首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temperature dependence of charge recombination from the P+QA- and from the P+QB- states produced by a flash was studied in reaction centers isolated from the photosynthetic thermophilic bacterium Chloroflexus aurantiacus. P designates the primary electron donor; QA and QB the primary and secondary quinone electron acceptors respectively. In QB-depleted reaction centers the rate constant (kAP) for P+QA- recombination was temperature independent between 0-50 degrees C (17.6 +/- 0.7 s-1 at pH 8 and pH 10). The same value was obtained in intact membranes in the presence of o-phenanthroline. Upon lowering the temperature from 250 K to 160 K, kAP increased by a factor of two and remained constant down to 80 K. The overall temperature dependence of kAP was consistent with an activationless process. Ubiquinone (UQ-3) and different types of menaquinone were used for QB reconstitution. In UQ-3 reconstituted reaction centers charge recombination was monoexponential (rate constant k = 0.18 +/- 0.03 s-1) and temperature independent between 5-40 degrees C. In contrast, in menaquinone-3- and menaquinone-4-reconstituted reaction centers P+ rereduction following a flash was markedly biphasic and temperature dependent. In menaquinone-6-reconstituted reaction centers a minor contribution from a third kinetic phase corresponding to P+QA- charge recombination was detected. Analysis of these kinetics and of the effects of the inhibitor o-phenanthroline at high temperature suggest that in detergent suspensions of menaquinone-reconstituted reaction centers a redox reaction removing electrons from the quinone acceptor complex competes with charge recombination. Instability of the semiquinone anions is more pronounced when QB is a short-chain menaquinone. From the temperature dependence of P+ decay the activation parameters for the P+QB- recombination and for the competing side oxidation of the reduced menaquinone acceptor have been derived. For both reactions the activation enthalpies and entropies change markedly with menaquinone chain length but counterbalance each other, resulting in activation free energies at ambient temperature independent of the menaquinone tail. When reaction centers are incorporated into phospholipid vesicles containing menaquinone-8 a temperature-dependent, monophasic, o-phenanthroline-sensitive recombination from the P+QB- state is observed, which is consistent with the formation of stable semiquinone anions. This result seems to indicate a proper QB functioning in the two-subunit reaction center isolated from Chlorflexus aurantiacus when the complex is inserted into a lipid bilayer.  相似文献   

2.
3.
In reaction centers from Rhodopseudomonas viridis that contain a single quinone, the decay of the photo-oxidized primary donor, P+, was found to be biphasic when the bound, donor cytochromes were chemically oxidized by ferricyanide. The ratio of the two phases was dependent on pH with an apparent pK of 7.6. A fast phase, which dominated at high pH (t1/2 = 1 ms at pH 9.5), corresponded to the expected charge recombination of P+ and the primary acceptor QA-. A much slower phase dominated at low pH and was shown to arise from a slow reduction of P+ by ferrocyanide in reaction centers where QA- has been rapidly oxidized by ferricyanide. The rate of QA- oxidation was linear with respect to ferricyanide activity and was strongly pH-dependent. The second-order rate constant, corrected for the activity coefficient of ferricyanide, approached a maximum of 2 X 10(8) M-1 X s-1 at low pH, but decreased steadily as the pH was raised above a pK of 5.8, indicating that a protonated state of the reaction center was involved. The slow reduction of P+ by ferrocyanide was also second-order, with a maximum rate constant at low pH of 8 X 10(5) M-1 X s-1 corrected for the activity coefficient of ferrocyanide. This rate also decreased at higher pH, with a pK of 7.4, indicating that ferrocyanide also was most reactive with a protonated form of the reaction center. The oxidation of QA- by ferricyanide was unaffected by the presence of o-phenanthroline, implying that access to QA- was not via the QB-binding site. In reaction centers supplemented with ubiquinone, oxidation of reduced secondary quinone, QB-, by ferricyanide was observed but was substantially slower than that for QA-. It is suggested that Q-B may be oxidized via QA so that the rate is modulated by the equilibrium constant for QA-QB in equilibrium with QAQB-.  相似文献   

4.
Bacterial reaction centers (RCs) convert light energy into chemical free energy via the double reduction and protonation of the secondary quinone electron acceptor, QB, to the dihydroquinone QBH2. Two RC mutants (M266His --> Leu and M266His --> Ala) with a modified ligand of the non-heme iron have been studied by flash-induced absorbance change spectroscopy. No important changes were observed for the rate constants of the first and second electron transfers between the first quinone electron acceptor, QA, and QB. However, in the M266HL mutant a destabilization of approximately 40 meV of the free energy level of QA- was observed, at variance with the M266HA mutant. The superposition of the three-dimensional X-ray structures of the three proteins in the QA region provides no obvious explanation for the energy modification in the M266HL mutant. The shift of the midpoint redox potential of QA/QA- in M266HL caused accelerated recombination of the charges in the P+ QA- state of the RCs where the native QA was replaced by a low potential anthraquinone (AQA). As previously reported for the native RCs, in the M266HL we observed a biphasicity of the P+ AQA- --> P AQA charge recombination. Interestingly, both phases present a similar acceleration in the M266HL mutant with respect to the wild type. The pH dependencies of the proton uptake upon QA- and QB- formations are superimposable in both mutants but very different from those of native RCs. The data measured in mutants are similar to those that we previously obtained on strains modified at various sites of the cytoplasmic region. The similarity of the response to these different mutations is puzzling, and we propose that it arises from a collective behavior of multiple acidic residues resulting in strongly anticooperative proton binding. The unspecific disappearance of the high pH band of proton uptake observed in all these mutants appears as the natural consequence of removing any member of an interactive proton cluster. This long range interaction also accounts for the similar responses to mutations of the proton uptake pattern induced by either QA- or QB-. We surmise that the presence of an extended protonated water H-bond network providing protons to QB is responsible for these effects.  相似文献   

5.
E G Alexov  M R Gunner 《Biochemistry》1999,38(26):8253-8270
Reaction centers from Rhodobacter sphaeroides were subjected to Monte Carlo sampling to determine the Boltzmann distribution of side-chain ionization states and positions and buried water orientation and site occupancy. Changing the oxidation states of the bacteriochlorophyll dimer electron donor (P) and primary (QA) and secondary (QB) quinone electron acceptors allows preparation of the ground (all neutral), P+QA-, P+QB-, P0QA-, and P0QB- states. The calculated proton binding going from ground to other oxidation states and the free energy of electron transfer from QA-QB to form QAQB- (DeltaGAB) compare well with experiment from pH 5 to pH 11. At pH 7 DeltaGAB is measured as -65 meV and calculated to be -80 meV. With fixed protein positions as in standard electrostatic calculations, DeltaGAB is +170 meV. At pH 7 approximately 0.2 H+/protein is bound on QA reduction. On electron transfer to QB there is little additional proton uptake, but shifts in side chain protonation and position occur throughout the protein. Waters in channels leading from QB to the surface change site occupancy and orientation. A cluster of acids (GluL212, AspL210, and L213) and SerL223 near QB play important roles. A simplified view shows this cluster with a single negative charge (on AspL213 with a hydrogen bond to SerL233) in the ground state. In the QB- state the cluster still has one negative charge, now on the more distant AspL210. AspL213 and SerL223 move so SerL223 can hydrogen bond to QB-. These rearrangements plus other changes throughout the protein make the reaction energetically favorable.  相似文献   

6.
L Baciou  I Sinning  P Sebban 《Biochemistry》1991,30(37):9110-9116
The pH dependences of the rate constants of P+QB- (kBP) and P+QA- (kAP) charge recombination decays have been studied by flash-induced absorbance change technique, in chromatophores of three herbicide-resistant mutants from Rhodopseudomonas (Rps.) viridis, and compared to the wild type. P, QA, and QB are the primary electron donor and the primary and the secondary quinone acceptors, respectively. The triazine resistant mutants T1 (Arg L217----His and Ser L223----Ala), T3 (Phe L216----Ser and Val M263----Phe), and T4 (Tyr L222----Phe), all mutated in the QB binding pocket of the reaction center, have previously been characterized (Sinning, I., Michel, H., Mathis, P., & Rutherford, A. W. (1989) Biochemistry 28, 5544-5553). The pH dependence curves of kBP in T4 and the wild type are very close. This confirms that the sensitivity toward DCMU of T4 is mainly due to a structural rearrangement in the QB pocket rather than to a change in the charge distribution in this part of the protein. In T3, a 6-fold increase of kAP is observed (kAP = 4200 +/- 300 s-1 at pH 8) compared to that of the wild type (kAP = 720 +/- 50 s-1 at pH 8). We propose that the Val M263----Phe mutation induces a free energy decrease between P+QA- and P+I- (delta G zero IA) (I is the primary electron acceptor) of about 49 meV. The very different pH dependence of kAP in T3 suggests a substantial change in the QA pocket. The 2.5 times increase of kAP above pH 9.5 in the wild type is no longer detected in T3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Reaction centers from Rhodopseudomonas viridis were reconstituted into dimyristoylphosphatidylcholine (DMPC) and dielaidoylphosphatidylcholine (DEPC) liposomes. Freeze-fracture electron micrographs were performed on the samples frozen from temperatures above and below the phase transition temperatures of those lipids (Tc = 23 and 9.5 degrees C, in DMPC and DEPC, respectively). Above Tc, in the fluid conformation of the lipids, the reaction centers are randomly distributed in the vesicle membranes. Below Tc, aggregation of the proteins occurs. The Arrhenius plots of the rate constants of the charge recombination between P+ and QA- display a break at about 24 degrees C in DMPC vesicles and about 10 degrees C in DEPC vesicles (P represents the primary electron donor, a dimer of bacteriochlorophyll, and QA the primary quinone electron acceptor). This is in contrast to what was previously observed for the proteoliposomes of egg yolk phosphatidylcholine and for chromatophores [Baciou, L., Rivas, E., & Sebban, P. (1990) Biochemistry 29, 2966-2976], for which Arrhenius plots were linear. In DMPC and DEPC proteoliposomes, the activation parameters were very different on the two sides of Tc (delta H degrees for T less than Tc = 2.5 times delta H degrees for T greater than Tc), leading however, to the same delta G degrees values. Taking into account the structural and thermodynamic data, we suggest that, in vivo, protein-protein interactions play a role in the thermodynamic parameters associated with the energy stabilization process within the reaction centers.  相似文献   

8.
The kinetics of the charge recombination D+QA-----DQA was used to probe the protonation of the primary acceptor in reaction centers from Rhodopseudomonas sphaeroides, in which the native ubiquinone was replaced by anthraquinone. We found that QA- is stabilized by the rapid (t less than 10(-2) s) binding of a proton, with a pK of 9.8. The distance between QA- and the proton binding site was estimated to be larger than approximately 5 A.  相似文献   

9.
The photoreduction of the primary electron acceptor, QA, has been characterized by light-induced Fourier transform infrared difference spectroscopy for Rb. sphaeroides reaction centers and for Rsp. rubrum and Rp. viridis chromatophores. The samples were treated both with redox compounds, which rapidly reduce the photooxidized primary electron P+, and with inhibitors of electron transfer from QA- to the secondary quinone QB. This approach yields spectra free from P and P+ contributions which makes possible the study of the microenvironment of QA and QA-.  相似文献   

10.
Higher plants, algae, and cyanobacteria are known to require bicarbonate ions for electron flow from the first stable electron acceptor quinone QA to the second electron acceptor quinone QB, and to the intersystem quinone pool. It has been suggested that in Photosystem II of oxygenic photosynthesis, bicarbonate ion functions to maintain the reaction center in a proper conformation and, perhaps, to provide the protons needed to stabilize the semiquinone (QB-). In this paper, we show that bicarbonate ions do not influence the electron flow, from the quinone QA to QB and beyond, in the photosynthetic bacterium Rhodobacter sphaeroides. No measurable effect of bicarbonate depletion, obtained by competition with formate, was observed on cytochrome b-561 reduction in chromatophores; on the flash-dependent oscillation of semiquinone formation in reaction centers; on electron transfer from QA- to QB; or on either the fast or slow recovery of the oxidized primary donor (P+) which reflects the P+QA- ----PQA or the P+QB- ----PQB reaction. The lack of an observed effect in Rhodobacter sphaeroides in contrast to the effect seen in Photosystem II is suggested to be due to the amino-acid sequence differences between the reaction centers of the two systems.  相似文献   

11.
Reaction centers from the purple bacterium Rhodobacter (Rb.) capsulatus and from two mutants ThrL226-->Ala and IleL229-->Ser, modified in the binding protein pocket of the secondary quinone acceptor (QB), have been studied by flash-induced absorbance spectroscopy. In ThrL226-->Ala, the binding affinities for endogenous QB (ubiquinone 10) and UQ6 are found to be two to three times as high as the wild type. In contrast, in IleL229-->Ser, the binding affinity for UQ6 is decreased about three times compared to the wild type. In ThrL226-->Ala, a markedly increased sensitivity (approximately 30 times) to o-phenanthroline is observed. In Rhodopseudomonas viridis, where Ala is naturally in position L226, the sensitivity to o-phenanthroline is close to that observed in ThrL226-->Ala. We propose that the presence of Ala in position L226 is responsible for the high sensitivity to that inhibitor. The pH dependencies of the rate constants of P+QB- (kBP) charge recombination kinetics (P is a dimer of bacteriochlorophyll, and QB is the secondary quinone electron acceptor) show destabilization of QB- in ThrL226-->Ala and IleL229-->Ser, compared to the wild type. At low pH, similar apparent pK values of protonation of amino acids around QB- are measured in the wild type and the mutants. In contrast to Rb. sphaeroides, in the wild type Rb. capsulatus, kBP substantially increases in the pH range 7-10.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Lavergne J  Matthews C  Ginet N 《Biochemistry》1999,38(14):4542-4552
1. The absorption changes associated with the formation of P+QBred (QBred stands for the semiquinone state of the secondary quinone acceptor) were investigated in chromatophores of Rhodobacter capsulatus. Marked modifications of the semiquinone spectrum were observed when the pH was lowered from 7 to 5. These modifications match those expected for a complete conversion of QBred from the anionic state QB- at pH 7 to the neutral protonated state QBH at pH 5. Similar modifications were observed in chromatophores from Rb. sphaeroides, but not in purified reaction centers from Rb. capsulatus, suggesting that the environment of the reaction center (native membrane vs detergent micelle) is the crucial parameter. 2. The recombination reaction P+QBred --> PQB was investigated as a function of pH. No particular kinetic heterogeneity was observed at low pH, showing that QBH remains mostly bound to the reaction center. The rate constant reaches a minimum value of 0.08 s-1 at pH 6, suggesting that the direct route for recombination prevails in chromatophores below this pH, instead of the usual pathway via QA-. 3. The proton uptake caused by QBred is about 1 below pH 7 and decreases at higher pH. It is suggested that the pH dependence of the conversion of QB- to QBH, occurring in a range where the uptake is constant, cannot be accommodated by a purely electrostatic model, but probably involves a conformational change. 4. The kinetics of the electron-transfer reaction QA-QB-->QAQBred were investigated. A 2-fold acceleration was observed between pH 7 and pH 5 (t1/2 approximately 30 and 15 microseconds, respectively). A fast (<10 microseconds) unresolved phase appears to be present at both pHs. The second electron-transfer QA-QBred-->QAQBH2 proceeds with a similar rate as the first electron transfer (15-30 microseconds phase). Consequences for the rate-limiting step are discussed. 5. The carotenoid shift, indicative of the membrane potential, displays a rising phase concomitant with the QA-QB-->QAQBred electron transfer. Its relative extent is markedly increased at pH 5, with part of the kinetics occurring during the unresolved fast phase. 6. The extent of the electrochromic shift of bacteriopheophytin around 750 nm associated with formation of QBred decreases toward acidic pH, reflecting the charge compensation due to proton uptake and the formation of neutral QBH.  相似文献   

13.
14.
W Leibl  J Breton 《Biochemistry》1991,30(40):9634-9642
The kinetics of electron transfer from the primary (QA) to the secondary (QB) quinone acceptor in whole cells and chromatophores of Rhodopseudomonas viridis was studied as a function of the redox state of QB and of pH by using a photovoltage technique. Under conditions where QB was oxidized, the reoxidation of QA- was found to be essentially monophasic and independent of pH with a half-time of about 20 microseconds. When QB was reduced to the semiquinone form by a preflash, the reoxidation of QA- was slowed down showing a half-time between 40 and 80 microseconds at pH less than or equal to 9. Above pH 9, the rate of the second electron transfer decreased nearly one order of magnitude per pH unit. After a further preflash, the fast and pH-independent kinetics of QA- reoxidation was essentially restored. The concentration of QA still reduced 100 microseconds after its complete reduction by a flash showed distinct binary oscillations as a function of the number of preflashes, confirming the interpretation that the electron-transfer rate depends on the redox state of QB. After addition of o-phenanthroline, the reoxidation of QA- is slowed down to the time range of seconds as expected for a back-reaction with oxidized cytochrome. Under conditions where inhibitors of the electron transfer between the quinones fail to block this reaction in a fraction of the reaction centers due to the presence of the extremely stable and strongly bound semiquinone, QB-, these reaction centers show a slow electron transfer on the first flash and a fast one on the second, i.e., an out-of-phase oscillation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The kinetics of light-induced electron transfer in reaction centers (RCs) from the purple photosynthetic bacterium Rhodobacter sphaeroides were studied in the presence of the detergent lauryldimethylamine-N-oxide (LDAO). After the light-induced electron transfer from the primary donor (P) to the acceptor quinone complex, the dark re-reduction of P+ reflects recombination from the reduced acceptor quinones, QA- or QB-. The secondary quinone, QB, which is loosely bound to the RC, determines the rate of this process. Electron transfer to QB slows down the return of the electron to P+, giving rise to a slow phase of the recovery kinetics with time tau P approximately 1 s, whereas charge recombination in RCs lacking QB generates a fast phase with time tau AP approximately 0.1 s. The amount of quinone bound to RC micelles can be reduced by increasing the detergent concentration. The characteristic time of the slow component of P+ dark relaxation, observed at low quinone content per RC micelle (at high detergent concentration), is about 1.2-1.5 s, in sharp contrast to expectations from previous models, according to which the time of the slow component should approach the time of the fast component (about 0.1 s) when the quinone concentration approaches zero. To account for this large discrepancy, a new quantitative approach has been developed to analyze the kinetics of electron transfer in isolated RCs with the following key features: 1) The exchange of quinone between different micelles (RC and detergent micelles) occurs more slowly than electron transfer from QB- to P+; 2) The exchange of quinone between the detergent "phase" and the QB binding site within the same RC micelle is much faster than electron transfer between QA- and P+; 3) The time of the slow component of P+ dark relaxation is determined by (n) > or = 1, the average number of quinones in RC micelles, calculated only for those RC micelles that have at least one quinone per RC (in excess of QA). An analytical function is derived that relates the time of the slow component of P+ relaxation, tau P, and the relative amplitude of the slow phase. This provides a useful means of determining the true equilibrium constant of electron transfer between QA and QB (LAB), and the association equilibrium constant of quinone binding at the QB site (KQ+). We found that LAB = 22 +/- 3 and KQ = 0.6 +/- 0.2 at pH 7.5. The analysis shows that saturation of the QB binding site in detergent-solubilized RCs is difficult to achieve with hydrophobic quinones. This has important implications for the interpretation of apparent dependencies of QB function on environmental parameters (e.g. pH) and on mutational alterations. The model accounts for the effects of detergent and quinone concentration on electron transfer in the acceptor quinone complex, and the conclusions are of general significance for the study of quinone-binding membrane proteins in detergent solutions.  相似文献   

16.
Thermal inactivation of horse liver alcohol dehydrogenase (LADH) exhibits the following biphasic kinetics A = Afast.e-Kfast.t + Aslow.e-Kslow.t Where A is the per cent residual activity at time t,Afast and Aslow are amplitudes (expressed as % of initial activity) and kfast and kslow first-order rate constants of the fast and slow phases, respectively. For apoenzyme, Afast = Aslow = 50% of the initial activity under all conditions of temperature and pH. On the addition of a substrate or coenzyme ligand, there is a ligand concentration-dependent increase in per cent Aslow and a decrease in kslow. At sufficiently high ligand concentration, the entire time-course of inactivation can be described as a single exponential decay. The variations of per cent Aslow and of kslow with ligand concentration are consistent with the existence of two binding sites of different ligand affinities. Inactivation of LADH by excess EDTA also exhibits a similar biphasic kinetics with Afast = Aslow = 50% of the initial activity. Addition of ethanol or NAD+ brings about a concentration-dependent decrease in kfast and kslow without affecting amplitudes of the two phases. The NAD+ concentration-dependence of this decrease is consistent with a single dissociation constant for the coenzyme. Inactivation of yeast alcohol dehydrogenase by heat or excess EDTA can be represented as a single exponential decay of activity under all conditions of temperature and pH in the absence as well as presence of ethanol or NAD+. Implications of these results for the molecular symmetry of the two oligomeric enzymes in solution are discussed.  相似文献   

17.
D Kleinfeld  M Y Okamura  G Feher 《Biochemistry》1984,23(24):5780-5786
We have compared the electron-transfer kinetics in reaction centers (RCs) cooled in the dark with those cooled under illumination (i.e., in the charge-separated state). Large differences between the two cases were observed. We interpreted these findings in terms of light-induced structural changes. The kinetics of charge recombination D+QA-----DQA in RCs containing one quinone were modeled in terms of a distribution of donor-acceptor electron-transfer distances. For RCs cooled under illumination the distribution broadened and shifted to larger distances compared to the distribution for RCs cooled in the dark. The model accounts for the nonexponential decay observed at low temperatures [McElroy, J. D., Mauzerall, D. C., & Feher, G. (1974) Biochim. Biophys. Acta 333, 261-277; Morrison, L.E., & Loach, P.A. (1978) Photochem. Photobiol. 27, 751-757]. A possible physiological role of the structural changes is an enhanced charge stabilization. For RCs with two quinones, the recombination kinetics D+QAQB-----DQAQB were found to be strongly temperature dependent. This was interpreted in terms of temperature-dependent transitions between structural states [Agmon, N., & Hopfield, J.J. (1983) J. Chem. Phys. 78, 6947-6959]. This interpretation requires that these transitions occur at cryogenic temperatures on a time scale t greater than or approximately 10(3) s. The electron transfer from QA- to QB was found to not take place in RCs cooled in the dark (tau ABdark greater than 10(-1) s). In RCs cooled under illumination, we found tau ABlight less than 10(-3) s. We suggest the possibility that the drastic decrease in tau AB observed in RCs cooled under illumination is due to the trapping of a proton near QB-.  相似文献   

18.
The photoreduction of the secondary electron acceptor, QB, has been characterized by light-induced Fourier transform infrared difference spectroscopy of Rb. sphaeroides and Rp. viridis reaction centers. The reaction centers were supplemented with ubiquinone (UQ10 or UQ0). The QB- state was generated either by continuous illumination at very low intensity or by single flash in the presence of redox compounds which rapidly reduce the photooxidized primary electron donor P+. This approach yields spectra free from P and P+ contributions making possible the study of the microenvironment of QB and QB-. Assignments are proposed for the C...O vibration of QB- and tentatively for the C = O and C = C vibrations of QB.  相似文献   

19.
Using in vivo thermoluminescence, we examined the effects of growth irradiance and growth temperature on charge recombination events in photosystem II reaction centres of the model green alga Chlamydomonas reinhardtii. We report that growth at increasing irradiance at either 29 or 15 degrees C resulted in comparable downward shifts in the temperature peak maxima (T(M)) for S2QB- charge pair recombination events, with minimal changes in S2QA- recombination events. This indicates that such growth conditions decrease the activation energy required for S2QB- charge pair recombination events with no concomitant change in the activation energy for S2QA- recombination events. This resulted in a decrease in the DeltaT(M) between S2QA- and S2QB- recombination events, which was reversible when shifting cells from low to high irradiance and back to low irradiance at 29 degrees C. We interpret these results to indicate that the redox potential of QB was modulated independently of QA, which consequently narrowed the redox potential gap between QA and QB in photosystem II reaction centres. Since a decrease in the DeltaT(M) between S2QA- and S2QB- recombination events correlated with growth at increasing excitation pressure, we conclude that acclimation to growth under high excitation pressure narrows the redox potential gap between QA and QB in photosystem II reaction centres, enhancing the probability for reaction center quenching in C. reinhardtii. We discuss the molecular basis for the modulation of the redox state of QB, and suggest that the potential for reaction center quenching complements antenna quenching via the xanthophyll cycle in the photoprotection of C. reinhardtii from excess light.  相似文献   

20.
Replacement of Fe2+ by Zn2+ in reaction centers of Rhodopseudomonas sphaeroides enabled us to perform ENDOR (electron nuclear double resonance) experiments on the anion radicals of the primary and secondary ubiquinone acceptors (QA- and QB-. Differences between the QA and QB sites, hydrogen bonding to the oxygens, interactions with the protons of the proteins and some symmetry properties of the binding sites were deduced from an analysis of the ENDOR spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号