 1000 spores were formed in each Petri dish. This is the first report of an experimentally established arbuscular mycorrhiza-like symbiosis between an identified fungus belonging to the Glomales and a bryophyte. Accepted: 11 January 2000  相似文献   

8.
The kinetics of biomass formation, D-xylose utilization, and mixed substrate utilization were determined in a chemostat using the yeast Candida shehatae. The maximum growth rate of C. shehatae grown aerobically on D-xylose was 0.42 h−1 and the Monod constant, K s, was 0.06 g L−1. The biomass yield, Y {X/S}, ranged from 0.40 to 0.50 g g−1 over a dilution rate range of 0.2–0.3 h−1, when C. shehatae was grown on pure D-xylose. Mixtures of D-xylose and glucose (∼1 : 1) were simultaneously utilized over a dilution rate from 0.15 to 0.35 h−1 at pH 3.5 and 4.5, but pH 3.5 reduced μmax and reduced the dilution rate range over which D-xylose was utilized in the presence of glucose. At pH 4.5, μmax was not reduced with the mixed sugar feed and the overall or lumped K s value was not significantly increased (0.058 g L−1 vs 0.06 g L−1), when compared to a pure D-xylose feed. Kinetic data indicate that C. shehatae is an excellent candidate for chemostat production of value added products from renewable carbon sources, since simultaneous mixed substrate utilization was observed over a wide range of growth rates on a 1 : 1 mixture of glucose and D-xylose. Received 21 August 1997/ Accepted in revised form 28 May 1998  相似文献   

9.
Glomus caledonium was established in a dual culture with Ri T-DNA-transformed carrot roots. A modification of the minimal M medium buffered at pH 6.50 with 10 mM MES and solidified with 0.4% unpurified gellan gum allowed spore germination and formation of the symbiosis, together with the development of an extensive extramatrical mycelium and sporulation. Spore production increased with culture generation and most spores were viable. These spores colonized carrot roots and completed the fungal life cycle. In many cultures, sporulation was accompanied by the formation of arbuscule-like structures on short and thickened lateral branches of main hyphae. Root colonization was of the Paris-type with hyphae spreading intracellularly. Most colonized root cells contained coils of thickened hyphae, sometimes surrounded by fine hyphae, but no typical arbuscules were observed. Accepted: 26 January 2000  相似文献   

10.
 Five arbuscular mycorrhizal (AM) fungal species were isolated and propagated from surface and deep rhizospheres of Faidherbia albida trees growing in two ecoclimatic zones of West Africa: the semi-arid Sahelian and the more humid Sudano-Guinean areas. Of these species, Glomus aggregatum, Glomus caledonium, and Glomus mosseae were trapped by F. albida roots when cultivated with either surface or deep soils. Glomus fasciculatum was found exclusively at the semi-arid Sahelian sites of Louga and Diokoul and Gigaspora margarita was isolated only from 16.5-m and 34-m-deep samples. Comparable glomalean fungal species richness was identified in deep (1.5–34 m) and surface (0.15 m) samples. The isolation and the propagation of glomalean fungi from F. albida rhizospheres confirmed the presence of viable AM fungal propagules, down to the water table, as deep as 34 m. Accepted: 27 August 2000  相似文献   

11.
A low-cost, low-maintenance system for soilless production of vesicular-arbuscular mycorrhizal (VAM) fungus spores and inoculum was developed and adapted for production of acidophilic and basophilic isolates. Corn (Zea mays) plants were grown with Glomus etunicatum, G. mosseae or Gigaspora margarita in sand automatically irrigated with modified Hoagland's solution. Sand particle size, irrigation frequency, P concentration, and buffer constituents were adjusted to maximize spore production. Modified half-strength Hoagland's solution buffered with 4-morpholine ethane-sulfonic acid (MES) automatically applied 5 times/day resulted in production of 235 G. etunicatum spores/g dry wt. of medium (341000 spores/pot) and 44 G. margarita spores/g dry wt. of medium (64800 spores/pot). For six basophilic isolates of G. mosseae, CaCO3 was incorporated into the sand and pots were supplied with the same nutrient solution as for acidophilic isolates. The increased pH from 6.1±0.2 to 7.2±0.2 resulted in spore production ranging from 70 to 145 spores/g dry wt. (102000–210000 spores/pot). Spore production by all isolates grown in the soilless sand system at Beltsville has exceeded that of traditional soil mixtures by 32–362% in 8–12 weeks.  相似文献   

12.
In a study screening anaerobic microbes utilizing d-galactitol as a fermentable carbon source, four bacterial strains were isolated from an enrichment culture producing H2, ethanol, butanol, acetic acid, butyric acid, and hexanoic acid. Among these isolates, strain BS-1 produced hexanoic acid as a major metabolic product of anaerobic fermentation with d-galactitol. Strain BS-1 belonged to the genus Clostridium based on phylogenetic analysis using 16S rRNA gene sequences, and the most closely related strain was Clostridium sporosphaeroides DSM 1294T, with 94.4% 16S rRNA gene similarity. In batch cultures, Clostridium sp. BS-1 produced 550 ± 31 mL L−1 of H2, 0.36 ± 0.01 g L−1 of acetic acid, 0.44 ± 0.01 g L−1 of butyric acid, and 0.98 ± 0.03 g L−1 of hexanoic acid in a 4-day cultivation. The production of hexanoic acid increased to 1.22 and 1.73 g L−1 with the addition of 1.5 g L−1 of sodium acetate and 100 mM 2-(N-morpholino)ethanesulfonic acid (MES), respectively. Especially when 1.5 g L−1 of sodium acetate and 100 mM MES were added simultaneously, the production of hexanoic acid increased up to 2.99 g L−1. Without adding sodium acetate, 2.75 g L−1 of hexanoic acid production from d-galactitol was achieved using a coculture of Clostridium sp. BS-1 and one of the isolates, Clostridium sp. BS-7, in the presence of 100 mM MES. In addition, volatile fatty acid (VFA) production by Clostridium sp. BS-1 from d-galactitol and d-glucose was enhanced when a more reduced culture redox potential (CRP) was applied via addition of Na2S·9H2O.  相似文献   

13.
 The kinetics of methemoglobin reduction by cytochrome b 5 has been studied by stopped-flow and saturation transfer NMR. A forward rate constant k f = 2.44×104 M–1 s–1 and a reverse rate constant k b = 540 M–1s–1 have been observed at 10 mm, pH 6.20, 25  °C. The ratio k f/k b = k eq = 43.6 is in good agreement with the equilibrium constant calculated from the electrochemical potential between cyt b 5 and methemoglobin. A bimolecular collisional mechanism is proposed for the electron transfer from cyt b 5 to methemoglobin based on the kinetic data analysis. The dependence of the rate constants on ionic strengths supports such collisional mechanism. It is also found that the reaction rate strongly depends on the conformations of methemoglobin. Received: 20 February 1996 / Accepted: 4 June 1996  相似文献   

14.
 The ability of arbuscular mycorrhizal (AM) fungi from a metal-tolerant plant (Viola calaminaria, violet) to colonise and reduce metal uptake by a non-tolerant plant (Trifolium subterraneum, subterranean clover) in comparison to a metal-tolerant AM fungus isolated from a non-tolerant plant was studied. AM spores from the violet rhizosphere and from violet roots were characterised by polymerase chain reaction (PCR) amplification of the SSU rDNA, and sequencing. Subterranean clover was grown in pots containing a soil supplemented with Cd and Zn salts and inoculated either with a mixture of spores extracted from the violet rhizosphere or with spores of a Cd-tolerant Glomus mosseae P2 (BEG 69), or non-inoculated. The diversity of fungi, including AM fungi, colonising clover roots was assessed and analysed using terminal-restriction fragment length polymorphism. At least four different Glomus species were found in the violet rhizosphere. After 8 weeks in a growth chamber, colonisation of clover roots with spores from the violet rhizosphere increased Cd and Zn concentrations in clover roots without significantly affecting the concentrations of metals in the shoot and plant growth. G. mosseae P2 reduced plant growth and slightly increased the Cd concentration. Only one AM fungus (Glomus b) from the violet rhizosphere colonised clover roots, but other fungi were present. AM fungi from heavy metal-contaminated soils and associated with metal-tolerant plants may be effective in accumulating heavy metals in roots in a non-toxic form. Accepted: 7 July 2000  相似文献   

15.
 The report describes a system for somatic embryogenesis and direct plant regeneration from the embryos of Manihot glaziovii. Somatic embryos were obtained by culturing young leaf lobes (3–6 mm long) adjacent to the apex in Murashige and Skoog medium containing 18 μm 2,4-dichlorophenoxy acetic acid for 20 days and then transferring them to a maturation medium with 0.5 μm 6-benzylaminopurine. Secondary embryogenesis was induced from cotyledonary segments of somatic embryos by using the same protocol as that for primary embryogenesis. For regeneration, somatic embryos were cultured in medium supplemented with 10−4m kinetin and 53.4% of them developed into plantlets. Linamarin and linamarase were not detected in calli or in somatic embryos. Linamarin content was found to be highest in leaves of regenerated plantlets, followed by stem and root tissues. Levels of linamarase activity were almost the same in leaves and stem tissues and very low in roots. Received: 19 April 1999 / Revision received: 11 August 1999 / Accepted: 17 August 1999  相似文献   

16.
 Shoot tips from in vitro-grown, cold-hardened stock plants of white poplar (Populus alba L.) were successfully cryopreserved at –196  °C by one-step vitrification. After preculturing at 5  °C for 2 days on hormone-free MS medium containing different sucrose concentrations, and loading for 20 min with 2 m glycerol and 0.4 m sucrose, shoot tips were treated with the PVS2 vitrification solution and plunged directly into liquid nitrogen. Best survival rate (90%) was obtained when shoot tips were precultured on 0.09 m sucrose, hormone-free MS medium, vitrified by exposure to PVS2 solution for 60 min at 0  °C and, following cryopreservation, rewarmed at 40  °C and washed in 1.2 m sucrose solution for 20 min. Regrowth was improved by plating shoot tips on a gelled MS medium containing 1.5 μm N6-benzyladenine plus 0.5 μm gibberellic acid, while shoot rooting was achieved on MS medium containing 3 μm indole-3-butyric acid. Following this procedure, almost 60% rooted shoots were obtained from cryopreserved shoot tips. Received: 1 February 1999 / Revision received: 3 May 1999 · Accepted: 21 May 1999  相似文献   

17.
Haemolymph samples were withdrawn from routinely active male intermoult Glyptonotus held at 0 ± 0.5°C, and analysed for blood-gas and acid-base variables. In both the arterialised (a) and venous (v) haemolymph, over 50% of the oxygen was transported as dissolved oxygen at PaO2 and PvO2 levels of 12.0 ± 1.15 and 7.70 ± 1.89 kPa, respectively. The maximum oxygen-carrying capacity of the haemocyanin (CmaxHcO2) was relatively low at 0.19 ± 0.05 mmol l−1, accompanied by relatively low protein and [Cu2+] levels indicating low circulating haemocyanin concentrations. Arterialised haemolymph had a mean pH of 7.88 ± 0.02(6) at a PCO2 of 0.12 ± 0.01(6) kPa and a bicarbonate level of 12.95 ± 0.80(6) mequiv l−1 with small differences in PCO2 and pH between arterial and venous haemolymph. The non-bicarbonate buffering capacity of Glyptonotus haemolymph was low at −2.0 mequiv l−1 HCO3 pH unit−1. Haemolymph [l-lactate] and [d-glucose] levels were similar at < 1 mmol l−1 in animals held in the laboratory and those sampled in Antarctica. The blood-gas and acid-base status of Glyptonotus haemolymph may be a reflection of the low and stable temperatures experienced by this Antarctic crustacean. Received: 14 August 1996 / Accepted: 3 November 1996  相似文献   

18.
Glomus intraradices was examined in a locally available sand graded by particle size, planted with Zea mays and fertilized with a nutrient solution. Plants in sand with particle sizes of 0.50–0.78 mm had higher root fresh weights, spore production and percent mycorrhizal colonization than with other particle sizes. Production of spores and infectious propagules was enhanced by a nutrient solution without P. Plants were also inoculated with G. intraradices in pots containing clay-brick granules, charcoal, coalmarl, sand or perlite of the optimal particle size (0.50–0.78 mm). Percent root length colonized by G. intraradices and production of infectious propagules were 40–50 % higher for plants grown in clay-brick granules and sand than in the other media. Accepted: 21 February 2000  相似文献   

19.
l-Ribose is a rare and expensive sugar that can be used as a precursor for the production of l-nucleoside analogues, which are used as antiviral drugs. In this work, we describe a novel way of producing l-ribose from the readily available raw material l-arabinose. This was achieved by introducing l-ribose isomerase activity into l-ribulokinase-deficient Escherichia coli UP1110 and Lactobacillus plantarum BPT197 strains. The process for l-ribose production by resting cells was investigated. The initial l-ribose production rates at 39°C and pH 8 were 0.46 ± 0.01 g g−1 h−1 (1.84 ± 0.03 g l−1 h−1) and 0.27 ± 0.01 g g−1 h−1 (1.91 ± 0.1 g l−1 h−1) for E. coli and for L. plantarum, respectively. Conversions were around 20% at their highest in the experiments. Also partially purified protein precipitates having both l-arabinose isomerase and l-ribose isomerase activity were successfully used for converting l-arabinose to l-ribose.  相似文献   

20.
 The functional significance of arbuscular mycorrhiza (AM) and ectomycorrhiza (EcM) for Salix repens, a dual mycorrhizal plant, was investigated over three harvest periods (12, 20 and 30 weeks). Cuttings of S. repens were collected in December (low shoot P) and March (high shoot P). Glomus mosseae (an arbuscular mycorrhizal fungus, AMF) resulted in low AM colonization (<5%), but showed large short-term (<12 weeks) effects on shoot growth and root length. Hebeloma leucosarx (an ectomycorrhizal fungus, EcMF) resulted in high EcM colonization (70%), but benefits occurred over a longer term (>12 weeks). Furthermore, G. mosseae colonization resulted in higher shoot P uptake, shoot growth, root growth and response duration for S. repens collected in December than for those collected in March, whereas with H. leucosarx and the non-mycorrhizal treatment there were no differences between cuttings collected on different dates. Low AMF colonization was effective in the short term for cuttings at both collecting dates. Low AMF colonization of S. repens occurred irrespective of the amount of AMF inoculum used. The intensities and relative amounts of AMF structures in S. repens and Trifolium repens were compared over three harvest periods (12, 20 and 30 weeks) to assess plant species effects on AM colonization patterns. Accepted: 13 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号