首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to investigate the EMG-joint angle relationship during voluntary contraction with maximum effort and the differences in activity among three hamstring muscles during knee flexion. Ten healthy subjects performed maximum voluntary isometric and isokinetic knee flexion. The isometric tests were performed for 5 s at knee angles of 60 and 90 degrees. The isokinetic test, which consisted of knee flexion from 0 to 120 degrees in the prone position, was performed at an angular velocity of 30 degrees /s (0.523 rad/s). The knee flexion torque was measured using a KIN-COM isokinetic dynamometer. The individual EMG activity of the hamstrings, i.e. the semitendinosus, semimembranosus, long head of the biceps femoris and short head of the biceps femoris muscles, was detected using a bipolar fine wire electrode. With isometric testing, the knee flexion torque at 60 degrees knee flexion was greater than that at 90 degrees. The mean peak isokinetic torque occurred from 15 to 30 degrees knee flexion angle and then the torque decreased as the knee angle increased (p<0.01). The EMG activity of the hamstring muscles varied with the change in knee flexion angle except for the short head of the biceps femoris muscle under isometric condition. With isometric contraction, the integrated EMGs of the semitendinosus and semimembranosus muscles at a knee flexion angle of 60 degrees were significantly lower than that at 90 degrees. During maximum isokinetic contraction, the integrated EMGs of the semitendinosus, semimembranosus and short head of the biceps femoris muscles increased significantly as the knee angle increased from 0 to 105 degrees of knee flexion (p<0.05). On the other hand, the integrated EMG of the long head of the biceps femoris muscle at a knee angle of 60 degrees was significantly greater than that at 90 degrees knee flexion with isometric testing (p<0.01). During maximum isokinetic contraction, the integrated EMG was the greatest at a knee angle between 15 and 30 degrees, and then significantly decreased as the knee angle increased from 30 to 120 degrees (p<0.01). These results demonstrate that the EMG activity of hamstring muscles during maximum isometric and isokinetic knee flexion varies with change in muscle length or joint angle, and that the activity of the long head of the biceps femoris muscle differs considerably from the other three heads of hamstrings.  相似文献   

2.
Few studies have investigated the function of the patellar tendon in-vivo. This study quantified the three-dimensional (3D) kinematics of the patellar tendon during weight-bearing flexion. Eleven subjects were imaged using magnetic resonance (MR). Sagittal plane images were outlined to create a 3D model of the patella, tibia, and femur and included the attachment sites of the patellar tendon. Each attachment site was divided into central, medial, and lateral thirds. Next, the subjects were imaged using fluoroscopy from two orthogonal directions while performing a single-leg lunge. The models and fluoroscopic images were used to reproduce the motion of the patella, tibia, and femur. The apparent elongation, sagittal plane angle, and coronal plane angle of each third of the patellar tendon were measured from the relative motion of the attachment sites. All three portions of the patellar tendon deformed similarly with flexion. The length of the patellar tendon significantly from full extension to 30 degrees . From 30 degrees -110 degrees , no significant change in the length of the patellar tendon was observed. The patellar tendon was oriented anteriorly at flexion angles less than 60 degrees and posteriorly thereafter. From full extension to 60 degrees , the medial orientation of the patellar tendon decreased significantly with flexion. These data may have important implications for anterior cruciate ligament reconstruction using patellar tendon autografts and for the design of rehabilitation regimens for patients of patellar tendon repair.  相似文献   

3.
A potential cause of non-contact anterior cruciate ligament (ACL) injury is landing on an extended knee. In line with this hypothesis, studies have shown that the ACL is elongated with decreasing knee flexion angle. Furthermore, at low flexion angles the patellar tendon is oriented to increase the anterior shear component of force acting on the tibia. This indicates that knee extension represents a position in which the ACL is taut, and thus may have an increased propensity for injury, particularly in the presence of excessive force acting via the patellar tendon. However, there is very little in vivo data to describe how patellar tendon orientation and ACL elongation interact during flexion. Therefore, this study measured the patellar tendon tibial shaft angle (indicative of the relative magnitude of the shear component of force acting via the patellar tendon) and ACL length in vivo as subjects performed a quasi-static lunge at varying knee flexion angles. Spearman rho rank correlations within each individual revealed that flexion angles were inversely correlated to both ACL length (rho = −0.94 ± 0.07, mean ± standard deviation, p < 0.05) and patellar tendon tibial shaft angle (rho = −0.99 ± 0.01, p < 0.05). These findings indicate that when the knee is extended, the ACL is both elongated and the patellar tendon tibial shaft angle is increased, resulting in a relative increase in anterior shear force on the tibia acting via the patellar tendon. Therefore, these data support the hypothesis that landing with the knee in extension is a high risk scenario for ACL injury.  相似文献   

4.
The purpose of this study was to examine whether prediction of antagonist moment (M(flx)) of the hamstrings using clinically applicable models depends on the muscles examined. Nine healthy males performed maximal isometric knee extension and flexion contractions at 0 degrees , 45 degrees and 90 degrees angles. Calibration knee flexion efforts were also performed at different levels of intensity. The resulting electromyographic (EMG) - moment curves were fitted using polynomial equations which were then used to estimate M(flx) from the antagonist EMG. Analysis of variance designs showed that the M(flx) predicted using the biceps femoris EMG was not significantly different compared with those predicted using the semitendinosus EMG data (p>0.05). Further, prediction of M(flx) using the EMG of both muscles or a combination of EMGs and architectural properties reduced estimation error but did not provide significantly different predicted values compared with the simpler single-muscle EMG - moment models (p<0.05). It appears that M(flx) prediction using the present EMG - moment model is not muscle specific. Prediction using models which combine EMG data and anatomic parameters of the hamstring muscle components yielded more accurate estimates and therefore their use to examine co-contraction levels is recommended.  相似文献   

5.
Exercise responses and injury rates differ between individual hamstrings and this may be linked with their morphology. The aim of this study was to compare muscle length and tendon dimensions between the individual hamstrings at two knee joint angles using free hand three-dimensional ultrasound (3D US). Muscle-tendon length and distal tendon cross-sectional area (CSA), volume, length and echogenicity of biceps femoris long (BFlh) and short (BFsh) head, semimembranosus (SM) and semitendinosus (ST) of 16 individuals were measured using free-hand 3D US at 0° (full extension) and 45° of knee flexion. ST showed the greatest length than all muscles and BFsh the lowest (p < 0.05). No difference was observed between SM and BFlh length (p > 0.05). Of the four muscles, ST tendon was longer, with less volume and CSA but greater echogenicity than the other tendons. In contrast, SM and BFlh showed shorter tendons and lower echogenicity but a greater volume and CSA than ST (p < 0.05). Muscle and tendon lengthened from 45° to 0° knee flexion angle (p < 0.05) but this change was not statistically different between individual hamstrings (p > 0.05). Freehand 3D US indicated that hamstring muscle length and distal tendon dimensions differ between individual hamstrings. All muscles and tendons lengthened as the knee was extended but this change was similar for all individual hamstrings.  相似文献   

6.
A planar model of the knee joint to characterize the knee extensor mechanism   总被引:10,自引:4,他引:6  
A simple planar static model of the knee joint was developed to calculate effective moment arms for the quadriceps muscle. A pathway for the instantaneous center of rotation was chosen that gives realistic orientations of the femur relative to the tibia. Using the model, nonlinear force and moment equilibrium equations were solved at one degree increments for knee flexion angles from 0 (full extension) to 90 degrees, yielding patellar orientation, patellofemoral contact force and patellar ligament force and direction with respect to both the tibial insertion point and the tibiofemoral contact point. The computer-derived results from this two-dimensional model agree with results from more complex models developed previously from experimentally obtained data. Due to our model's simplicity, however, the operation of the patellar mechanism as a lever as well as a spacer is clearly illustrated. Specifically, the thickness of the patella was found to increase the effective moment arm significantly only at flexions below 35 degrees even though the actual moment arm exhibited an increase throughout the flexion range. Lengthening either the patella or the patellar ligament altered the force transmitted from the quadriceps to the patellar ligament, significantly increasing the effective moment arm at flexions greater than 25 degrees. We conclude that the levering action of the patella is an essential mechanism of knee joint operation at moderate to high flexion angles.  相似文献   

7.
Lateral view radiographs of ten autopsy knees were used to determine the orientation of the patellar ligament, patella and quadriceps tendon relative to tibia and femur at different flexion-extension angles (0-120 degrees) of the knee. The results show a linear relationship between the angle of flexion and the movement of the patellar ligament relative to the tibia and of the movement of the patella relative to tibia and femur. There is a non-linear relationship between angle of flexion and the movement of the quadriceps tendon relative to the patellar ligament, patella and femur. The angular changes between patella and patellar ligament are negligible. The complicated movements of the distal part of the quadriceps femoris muscle may significantly influence biomechanical parameters such as the forces acting at the patella and tibial tuberosity.  相似文献   

8.
Co-contraction of the muscles is proposed in the literature as one of the strategies that anterior cruciate ligament deficient (ACLD) subjects can use to compensate the loss of ACL function. This study examined the response of ACLD and control subjects to different shear forces in isometric and slow-dynamic knee extensions. Twelve chronic ACLD and 10 control subjects performed submaximal positioning and slow-dynamic knee extensions (between 45 degrees and 5 degrees of knee flexion) with two external flexion moments both applied at two distances on the lower leg. The shear force was controlled by changing the moment arm without changing the moment. Electromyographic data were collected from knee flexor and extensor muscles. In the analysis of variance, no significant effect of subject group was found in positioning or slow-dynamic tasks across all muscles. The effect of knee angle was significantly different between the subject groups for biceps femoris in positioning and for rectus femoris in slow-dynamic tasks, but these effects were very small and will not have a great impact on the resulting shear forces. There was no interaction between moment arm and subject group. Therefore, the hypothesis that ACLD subjects increase co-contraction in situations with an increased shear load in positioning and slow-dynamic knee extensions could not be confirmed.  相似文献   

9.
10.
This study investigated the effect of hamstring co-contraction with quadriceps on the kinematics of the human knee joint and the in-situ forces in the anterior cruciate ligament (ACL) during a simulated isometric extension motion of the knee. Cadaveric human knee specimens (n = 10) were tested using the robotic universal force moment sensor (UFS) system and measurements of knee kinematics and in-situ forces in the ACL were based on reference positions on the path of passive flexion/extension motion of the knee. With an isolated 200 N quadriceps load, the knee underwent anterior and lateral tibial translation as well as internal tibial rotation with respect to the femur. Both translation and rotation increased when the knee was flexed from full extension to 30 of flexion; with further flexion, these motion decreased. The addition of 80 N antagonistic hamstrings load significantly reduced both anterior and lateral tibial translation as well as internal tibial rotation at knee flexion angles tested except at full extension. At 30 of flexion, the anterior tibial translation, lateral tibial translation, and internal tibial rotation were significantly reduced by 18, 46, and 30%, respectively (p<0.05). The in-situ forces in the ACL under the quadriceps load were found to increase from 27.8+/-9.3 N at full extension to a maximum of 44.9+/-13.8 N at 15 of flexion and then decrease to 10 N beyond 60 of flexion. The in-situ force at 15 was significantly higher than that at other flexion angles (p<0.05). The addition of the hamstring load of 80 N significantly reduced the in-situ forces in the ACL at 15, 30 and 60 of flexion by 30, 43, and 44%, respectively (p<0.05). These data demonstrate that maximum knee motion may not necessarily correspond to the highest in-situ forces in the ACL. The data also suggest that hamstring co-contraction with quadriceps is effective in reducing excessive forces in the ACL particularly between 15 and 60 of knee flexion.  相似文献   

11.
Moment arms are important for understanding muscular behavior and for calculating internal muscle forces in musculoskeletal simulations. Biarticular muscles cross two joints and have moment arms that depend on the angle of both joints the muscles cross. The tendon excursion method was used to measure the joint angle-dependence of hamstring (biceps femoris, semimembranosus and semitendinosus) moment arm magnitudes of the feline hindlimb at the knee and hip joints. Knee angle influenced hamstring moment arm magnitudes at the hip joint; compared to a flexed knee joint, the moment arm for semimembranosus posterior at the hip was at most 7.4 mm (25%) larger when the knee was extended. On average, hamstring moment arms at the hip increased by 4.9 mm when the knee was more extended. In contrast, moment arm magnitudes at the knee varied by less than 2.8 mm (mean=1.6 mm) for all hamstring muscles at the two hip joint angles tested. Thus, hamstring moment arms at the hip were dependent on knee position, while hamstring moment arms at the knee were not as strongly associated with relative hip position. Additionally, the feline hamstring muscle group had a larger mechanical advantage at the hip than at the knee joint.  相似文献   

12.
We tested magnetic resonance imaging (MRI) as a means to collect geometric data for moment arm estimation. A knee specimen in five successive flexion postures was scanned by MRI, while simultaneously tendon positions of loaded muscles were measured (long head of biceps femoris, lateral and medial gastrocnemius, gracilis, rectus femoris, sartorius, semimembranosus, semitendinosus, and tensor fasciae latae). Discrete rotation centres were derived from MRI pictures. Moment arms were estimated as the distances from these centres to the tendons. The ratio of tendon travel over the increment of joint angulation was the alternative, more reliable estimate of the moment arm. An important principal shortcoming of MRI is the impossibility of accounting for force distribution in taut tissue. As a consequence, for some muscles, considerable inaccuracies in moment arm estimation are found in a relatively small range of joint angulation (up to about 30% for the rectus femoris and semimembranosus). For the tensor fasciae latae, the moment arm cannot be estimated by MRI, while the estimate by tendon travel is unreliable owing to the deformability and attachments of the fascia lata.  相似文献   

13.
Patterns of fibre elongation and orientation for the cruciate and collateral ligaments of the human knee joint and for the patellar tendon have not yet been established in three-dimensions. These patterns are essential for understanding thoroughly the contribution of these soft tissues to joint function and of value in surgical treatments for a more conscious assessment of the knee status. Measurements from 10 normal cadaver knees are here reported using an accurate surgical navigation system and consistent anatomical references, over a large flexion arc, and according to current recommended conventions. The contours of relevant sub-bundles were digitised over the corresponding origins and insertions on the bones. Representative fibres were calculated as the straight line segments joining the centroids of these attachment areas. The most isometric fibre was also taken as that whose attachment points were at the minimum change in length over the flexion arc. Changes in length and orientation of these fibres were reported versus the flexion angle. A good general repeatability of intra- and inter-specimens was found. Isometric fibres were found in the locations reported in the literature. During knee flexion, ligament sub-bundles slacken in the anterior cruciate ligament, and in the medial and lateral collateral ligaments, whereas they tighten in the posterior cruciate ligament. In each cruciate ligament the two compounding sub-bundles have different extents for the change in fibre length, and also bend differently from each other on both tibial planes. In the collateral ligaments and patellar tendon all fibres bend posteriorly. Patellar tendon underwent complex changes in length and orientation, on both the tibial sagittal and frontal planes. For the first time thorough and consistent patterns of geometrical changes are provided for the main knee ligaments and tendons after careful fibre mapping.  相似文献   

14.
Moment arm of the patellar tendon in the human knee   总被引:5,自引:0,他引:5  
The moment arm of the knee-extensor mechanism is described by the moment arm of the patellar tendon calculated with respect to the screw axis of the tibia relative to the femur. The moment arm may be found once the line of action of the patellar tendon and the position and orientation of the screw axis are known. In this study, the orientation of the patellar tendon and the position and orientation of the finite screw axis of the tibia relative to the femur were calculated from measurements of the three-dimensional positions of the bones obtained from fresh cadaver specimens. Peak values of the patellar tendon moment arm ranged from 4-6 cm for the six knees tested; the moment arm was maximum near 45 degrees of knee flexion. The moment arm of the patellar tendon was nearly equal to the shortest (perpendicular) distance between the line of action of the patellar tendon and the axis of rotation of the knee at all flexion angles, except near full extension. Near full extension, the angle between the patellar tendon and the screw axis was significantly less than 90 degrees, and the magnitude of the moment arm was then less than the perpendicular distance between these two lines. The patellar tendon moment arm remained roughly constant across individuals when normalized by femoral condyle width, suggesting that anatomical differences play a large role in determining the moment arm of the extensor mechanism.  相似文献   

15.
Hamstring muscle function during knee flexion has been linked to hamstring injury and performance. However, it is unclear whether knee flexion alone (KF) requires similar hamstring electromyography (EMG) activity pattern to simultaneous hip extension and knee flexion (HE-KF), a combination that occurs in the late swing phase of sprinting. This study examined whether HE-KF maximal voluntary isometric contraction (MVIC) evokes higher (EMG) activity in biceps femoris long head (BFlh) and semitendinosus (ST) than KF alone. Effects of shank rotation angles were also tested. Twenty-one males performed the above-mentioned MVICs while EMG activity was measured along ST and BFlh. Conditions were compared using a one-way mixed functional ANOVA model under a fully Bayesian framework. Higher EMG activity was found in HE-KF in all shank rotation positions than in KF in the middle region of BFlh (highest in the 9th channel, by 0.022 mV [95%CrI 0.014 to 0.030] in neutral shank position). For ST, this was only observed in the neutral shank position and in the most proximal channel (by 0.013 mV [95%CrI 0.001 to 0.025]). We observed muscle- and region-specific responses to HE-KF. Future studies should examine whether hamstring activation in this task is related to injury risk and sprint performance.  相似文献   

16.
The aim of this study was to investigate the kinematic, kinetic, and electromyographic pattern before, during and after downward squatting when the trunk movement is restricted in the sagittal plane. Eight healthy subjects performed downward squatting at two different positions, semisquatting (40 degrees knee flexion) and half squatting (70 degrees knee flexion). Electromyographic responses of the vastus medialis oblique, vastus medialis longus, rectus femoris, vastus lateralis, biceps femoris, semitendineous, gastrocnemius lateralis, and tibialis anterior were recorded. The kinematics of the major joints were reconstructed using an optoelectronic system. The center of pressure (COP) was obtained using data collected from one force plate, and the ankle and knee joint torques were calculated using inverse dynamics. In the upright position there were small changes in the COP and in the knee and ankle joint torques. The tibialis anterior provoked the disruption of this upright position initiating the squat. During the acceleration phase of the squat the COP moved posteriorly, the knee joint torque remained in flexion and there was no measurable muscle activation. As the body went into the deceleration phase, the knee joint torque increased towards extension with major muscle activities being observed in the four heads of the quadriceps. Understanding these kinematic, kinetic and EMG strategies before, during and after the squat is expected to be beneficial to practitioners for utilizing squatting as a task for improving motor function.  相似文献   

17.
Results of the surgical reconstruction of the anterior cruciate ligament (ACL), using as a graft fourfold hamstring tendons (gracilis and semitendinosus) and middle third of the patellar ligament, were compared. In all patients that were participating in this study clinical examination and magnetic resonance showed ACL rupture, and apart from the choice of the graft, surgical technique was identical. We evaluated 112 patients with implemented patellar ligament graft and fourfold hamstring tendons graft six months after the procedure. Both groups were similar according to age, sex, activity level, knee instability level and rehabilitation program. The results showed that there was no significant difference between groups regarding Lysholm Knee score, IKDC 2000 score, activity level, musculature hypotrophy, and knee joint stability 6 months after the surgery. Anterior knee pain incidence is significantly higher in the group with patellar ligament graft (44% vs. 21%). Both groups had a significant musculature hypotrophy of the upper leg of the knee joint that was surgically treated, six months after the procedure. Both grafts showed good subjective and objective results.  相似文献   

18.
A three-dimensional model of the knee is used to study ligament function during anterior-posterior (a-p) draw, axial rotation, and isometric contractions of the extensor and flexor muscles. The geometry of the model bones is based on cadaver data. The contacting surfaces of the femur and tibia are modeled as deformable; those of the femur and patella are assumed to be rigid. Twelve elastic elements are used to describe the geometry and mechanical properties of the cruciate ligaments, the collateral ligaments, and the posterior capsule. The model is actuated by thirteen musculotendinous units, each unit represented as a three-element muscle in series with tendon. The calculations show that the forces applied during a-p draw are substantially different from those applied by the muscles during activity. Principles of knee-ligament function based on the results of in vitro experiments may therefore be overstated. Knee-ligament forces during straight a-p draw are determined solely by the changing geometry of the ligaments relative to the bones: ACL force decreases with increasing flexion during anterior draw because the angle between the ACL and the tibial plateau decreases as knee flexion increases; PCL force increases with increasing flexion during posterior draw because the angle between the PCL and the tibial plateau increases. The pattern of ligament loading during activity is governed by the geometry of the muscles spanning the knee: the resultant force in the ACL during isometric knee extension is determined mainly by the changing orientation of the patellar tendon relative to the tibia in the sagittal plane; the resultant force in the PCL during isometric knee flexion is dominated by the angle at which the hamstrings meet the tibia in the sagittal plane.  相似文献   

19.
A three-dimensional model of the knee is used to study ligament function during anterior-posterior (a-p) draw, axial rotation, and isometric contractions of the extensor and flexor muscles. The geometry of the model bones is based on cadaver data. The contacting surfaces of the femur and tibia are modeled as deformable; those of the femur and patella are assumed to be rigid. Twelve elastic elements are used to describe the geometry and mechanical properties of the cruciate ligaments, the collateral ligaments, and the posterior capsule. The model is actuated by thirteen musculotendinous units, each unit represented as a three-element muscle in series with tendon. The calculations show that the forces applied during a-p draw are substantially different from those applied by the muscles during activity. Principles of knee-ligament function based on the results of in vitro experiments may therefore be overstated. Knee-ligament forces during straight a-p draw are determined solely by the changing geometry of the ligaments relative to the bones: ACL force decreases with increasing flexion during anterior draw because the angle between the ACL and the tibial plateau decreases as knee flexion increases; PCL force increases with increasing flexion during posterior draw because the angle between the PCL and the tibial plateau increases. The pattern of ligament loading during activity is governed by the geometry of the muscles spanning the knee: the resultant force in the ACL during isometric knee extension is determined mainly by the changing orientation of the patellar tendon relative to the tibia in the sagittal plane; the resultant force in the PCL during isometric knee flexion is dominated by the angle at which the hamstrings meet the tibia in the sagittal plane.  相似文献   

20.
Previous in vivo studies have observed that current designs of posterior stabilised (PS) total knee replacements (TKRs) may be ineffective in restoring normal kinematics in Late flexion. Computer-based models can prove a useful tool in improving PS knee replacement designs. This study investigates the accuracy of a two-dimensional (2D) sagittal plane model capable of predicting the functional sagittal plane kinematics of PS TKR implanted knees against direct in vivo measurement. Implant constraints are often used as determinants of anterior–posterior tibio-femoral positioning. This allowed the use of a patello-femoral modelling approach to determine the effect of implant constraints. The model was executed using motion simulation software which uses the constraint force algorithm to achieve a solution. A group of 10 patients implanted with Scorpio PS implants were recruited and underwent fluoroscopic imaging of their knees. The fluoroscopic images were used to determine relative implant orientation using a three-dimensional reconstruction method. The determined relative tibio-femoral orientations were then input to the model. The model calculated the patella tendon angles (PTAs) which were then compared with those measured from the in vivo fluoroscopic images. There were no significant differences between the measured and calculated PTAs. The average root mean square error between measured and modelled ranged from 1.17° to 2.10° over the flexion range. A sagittal plane patello-femoral model could conceivably be used to predict the functional 2D kinematics of an implanted knee joint. This may prove particularly useful in optimising PS designs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号