首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: The mechanism of involvement of monoamine oxidase (MAO) in catecholamine-stimulated prostaglandin (PG) biosynthesis was studied in the particulate fraction of rat brain homogenates. High concentrations of either noradrenaline (NA) or dopamine (DA) stimulated effectively PGF formation. The same amount of 2-phenylethylamine (PEA) acted similarly, provided that it was administered together with a catecholamine analogue or metabolite possessing the 3,4-dihydroxyphenyl nucleus–3, 4-dihydroxyphenylalanine (DOPA), 3,4-dihydroxyphenylacetic acid (DOPAC), 3,4-dihydroxyphenyl-glycol (DOPEG), 3,4-dihydroxyphenylacetaldehyde (DOPAL), or α-methylnoradrenaline (α-met-NA)–or with SnCl2. In the absence of PEA, these compounds were ineffective with regard to stimulation of PGF formation. Catalase, pargyline, or indomethacin abolished completely PGF formation elicited either by catecholamines or by PEA plus a 3,4-dihydroxyphenyl compound or SnCl2. With regard to the stimulation of PGF formation in the presence of α-met-NA, PEA could be replaced by H2O2, generated by the glucose oxidase(GOD)-glucose system. The effect of H2O2 was inhibited by indomethacin or catalase, but pargyline was ineffective. It is assumed that catecholamines play a dual role in the activation of PG biosynthesis in brain tissue. During the enzymatic decomposition of catecholamines MAO produces H2O2, which stimulates endoperoxide synthesis. Simultaneously, catecholamines as hydrogen donors promote the nonenzymatic transformation of endoperoxides into PGF. The possible physiological importance of these findings is discussed.  相似文献   

2.
In the developing rat brain, the enzymatic formation of prostaglandin D2 from prostaglandin H2 increased 60-fold from day 12 of gestation to birth. The activity still rose gradually to the highest level (90 nmol/min/g wet tissue) at day 7 after birth. The activities of prostaglandin E2 and F2 alpha synthetases in rat brain were highest at gestational age 19 days (30 nmol/min/g wet tissue), respectively. The specific activity of NADP-dependent 15-hydroxy-prostaglandin D2 dehydrogenase in rat brain was highest at the earliest gestational age we examined (day 12 of gestation). The specific bindings of prostaglandin D2 and E2 to the crude mitochondrial fraction of rat brain were observed from day 16 of gestation and increased to day 7 after birth. Although the activities of the enzymes responsible for prostaglandin metabolism were unchanged postmaturationally, the maximal concentrations of the binding sites on the synaptic membrane for both prostaglandins D2 and E2 decreased with constant affinity to less than one-sixth with age from 1 week to 24 months after birth. These results indicate that prostaglandins may play important roles during maturation and aging in rat brain.  相似文献   

3.
Abstract: Although activation of brain catecholaminergic systems has been implicated in the cerebrovascular and metabolic changes during subarachnoid hemorrhage, cerebral ischemia, cortical ablation, and cortical freeze lesions, little is known of the response of regional brain catecholamine systems to traumatic brain injury. The present study was designed to characterize the temporal changes in concentrations of norepinephrine (NE), dopamine (DA), and epinephrine (E) in discrete brain regions following experimental fluid-percussion traumatic brain injury in rats. Anesthetized rats were subjected to fluid-percussion brain injury of moderate severity (2.2–2.3 atm) and killed at 1 h, 6 h, 24 h, 1 week, and 2 weeks postinjury (n = 6 per timepoint). Control animals (surgery and anesthesia without injury) were killed at identical timepoints (n = 6 per timepoint). Tissue concentrations of NE, DA, and E were evaluated using HPLC. Following brain injury, an acute decrease was observed in DA concentrations in the injured cortex ( p < 0.05) at 1 h postinjury, which persisted up to 2 weeks postinjury. Striatal concentrations of DA were significantly increased ( p < 0.05) only at 6 h postinjury. Hypothalamic concentrations of DA and NE increased significantly beginning at 1 h postinjury ( p < 0.05 and p < 0.05, respectively) and persisted up to 24 h for DA ( p < 0.05) and 1 week ( p < 0.05) for NE. These data suggest that acute alterations occur in regional concentrations of brain catecholamines following brain trauma, which may persist for prolonged periods postinjury.  相似文献   

4.
An increase of free 3,4-dihydroxyphenylethylamine (DA, dopamine) in the rat brain such as is found following 3,4-dihydroxyphenylalanine (L-DOPA) administration or an intraventricular injection of free dopamine did not result in DA sulfate formation, despite the presence of phenolsulfotransferase activity in various regions of the brain and the high affinity of DA for this enzyme. However, when rats were pretreated with pargyline, a monoamine oxidase inhibitor, the same treatment with L-DOPA or free DA led to active synthesis of DA sulfate. The increase in DA sulfate was significantly correlated with the degree of monoamine oxidase inhibition and directly proportional to free DA concentrations in the hypothalamus (r = 0.86), striatum (r = 0.54), and brainstem (r = 0.89). The highest ratio of DA sulfate to free DA was found in the hypothalamus, suggesting that sulfoconjugation is most active in this region. Prior treatment of rats with 6-hydroxydopamine did not decrease DA sulfate concentrations, indicating that sulfoconjugation occurs most likely in extraneuronal tissues not destroyed by the neurotoxin. The results are compatible with the notion that phenolsulfotransferase may be highly compartmentalized and that inhibition of monoamine oxidase allows the newly generated free DA to become accessible to the sulfoconjugating enzyme, resulting in increase in DA sulfation.  相似文献   

5.
Abstract: This study was undertaken to explore the metabolic fate of acetyl- l -carnitine in rat brain. To measure the flux of carbon atoms into anabolic processes occurring at regional levels, we have injected [1-14C]acetyl- l -carnitine into the lateral brain ventricle of conscious rats. After injection of [1-14C]acetyl- l -carnitine, the majority of radioactivity was recovered as 14CO2 expired (60% of that injected). The percentage of radioactivity recovered in brain was 1.95, 1.60, 1.30, and 0.93% at 1, 3, 6, and 22 h, respectively. Radioactivity distribution in various lipid components indicated that the fatty acid moiety of phospholipid contained the majority of radioactivity. The radioactive profile of these fatty acids showed that the acetyl moiety of acetyl- l -carnitine was incorporated into saturated (60%), monounsaturated (15%), and polyunsaturated (25%) fatty acids [mainly present in 20:4 (5.2%) and 22:6 (7.8%)]. Injection in the brain ventricle of radioactive glucose, the major source of acetyl-CoA in the CNS, revealed that glucose was a precursor of saturated (85%) and monounsaturated (15%) but not of polyunsaturated fatty acids. Thus, this study demonstrated distinct fates of glucose and acetyl- l -carnitine following intracerebroventricular injection. In summary, these data implicate acetyl- l -carnitine as an important member of a complex acetate trafficking system in brain lipid metabolism.  相似文献   

6.
Changes in Monoamine Oxidase Activity in Rat Brain During Alloxan Diabetes   总被引:10,自引:8,他引:2  
Abstract: The effect of alloxan diabetes on the activity of monoamine oxidase was studied in three regions of the rat brain at various time intervals after the onset of diabetes. It was observed that monoamine oxidase activity was decreased at early time intervals after diabetes, followed by a recovery in all three regions of the brain. A reversal of the effect was observed with insulin administration to the diabetic rats.  相似文献   

7.
The levels of epinephrine, norepinephrine, and dopamine and the activities of tyrosine hydroxylase and monoamine oxidase were estimated in four regions of rat brain during alloxan-induced hyperglycemia and insulin-induced hypoglycemia. Catecholamine levels were estimated by HPLC, and the insulin levels were quantified by radioimmunoassay. The results demonstrated significant increases in the activities of the metabolizing enzymes and levels of catecholamines during experimental conditions. The levels of catecholamines were highest in the cerebral hemispheres, the region associated with high activities of the metabolizing enzymes. Insulin-induced hypoglycemia caused a decrease in the activities of the metabolizing enzymes followed by their recovery within 2 h.  相似文献   

8.
Dynamic Storage of Dopamine in Rat Brain Synaptic Vesicles In Vitro   总被引:2,自引:0,他引:2  
Abstract: The dynamics of catecholamine storage were studied in highly purified, small synaptic vesicles from rat brain both during active uptake or after inhibiting uptake with reserpine, tetrabenazine, or removal of external dopamine. To assess turnover during active uptake, synaptic vesicles were allowed to accumulate [3H]dopamine ([3H]DA) for ~10 min and then diluted 20-fold into a solution containing unlabeled DA under conditions such that active uptake could continue. After dilution, [3H]DA was lost with single exponential kinetics at a half-time of ~4 min at 30°C in 8 mM Cl? medium, in which both voltage and H+ gradients are present in the vesicles. In 90 mM Cl? medium, in which high H+ and Cl? gradients but no voltage gradient are present, [3H]DA escaped at a half-time of ~7 min. In both high and low Cl? media, ~40% of [3H]DA efflux was blocked by reserpine or tetrabenazine. The residual efflux also followed first-order kinetics. These results indicate that two efflux pathways were present, one dependent on DA uptake (and thus on the presence of external DA) and the other independent of uptake, and that both pathways function regardless of the type of electrochemical H+ gradient in the vesicles. The presence of both uptake-dependent and -independent efflux was observed in experiments using DA-free medium, instead of uptake inhibitors, to prevent uptake. Uptake-independent efflux showed molecular selectivity for catecholamines; [14C]DA was lost about three times faster than [3H]norepinephrine after adding tetrabenazine directly (without dilution) to vesicles that had taken up comparable amounts of each amine. In addition, the first-order rate constant for uptake-independent efflux showed little change over a 60-fold range of internal DA concentrations, which suggests that this pathway had a high transport capacity. All efflux was blocked at 0°C, suggesting that efflux did not occur through a large pore. There was little or no change in the proton gradient in synaptic vesicles, monitored by [14C]methylamine equilibration, during the experimental manipulations used here. Thus, the driving force for catecholamine uptake remained approximately constant. The physiological role of uptake-independent efflux could be to allow the monoamine content of synaptic vesicles to be regulated over a time range of minutes and, thereby, control the amount released by exocytosis. These results imply that catecholamines turn over with a half-time of minutes during active uptake by brain synaptic vesicles in vitro.  相似文献   

9.
Characterization and Regulation of Insulin Receptors in Rat Brain   总被引:2,自引:7,他引:2  
An in vitro receptor binding assay, using filtration to separate bound from free [125I]insulin, was developed and used to characterize insulin receptors on membranes isolated from specific areas of rat brain. The kinetic and equilibrium binding properties of central receptors were similar to those of hepatic receptors. The binding profiles in all tissues were complex and were consistent with binding in multiple steps or to multiple sites. Similar binding properties were found among receptors in olfactory tubercle/bulb, cerebral cortex, hippocampus, striatum, hypothalamus, and cerebellum. High affinity [125I]insulin binding sites (KD = 3-11 nM) were distributed evenly between membranes isolated from P1 and P2 fractions of these brain areas, with the exception of the olfactory tubercle in which binding to P2 membranes was four-fold greater (Bmax = 150 fmol/mg protein). One difference between insulin receptors in brain and peripheral target tissues, however, was observed. Following exposure to 0.17 microM insulin for 3 h at 37 degrees C, the number of specific [125I]insulin binding sites on adipocytes decreased by 40%, while the number of binding sites on minces of cerebral cortex/olfactory tubercle remained constant. The results suggest that although the binding characteristics of central and peripheral insulin receptors are similar, these receptors do not appear to be regulated in the same manner.  相似文献   

10.
11.
Rat brain synaptosomes exhibit calcium-dependent transglutaminase activity. This activity, measured in detergent-treated or sonicated preparations, was six- to sevenfold lower than that in the liver. The synaptosomal transglutaminase was inhibited by various amines and alpha-difluoromethylornithine, compounds known to inhibit activity of this enzyme in other tissues. The inhibitors of transglutaminase induced release of catecholamines, but not of gamma-aminobutyric acid, from synaptosomes both under basal and K+-stimulated conditions. The concentrations of the agents that caused stimulation of catecholamine release were approximately the same as those that inhibited the activity of transglutaminase. Stimulation of release was largely reduced by the withdrawal of calcium from the incubation medium. Inhibitors of transglutaminase had little effect either on the uptakes of neurotransmitters or the amounts of deaminated products of catecholamine degradation released into the medium. It is suggested that a synaptosomal transglutaminase is involved in suppressing vesicular release of catecholamines by resting (nondepolarized) neurons and that this action may also be a part of negative feedback control which prevents excessive transmitter release at the synapse during increased neuronal activity.  相似文献   

12.
Abstract: The activities of the two folate-dependent enzymes in the de nova purine biosynthetic pathway (e.g., glycinamide ribonucleotide transformylase and aminoimidazolecarboxamide ribonucleotide transformylase), have been evaluated as a function of age in crude extracts from rat brain, liver, kidney, and spleen. The activities of the enzymes in brain are similar to those found in liver and kidney. In all tissues the activity of both enzymes was higher during early development, more than nine times above adult levels. In the CNS the enzymatic activities are apparently related to the periods of increased nucleic acid synthesis, with different activities being found in different regions during development. Our findings lend strong support to the suggestion that folic acid-dependent metabolism plays an important role during early development of the brain.  相似文献   

13.
14.
Regulation of DOPA Decarboxylase Activity in Brain of Living Rat   总被引:3,自引:1,他引:3  
Abstract: To test the hypothesis that l -DOPA decarboxylase (DDC) is a regulated enzyme in the synthesis of dopamine (DA), we developed a model of the cerebral uptake and metabolism of [3H]DOPA. The unidirectional blood-brain clearance of [3H]DOPA ( K D1) was 0.049 ml g−1 min−1. The relative DDC activity ( k D3) was 0.26 min−1 in striatum, 0.04 min−1 in hypothalamus, and 0.02 min−1 in hippocampus. In striatum, 3,4-[3H]dihydroxyphenylacetic acid ([3H]DOPAC) was formed from [3H]DA with a rate constant of 0.013 min−1, [3H]homovanillic acid ([3H]HVA) was formed from [3H]DOPAC at a rate constant of 0.020 min−1, and [3H]HVA was eliminated from brain at a rate constant of 0.037 min−1. Together, these rate constants predicted the ratios of endogenous DOPAC and HVA to DA in rat striatum. Pargyline, an inhibitor of DA catabolism, substantially reduced the contrast between striatum and cortex, in comparison with the contrast seen in autoradiograms of control rats. At 30 min and at 4 h after pargyline, k D3 was reduced by 50% in striatum and olfactory tubercle but was unaffected in hypothalamus, indicating that DDC activity is reduced in specific brain regions after monoamine oxidase inhibition. Thus, DDC activity may be a regulated step in the synthesis of DA.  相似文献   

15.
16.
The activities of neutral, magnesium-stimulated, and acid sphingomyelinases were measured in five regions of rat brain. Neutral enzyme activity was 2-3-fold higher in striatum than in parietal cortex and 13-fold higher than in cerebral white matter. Acid sphingomyelinase activity was more evenly distributed throughout these regions. Striatal neutral sphingomyelinase activity was not affected by treatment of rats with reserpine or haloperidol and was reduced (16%) by 6-hydroxydopamine. Striatal acid sphingomyelinase was unaffected by reserpine and 6-hydroxydopamine, and was increased (17%) by haloperidol. We conclude that neutral, magnesium-stimulated sphingomyelinase activity differs in various regions of rat brain and is particularly enriched in the corpus striatum. However, it appears to be a constitutive component of tissue rather than a readily modulated regulatory element of the catecholaminergic system.  相似文献   

17.
Sprague-Dawley rats were anesthetized with chloral hydrate, and plastic cannulae were permanently implanted into the lateral ventricles. The animals then were allowed to recover for 1-2 days. L-Buthionine sulfoximine (L-BSO), a selective inhibitor of glutathione (GSH) synthesis, and 6-hydroxydopamine (6-OH-DA), a selective catecholaminergic neurotoxin, were administered intracerebroventricularly. The striatal concentrations of GSH and monoamines were determined by HPLC with electrochemical detection. Two injections of L-BSO (3.2 mg, at a 48-h interval) resulted in a 70% reduction of striatal GSH. 6-OH-DA (150 or 300 micrograms) reduced the concentrations of striatal dopamine and noradrenaline 7 days after the administration, but left the concentrations of 5-hydroxytryptamine unaltered. L-BSO treatment did not produce any changes in the levels of monoamines per se but it potentiated the catecholamine-depleting effect of 6-OH-DA in the striatum. Thus, GSH appears to suppress the toxicity of 6-OH-DA, probably by scavenging the toxic species formed during 6-OH-DA oxidation. In view of these results one may suggest an important role for GSH in catecholaminergic neurons: protecting against the oxidation of endogenous catechols.  相似文献   

18.
Abstract: The biosynthesis of tRNA was investigated in cultured astroglial cells and the 3-day-old rat brain in vivo. In the culture system astrocytes were grown for 19 days and were then exposed to [3H]guanosine for 1.5–7.5 h; 3-day-old rats were injected with [3H]guanosine and were killed 5–45 min later. [3H]tRNA was extracted, partially purified, and hydrolyzed to yield [3H]-guanine and [3H]methyl guanines. The latter were separated from the former by high performance liquid chromatography and their radioactivity determined as a function of the time of exposure to [3H]guanosine. The findings indicate that labeling of astrocyte tRNA continued for 7.5 h and was maximal, relative to total RNA labeling, at 3 h, while in the immature brain tRNAs were maximally labeled at 20 min after [3H]guanosine administration. The labeling pattern of the individual methyl guanines differed considerably between astrocyte and brain tRNAs. Thus, [3H]1-methylguanine represented up to 35% of the total [3H]methyl guanine radioactivity in astrocyte [3H]tRNA, while it became only negligibly labeled in brain [3H]tRNA. Conversely, brain [3H]tRNA contained more [3H]N2-methylguanine than did astrocyte [3H]tRNA. Approximately equal proportions of [3H]7-methylguanine were found in the [3H]tRNAs of both neural systems. The [3H]methylguanine composition of brain [3H]tRNA was followed through several stages of tRNA purification, including benzoylated DEAE-cellulose and reverse phase chromatography (RPC-5), and differences were found between the [3H]methylguanine composition of RPC-5 fractions containing, respectively, tRNAlys and tRNAphe. The overall results of this study suggest that developing brain cells biosynthesize their particular complement of tRNAs actively and in a cell-specific manner, as attested by the significant differences in the labeling rates of their methylated guanines. The notion is advanced that cell-specific tRNA modifications may be a prerequisite for the successful synthesis of cell-specific neural proteins.  相似文献   

19.
Abstract: Microvessels, predominantly capillaries, were isolated from rat cerebrum by a modification of published procedures. The morphology and purity of the preparations were monitored by light and electron microscopy and by enrichment in alkaline phosphatase, γ-glutamyl transpeptidase, and prostacyclin synthetase. A reversed-phase high-pressure liquid chromatographic method was used in the purification of prostaglandins after extraction from aqueous incubation solutions. Prostacyclin synthesis in brain is localized in cerebral blood vessels and capillaries. The endogenous biosynthetic capacity of the isolated cerebral capillary fractions for prostacyclin, measured as its chemically stable breakdown product, 6-keto-prostaglandin F, was 11 ng/mg protein/10 min. Choroid plexus and intact surface vessels synthesized 6-keto-prostaglandin F at 37 and 35 ng/mg protein/10 min, respectively. The prostacyclin-synthesizing enzyme of the cerebral capillaries also converted the exogenously added prostaglandin endoperoxides to 6-keto-prostaglandin F. Comparison of the synthesis of prostaglandins 6-keto-F, E2, and F showed that 6-keto-prostaglandin F was the major prostaglandin formed in the microvessels, in the larger surface vessels, and in the choroid plexus. Prostaglandin D2 was not detected. Prostacyclin synthesis by the cerebral vasculature is similar to that in other blood vessels and cultured human endothelial cells. Possible physiological roles of prostacyclin in the cerebral microvasculature are discussed with special regard to the autoregulation of cerebral blood flow.  相似文献   

20.
Abstract: In a previous study, it was observed that the activity of rolipram-sensitive, low- K m, cyclic AMP phosphodiesterase (PDE4) was decreased in vivo with diminished noradrenergic stimulation. The results of the present experiments indicated that the reduction in the activity may be associated with down-regulation of PDE4 protein. Immunoblot analysis using PDE4-specific, subfamily-nonspecific antibody (K116) revealed four major bands of PDE4 in rat cerebral cortex; those with apparent molecular masses of 109 and 102 kDa are variants of PDE4A. Diminished noradrenergic activity, produced by intracerebroventricular infusion of 6-hydroxydopamine (6-OHDA) or chronic subcutaneous infusion of propranolol, decreased the intensities of the protein bands for the 109- and 102-kDa PDE4A variants in rat cerebral cortex but not of the 98- or 91-kDa PDE4 forms. 6-OHDA-induced noradrenergic lesioning also decreased the content of 102-kDa PDE4A in hippocampus as labeled by PDE4A-specific antibody (C-PDE4A). Enhanced noradrenergic stimulation up-regulated PDE4 in cerebral cortex. This was indicated by the finding that repeated treatment with desipramine increased the intensity of the protein band for the 102-kDa PDE4 but not for the other variants of PDE4. These results suggest that PDE4 subtypes are differentially regulated at the level of expression, as evidenced by an apparent change in the amount of PDE4 protein, following changes in noradrenergic activity. These observations are consistent with the notion that PDE4s, especially the PDE4A variants with molecular masses of 109 and 102 kDa, play an important role in maintaining the homeostasis of the noradrenergic signal transduction system in the brain and may be involved in the mediation of antidepressant activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号