首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Molecular modeling has revealed intimate details of the mechanism of binding of natural substrate, penicillin G (PG), in the penicillin acylase active center and solved questions raised by analysis of available X-ray structures, mimicking Michaelis complex, which substantially differ in the binding pattern of the PG leaving group. Three MD trajectories were launched, starting from PDB complexes of the inactive mutant enzyme with PG (1FXV) and native penicillin acylase with sluggishly hydrolyzed substrate analog penicillin G sulfoxide (1GM9), or from the complex obtained by PG docking. All trajectories converged to a similar PG binding mode, which represented the near-to-attack conformation, consistent with chemical criteria of how reactive Michaelis complex should look. Simulated dynamic structure of the enzyme-substrate complex differed significantly from 1FXV, resembling rather 1GM9; however, additional contacts with residues bG385, bS386, and bN388 have been found, which were missing in X-ray structures. Combination of molecular docking and molecular dynamics also clarified the nature of extremely effective phenol binding in the hydrophobic pocket of penicillin acylase, which lacked proper explanation from crystallographic experiments. Alternative binding modes of phenol were probed, and corresponding trajectories converged to a single binding pattern characterized by a hydrogen bond between the phenol hydroxyl and the main chain oxygen of bS67, which was not evident from the crystal structure. Observation of the trajectory, in which phenol moved from its steady bound to pre-dissociation state, mapped the consequence of molecular events governing the conformational transitions in a coil region a143-a146 coupled to substrate binding and release of the reaction products. The current investigation provided information on dynamics of the conformational transitions accompanying substrate binding and significance of poorly structured and flexible regions in maintaining catalytic framework.  相似文献   

7.
The hydroxylaminolysis of the penicilloyl moiety from [14C]penicillin G binding component (PBC) complexes of the Bacillus subtilis D-alanine carboxypeptidase and of the mixture of PBC's of Staphylococcus aureus was inhibited by denaturation of the complexes by heat (55 degrees), detergent (1% sodium dodecyl sulfate), or trichloroacetic acid. The kinetics of inhibition by denaturation were comparable to those of the inhibition of [14C]penicillin G binding to the PBC's and of carboxypeptidase activity of the B. subtilis enzyme under identical denaturing conditions. These data establish that the hydroxylaminolysis is an enzymatically catalyzed process suggesting that penicillin G is bound to an enzymatically active site. Treatment of the denatured [14C]penicillin G-carboxypeptidase complex with sodium borohydride or at pH 12 resulted in the release of the penicilloyl moiety. These results are consistent with a carboxylic ester bond for the penicilloyl-PBC instead of a thiolester linkage as was initially presumed.  相似文献   

8.
9.
10.
Low-affinity penicillin binding proteins (PBPs) are a particular class of proteins involved in β-lactam antibiotic resistance of enterococci. The activity of these PBPs is just sufficient to allow the cells to survive in the presence of high concentrations of β-lactams that cause saturation (and inhibition) of the other PBPs. For this reason, the low-affinity PBPs are thought to be multifunctional enzymes capable of catalyzing the entire peptidoglycan synthesis. To test the validity of this claim, we analyzed the muropeptide composition by reversed-phase high-performance liquid chromatography of the peptidoglycan synthesized by PBP5 (the low-affinity PBP) of Enterococcus faecalis, in comparison with the peptidoglycan produced normally by the concerted action of the usual PBPs (namely PBPs 1, 2, and 3). Cross-linked peptidoglycan was produced. The main difference consisted in the lack of oligomers higher than trimers, thus suggesting that this oligomer cannot be used as an acceptor/donor by the transpeptidase component of PBP5. The lack of higher oligomers had little impact on total cross-linking because of the increase observed in the dimer family. This increase was distributed among the various members of the dimer family with the result that minor dimer components figured among the prevalent ones in cells in which peptidoglycan was synthesized by PBP5. This also suggests that E. faecalis PBP5 is capable of catalyzing the synthesis of a peptidoglycan that is less precise and refined than usual, and for this reason PBP5 can be considered an enzyme endowed with poor specificity for substrates, as may be expected on the basis of its survival function. Received: 18 March 1998 / Accepted: 26 May 1998  相似文献   

11.
12.
Derivatisation of lysine residues in human albumin was performed in vitro by reaction with penicillin G. This modification reaction has been reported to occur in patients treated with high dosages of the antibiotic. The structure of the modified protein was characterised by mass spectrometry and circular dichroism. The number of the lysine residues involved depends on the time of incubation and on the drug/protein molar ratio. The secondary structure of the modified protein does not change significantly with respect to the native protein. Furthermore, the binding properties of the modified albumin were characterised by CD spectroscopy. Phenylbutazone, diazepam and bilirubin, known to bind to specific binding areas, were used as markers. A decrease of the affinity to the high-affinity binding sites was observed after the modification.  相似文献   

13.
14.
A protein has been isolated from postmortem human livers which binds the penicillin analogs, dicloxacillin, nafcillin and benzylpenicillin, as well as oleic acid. Its molecular weight is in the range 17,000–20,000 and its pI is 5.9. It appears to be similar to a fatty acid-binding protein previously isolated from rat tissues.  相似文献   

15.
PonA2 is one of the two class A penicillin binding proteins of Mycobacterium tuberculosis, the etiologic agent of tuberculosis. It plays a complex role in mycobacterial physiology and is spotted as a promising target for inhibitors. PonA2 is involved in adaptation of M. tuberculosis to dormancy, an ability which has been attributed to the presence in its sequence of a C‐terminal PASTA domain. Since PASTA modules are typically considered as β‐lactam antibiotic binding domains, we determined the solution structure of the PASTA domain from PonA2 and analyzed its binding properties versus a plethora of potential binders, including the β‐lactam antibiotics, two typical muropeptide mimics, and polymeric peptidoglycan. We show that, despite a high structural similarity with other PASTA domains, the PASTA domain of PonA2 displays different binding properties, as it is not able to bind muropeptides, or β‐lactams, or polymeric peptidoglycan. These results indicate that the role of PASTA domains cannot be generalized, as their specific binding properties strongly depend on surface residues, which are widely variable. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 712–719, 2014.  相似文献   

16.
17.
青霉素结合蛋白及其介导细菌耐药的研究进展   总被引:2,自引:0,他引:2  
青霉素结合蛋白(PBPs)是一类广泛存在于细菌细胞膜表面的膜蛋白,是β-内酰胺类抗生素的主要作用靶位。在细菌合成细胞壁肽聚糖的过程中,PBPs主要发挥糖基转移酶、肽基转移酶和D-丙氨酰-D-丙氨酸羧肽酶(D,D-羧肽酶)活性,是细菌生长繁殖中不可或缺的酶。不同种类细菌所含PBPs各不相同,其结构的改变、数量的增多、与抗生素亲和力的下降以及产生新的青霉素结合蛋白是直接导致细菌对β-内酰胺类抗生素产生耐药性的重要原因。随着各类抗菌药物在临床上的广泛应用,细菌对抗菌药物的耐药问题日趋严重,其耐药水平也越来越高。因此,近年来全球围绕PBPs开展的研究工作越来越多。本文对PBPs的分类、结构和功能、与细菌耐药性的关系及检测方法的最新研究进展进行综述,并对未来可能的研究方向进行展望。  相似文献   

18.
19.
Inhibition of penicillin acylases from Escherichia coli and Alcaligenes faecalis by aliphatic and aromatic alcohols was studied. It was shown that the inhibition of both enzymes has competitive nature and they bind the alcohols at the acyl group binding site of the enzyme active center. The free energy of alcohol sorption was shown to be linearly dependent on the hydrophobicity of the inhibitor with slopes of 1.6 and 1.7, demonstrating extremely effective hydrophobic interactions. To rationalize the observed distinctions in the inhibiting properties of aromatic and aliphatic alcohols beginning with butanol, it was suggested that the loss of entropy occurring on the interaction of the ligand with the tightly restricted hydrophobic pocket of the active center makes an essential contribution to the overall energetics of complex formation.  相似文献   

20.
Membrane proteins with the specific ability for binding penicillin with high affinity (penicillin binding proteins) were found to be present in two strains of the cell wall-less protoplast L-form of P. MIrabilis and were absent from different species of Mycoplasma and from Acholeplasma laidlawii. Thus, the assay for penicillin binding proteins appeared to be suitable for the differentiation of the cell wall-less procaryotes. The absence of penicillin binding proteins from the mycoplasmatales further confirmed the unrelatedness of this group to the bacteria.Non-Standard Abbreviation PBP penicillin binding protein Dedicated to Professor Dr. Otto Kandler on the occasion of his 60th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号