首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Involvement of the spore coat in germination of Bacillus cereus T spores   总被引:2,自引:0,他引:2  
Bacillus cereus T spores were prepared on fortified nutrient agar, and the spore coat and outer membrane were extracted by 0.5% sodium dodecyl sulfate-100 mM dithiothreitol in 0.1 M sodium chloride (SDS-DTT) at pH 10.5 (coat-defective spores). Coat-defective spores in L-alanine plus adenosine germinated slowly and to a lesser extent than spores not treated with SDS-DTT, as determined by decrease in absorbance and release of dipicolinic acid and Ca2+. Spores germinated in calcium dipicolinate only after treatment with SDS-DTT. Biphasic and triphasic germination kinetics were observed with normal and coat-defective spores, respectively, in an environment with temperature increasing from 20 to 65 degrees C at a rate of 1 degree C/min. Therefore, the physical and biochemical processes involved in germination are modified by coat removal. The data suggest that a portion of the germination apparatus located interior to the coat may be protected by the coat and outer membrane or that the coat and outer membrane otherwise enhance germination in L-alanine plus adenosine. When coat-defective spores were heat activated with the dialyzed (12,000-Mr cutoff) components extracted from the spores, germination of the SDS-DTT-treated spores was enhanced; thus, one or more components located in the spore coat or outer membrane with a molecular weight greater than 12,000 were essential for fast germination.  相似文献   

2.
Germination of the decoated spores of Bacillus megaterium   总被引:3,自引:0,他引:3  
Decoated spores of Bacillus megaterium ATCC 12872 were prepared by extracting the inner coat components with an alkaline solution containing sodium dodecyl sulfate and dithiothreitol (SDS-DTT) from outer coat-deficient mutant spores, which were produced from one of the mutants isolated and named MAE-05 by us. The decoated mutant spores germinated as well as the intact spores of the mutant and the parent, indicating that the outer and inner spore cats cannot be essential structures for the initiation of germination. When the SDS-DTT-treated MAE-05 spores were converted to H-spores by incubation in citrate-phosphate buffer (pH 3.5) at 30 C for 3 hr, they lost their germinability by glucose and KNO3. Ca-spores, prepared by treating H-spores with 10 mM calcium acetate at 37 C for 60 min, regained the germinability. Experiments on the interaction of 45Ca with the cortex and the inner membrane isolated from H-spores suggested that the calcium present in the inner membrane might be related to germinability.  相似文献   

3.
The GerAA, -AB, and -AC proteins of the Bacillus subtilis spore are required for the germination response to L-alanine as the sole germinant. They are likely to encode the components of the germination apparatus that respond directly to this germinant, mediating the spore's response; multiple homologues of the gerA genes are found in every spore former so far examined. The gerA operon is expressed in the forespore, and the level of expression of the operon appears to be low. The GerA proteins are predicted to be membrane associated. In an attempt to localize GerA proteins, spores of B. subtilis were broken and fractionated to give integument, membrane, and soluble fractions. Using antibodies that detect Ger proteins specifically, as confirmed by the analysis of strains lacking GerA and the related GerB proteins, the GerAA protein and the GerAC+GerBC protein homologues were localized to the membrane fraction of fragmented spores. The spore-specific penicillin-binding protein PBP5*, a marker for the outer forespore membrane, was absent from this fraction. Extraction of spores to remove coat layers did not release the GerAC or AA protein from the spores. Both experimental approaches suggest that GerAA and GerAC proteins are located in the inner spore membrane, which forms a boundary around the cellular compartment of the spore. The results provide support for a model of germination in which, in order to initiate germination, germinant has to permeate the coat and cortex of the spore and bind to a germination receptor located in the inner membrane.  相似文献   

4.
Temperature-sensitive sporulation mutants of Bacillus cereus were screened for intracellular protease activity that was more heat labile than that of the parental strain. One mutant grew as well as the wild type at 30 and 37 degrees C but sporulated poorly at 37 degrees C in an enriched or minimal medium. These spores germinated very slowly in response to alanine plus adenosine or calcium dipicolinate. During germination, spores produced by the mutant rapidly became heat sensitive, but released dipicolonic acid and mucopeptide fragments more slowly than the wild type and decreased only partially in density while remaining phase white (semirefractile). In freeze-etch electron micrographs, the mature spores were deficient in the outer cross-patched coat layer. During germination, the spore coat changes associated with wild-type germination occurred very slowly in this mutant. Although the original mutant was also a pyrimidine auxotroph, reversion to prototrophy did not alter any of the phenotypic properties discussed. Selection of revertants that germinated rapidly or sporulated well at 37 degrees C, however, resulted in restoratin of all wild-type properties (exclusive of the pyrimidine requirement) including heat-stable protease activity. The reversion frequency was consistent with an initial point mutation, indicating that a protease alteration resulted in production of spores defective in a very early stage of germination.  相似文献   

5.
Oxidative Activation of Bacillus cereus Spores   总被引:2,自引:2,他引:0       下载免费PDF全文
A study was made of the activation of Bacillus cereus strain T spores by using the oxidizing agent sodium perborate. The degree of activation was measured with constant germination conditions by using L-alanine, inosine, adenosine, and L-alanine plus adenosine as germination stimulants. The germinal response following the various treatments was compared with the responses obtained with heat activation. It was concluded that the optimal time for activation with 30 mM sodium perborate at room temperature was about 4 hr. If the exposure time was greatly extended, the spores would germinate spontaneously. When the perborate treatment followed heat activation, the germinal response to L-alanine was stimulated, to inosine retarded and without apparent effect for adenosine or L-alanine plus adenosine. Results of experiments designed to demonstrate deactivation by slow oxidation showed that spores activated with sodium perborate were not deactivated by slow oxidation, whereas those activated by heat were. A deactivation study using mercaptoethanol as the deactivation agent showed that both methods of activation could be deactivated after a 24-hr exposure, but this deactivation was reversible by extending the exposure to mercaptoethanol. The results of heat-sensitivity studies revealed that about 70% of the sodium perborate-activated spores were heat sensitive after 60 min in a germination menstruum of L-alanine plus adenosine, whereas similarly treated heat-activated and nonactivated spores were about 99.99% heat sensitive, respectively.  相似文献   

6.
The mechanism by which potassium sorbate inhibits Bacillus cereus T and Clostridium botulinum 62A spore germination was investigated. Spores of B. cereus T were germinated at 35 degrees C in 0.08 M sodium-potassium phosphate buffers (pH 5.7 and 6.7) containing various germinants (L-alanine, L-alpha-NH2-n-butyric acid, and inosine) and potassium sorbate. Spores of C. botulinum 62A were germinated in the same buffers but with 10 mM L-lactic acid, 20 mM sodium bicarbonate, L-alanine or L-cysteine, and potassium sorbate. Spore germination was monitored by optical density measurements at 600 nm and phase-contrast microscopy. Inhibition of B. cereus T spore germination was observed when 3,900 micrograms of potassium sorbate per ml was added at various time intervals during the first 2 min of spore exposure to the pH 5.7 germination medium. C. botulinum 62A spore germination was inhibited when 5,200 micrograms of potassium sorbate per ml was added during the first 30 min of spore exposure to the pH 5.7 medium. Potassium sorbate inhibition of germination was reversible for both B. cereus T and C. botulinum 62A spores. Potassium sorbate inhibition of B. cereus T spore germination induced by L-alanine and L-alpha-NH2-n-butyric acid was shown to be competitive in nature. Potassium sorbate was also a competitive inhibitor of L-alanine- and L-cysteine-induced germination of C. botulinum 62A spores.  相似文献   

7.
Spores of Bacillus subtilis have a thick outer layer of relatively insoluble protein called the coat, which protects spores against a number of treatments and may also play roles in spore germination. However, elucidation of precise roles of the coat in spore properties has been hampered by the inability to prepare spores lacking all or most coat material. In this work, we show that spores of a strain with mutations in both the cotE and gerE genes, which encode proteins involved in coat assembly and expression of genes encoding coat proteins, respectively, lack most extractable coat protein as seen by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, as well as the great majority of the coat as seen by atomic force microscopy. However, the cotE gerE spores did retain a thin layer of insoluble coat material that was most easily seen by microscopy following digestion of these spores with lysozyme. These severely coat-deficient spores germinated relatively normally with nutrients and even better with dodecylamine but not with a 1:1 chelate of Ca(2+) and dipicolinic acid. These spores were also quite resistant to wet heat, to mechanical disruption, and to treatment with detergents at an elevated temperature and pH but were exquisitely sensitive to killing by sodium hypochlorite. These results provide new insight into the role of the coat layer in spore properties.  相似文献   

8.
Bacillus anthracis spore germination is usually detected in vitro by alterations in spore refractility, heat resistance, and stainability. We developed a more quantitative, sensitive, and semi-automated procedure for detecting germination by using a microtiter kinetic reader for fluorescence spectrophotometry. The procedure was based on the increase in fluorescence of spores with time during their incubation in germination medium containing a fluorescent nucleic acid-binding dye which stained germinated B. anthracis but not ungerminated (UG) spores. Spore germination in the presence of several germinants was characterized. Although L-alanine and inosine alone stimulated rapid germination in this assay, a medium containing optimal concentrations of L-alanine, adenosine, and casamino acids gave low background fluorescence, stimulated germination completely, and at a reasonable rate. Suspensions of heat-activated, UG spores of B. anthracis strain Ames were preincubated with antibodies (Abs) against whole spores to assess their effect on germination. Analyses of the germination data obtained revealed significant differences between spores pretreated with these Abs and those treated with non-immune sera or IgG. Germination inhibitory activity (GIA) was detected for several polyclonal rabbit anti-spore Ab preparations. These included anti-Ames strain spore antisera, IgG purified from the latter, and spore affinity-purified Abs from antisera elicited against four strains of B. anthracis. Abs elicited against UG as well as completely germinated Ames spores inhibited germination. Abs were ranked according to their GIA, and those specific for UG spores usually exhibited greater GIA. Direct binding to spores of these Abs was detected by an ELISA with whole un-germinated Ames spores. Although specific binding to spores by the anti-spore Abs was shown, their titers did not correlate with their GIA levels. Current efforts are focused on identifying the spore antigens recognized by the anti-spore Abs, characterizing the role of these targeted antigens in disease pathogenesis, and evaluating the ability of specific anti-spore Abs to protect against infection with B. anthracis.  相似文献   

9.
Spores of Bacillus subtilis possess a thick protein coat that consists of an electron-dense outer coat layer and a lamellalike inner coat layer. The spore coat has been shown to confer resistance to lysozyme and other sporicidal substances. In this study, spore coat-defective mutants of B. subtilis (containing the gerE36 and/or cotE::cat mutation) were used to study the relative contributions of spore coat layers to spore resistance to hydrogen peroxide (H(2)O(2)) and various artificial and solar UV treatments. Spores of strains carrying mutations in gerE and/or cotE were very sensitive to lysozyme and to 5% H(2)O(2), as were chemically decoated spores of the wild-type parental strain. Spores of all coat-defective strains were as resistant to 254-nm UV-C radiation as wild-type spores were. Spores possessing the gerE36 mutation were significantly more sensitive to artificial UV-B and solar UV radiation than wild-type spores were. In contrast, spores of strains possessing the cotE::cat mutation were significantly more resistant to all of the UV treatments used than wild-type spores were. Spores of strains carrying both the gerE36 and cotE::cat mutations behaved like gerE36 mutant spores. Our results indicate that the spore coat, particularly the inner coat layer, plays a role in spore resistance to environmentally relevant UV wavelengths.  相似文献   

10.
Heat activation (70 degrees C for 20 min) resulted in alteration in structural proteins and enzymes found in Bacillus cereus spore coats. The three notable changes were increased glycosylation of coat proteins, alteration in polypeptide pattern on sodium dodecyl sulfate - polyacrylamide gels, and an increase in free SH groups of proteins. About three polypeptides leaked out in small quantities from the spore coats during heat activation. The extraction of five spore coat associated enzyme activities was followed during the coat stripping procedures, which left the cortex and core intact. Two of these activities, L-alanine dehydrogenase and purine nucleoside hydrolase, were solubilized when the undercoat was extracted by 1,4-dithioerythritol (DTE) at pH 9.8. Three other activities, a protease, a corticolytic enzyme, and purine nucleoside phosphorylase, were solubilized by both DTE alone and DTE plus urea at pH 9.8. The DTE plus urea extraction removed the two more insoluble coat layers, the outer cross-patch, and the inner pitted layers. Mutants deficient in the cross-patch layer contained normal amounts of the protease, corticolytic, and purine nucleoside phosphorylase activities suggesting their association with the pitted layer. In intact spores all five enzymes were found to be stable to the heat activation treatment. However, extracted and partially purified preparations of protease, purine nucleoside phosphorylase, and L-alanine dehydrogenase were heat sensitive. Similar preparations of corticolytic enzyme and purine nucleoside hydrolase were stable to the heat activation conditions.  相似文献   

11.
The Bacillus subtilis spore coat consists of three morphological layers: a diffuse undercoat, a striated inner coat and a densely staining outer coat. These layers are comprised of at least 15 polypeptides and the absence of one in particular, CotE, had extensive pleiotropic effects. Only a partial inner coat was present on the spores which were lysozyme-sensitive. The initial rate of germination of these spores was the same as for the wild type but the overall optical density decrease was greater apparently due to the loss of the incomplete spore coat from germinated spores. Suppressors of the lysozyme-sensitive phenotype had some outer coat proteins restored as well as some novel minor polypeptides. These spores still lacked an undercoat and germinated as did those produced by the cotE deletion strain. The CotE protein was synthesized starting at stage II-III of sporulation, long before the appearance of the coat on spores at stage IV-V. Despite its apparent hydrophilic properties, this protein was present in the crude insoluble fraction from sporulating cells. CotE was not solubilized by high or low ionic strength buffers not by detergents used for the solubilization of membrane proteins. Either 8 M urea or 6 M guanidine HC1 was required and dialysis against a low ionic strength buffer resulted in aggregation into long, sticky filaments. Both the CotE and CotT spore coat proteins appeared to be necessary for the formation of these filaments. Each of these proteins contains sequences related to a bovine intermediate filament protein so their interaction could result in an analogous structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The enzyme CwlJ is involved in the depolymerization of cortex peptidoglycan during germination of spores of Bacillus subtilis. CwlJ with a C-terminal His tag was functional and was extracted from spores by procedures that remove spore coat proteins. However, this CwlJ was not extracted from disrupted spores by dilute buffer, high salt concentrations, Triton X-100, Ca(2+)-dipicolinic acid, dithiothreitol, or peptidoglycan digestion, disappeared during spore germination, and was not present in cotE spores in which the spore coat is aberrant. These findings indicate the following: (i) the reason decoated and cotE spores germinate poorly with dipicolinic acid is the absence of CwlJ from these spores; and (ii) CwlJ is located in the spore coat, presumably tightly associated with one or more other coat proteins.  相似文献   

13.
The Bacillus subtilis spore coat is a multilayer, proteinaceous structure that consists of more than 50 proteins. Located on the surface of the spore, the coat provides resistance to potentially toxic molecules as well as to predation by the protozoan Tetrahymena thermophila. When coat-defective spores are fed to Tetrahymena, the spores are readily digested. However, a residue termed a "rind" that looks like coat material remains. As observed with a phase-contrast microscope, the rinds are spherical or hemispherical structures that appear to be devoid of internal contents. Atomic force microscopy and chemical analyses showed that (i) the rinds are composed of insoluble protein largely derived from both outer and inner spore coat layers, (ii) the amorphous layer of the outer coat is largely responsible for providing spore resistance to protozoal digestion, and (iii) the rinds and intact spores do not contain significant levels of silicon.  相似文献   

14.
AIMS: To determine the effectiveness of tert-butyl hydroperoxide (tBHP) plus the cationic surfactant cetyltrimethyl ammonium bromide (CTAB) and a tetra-amido macrocyclic ligand (TAML) activator in killing spores of Bacillus subtilis and the mechanisms of spore resistance to and killing by this reagent. METHODS AND RESULTS: Killing of spores of B. subtilis by tBHP was greatly stimulated by the optimum ratio of concentrations of a TAML activator (1.7 micromol l(-1)) to tBHP (4.4%, vol/vol) plus a low level (270 mg l(-1)) of CTAB. Rates of killing of spores lacking most DNA protective alpha/beta-type small, acid-soluble spore proteins (alpha(-)beta(-) spores) or the major DNA repair protein, RecA, by tBHP plus CTAB and a TAML activator were essentially identical to that of wild-type spore killing. Survivors of wild-type and alpha(-)beta(-) spores treated with tBHP plus CTAB and a TAML activator also exhibited no increase in mutations. Spores lacking much coat protein either because of mutation or chemical decoating were much more sensitive to this reagent than were wild-type spores, but were more resistant than growing cells. Wild-type spores killed with this reagent retained their large pool of dipicolinic acid (DPA), and the survivors of spores treated with this reagent were sensitized to wet heat. The tBHP plus CTAB and TAML activator-killed spores germinated with nutrients, albeit more slowly than untreated spores, but germinated faster than untreated spores with dodecylamine. The killed spores were also germinated by application of 150 and 500 megaPascals of pressure for 15 min and by lysozyme treatment in hypertonic medium, but these spores lysed shortly after their germination. CONCLUSIONS: The combination of tBHP plus CTAB and a TAML activator is effective in killing B. subtilis spores. The spore coat is a major factor in spore resistance to this reagent system, which does not kill spores by DNA damage or by inactivating some component needed for spore germination. Rather, this reagent system appears to kill spores by damaging the spore's inner membrane in some fashion. SIGNIFICANCE AND IMPACT OF THE STUDY: This work demonstrates that tBHP plus CTAB and a TAML activator is an effective and mild decontaminant for spores of Bacillus species. Evidence has also been obtained on the mechanisms of spore resistance to and killing by this reagent system.  相似文献   

15.
Examination of the lipid composition of spore membranes of Bacillus subtilis Marburg, extracted after treatment of spores with dithiothreitol/urea and NaOH followed by lysozyme digestion, revealed that the spore membranes had significantly higher cardiolipin (CL) content than the membranes of exponentially growing cells. Analysis of the membranes of coat-defective, cotE::cat and gerE::cat mutant spores, which are susceptible to lysozyme digestion without chemical treatment, confirmed that spore membranes contain a high level of CL. After addition of the germinants L-alanine or AGFK (a combination of asparagine, glucose, fructose, and KCl), the turbidity of wild type spore suspensions decreased to 50% within 30 min. Suspensions of spores with only trace amounts of CL, however, showed no decrease in turbidity when L-alanine was added and the initial decrease in turbidity with AGFK was slight (14% after 60 min). These results indicate that CL is involved in an early step of germination, related to the functioning of germinant receptors. This is the first conspicuous in vivo evidence that CL in bacterial membranes has a specific role, in which it cannot be replaced by other anionic phospholipids.  相似文献   

16.
GerD of Bacillus subtilis is a protein essential for normal spore germination with either L-alanine or a mixture of L-asparagine, D-glucose, D-fructose, and potassium ions. GerD's amino acid sequence suggests that it may be a lipoprotein, indicating a likely location in a membrane. Location in the spore's outer membrane seems unlikely, since removal of this membrane does not result in a gerD spore germination phenotype, suggesting that GerD is likely in the spore's inner membrane. In order to localize GerD within spores, FLAG-tagged GerD constructs were made, found to be functional in spore germination, and detected in immunoblots of spore extracts as not only monomers but also dimers and trimers. Upon fractionation of spore extracts, GerD-FLAG was found in the inner membrane fraction from dormant spores and was present at approximately 2,000 molecules/spore. GerD-FLAG in the inner membrane fraction was solubilized by Triton X-100, suggesting that GerD is a lipoprotein, and the protein was also solubilized by 0.5 M NaCl. GerD-FLAG was not processed proteolytically in a B. subtilis strain lacking gerF (lgt), which encodes prelipoprotein diacylglycerol transferase (Lgt), indicating that when GerD does not have a diacylglycerol moiety, signal sequence processing does not occur. However, unprocessed GerD-FLAG still gave bands corresponding to monomers and dimers of slightly higher molecular weight than that of GerD-FLAG from a strain with Lgt, further suggesting that GerD is a lipoprotein. Upon spore germination, much GerD became soluble and then appeared to be degraded as the germinated spores outgrew and initiated vegetative growth. All of these results suggest that GerD is a lipoprotein associated with the dormant spore's inner membrane that may be released in some fashion from this membrane upon spore germination.  相似文献   

17.
AIMS: To elucidate the factors influencing the sensitivity of Bacillus subtilis spores in killing and disrupting by mechanical abrasion, and the mechanism of stimulation of spore germination by abrasion. METHODS AND RESULTS: Spores of B. subtilis strains were abraded by shaking with glass beads in liquid or the dry state, and spore killing, disruption and germination were determined. Dormant spores were more resistant to killing and disruption by abrasion than were growing cells or germinated spores. However, dormant spores of the wild-type strain with or without most coat proteins removed, spores of strains with mutations causing spore coat defects, spores lacking their large depot of dipicolinic acid (DPA) and spores with defects in the germination process exhibited essentially identical rates of killing and disruption by abrasion. When spores lacking all nutrient germinant receptors were enumerated by plating directly on nutrient medium, abrasion increased the plating efficiency of these spores before killing them. Spores lacking all nutrient receptors and either of the two redundant cortex-lytic enzymes behaved similarly in this regard, but the plating efficiency of spores lacking both cortex-lytic enzymes was not stimulated by abrasion. CONCLUSIONS: Dormant spores are more resistant to killing and disruption by abrasion than are growing cells or germinated spores, and neither the complete coats nor DPA are important in spore resistance to such treatments. Germination is not essential for spore killing by abrasion, although abrasion can trigger spore germination by activation of either of the spore's cortex-lytic enzymes. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the mechanisms of the killing, disruption and germination of spores by abrasion and makes the surprising finding that at least much of the spore coat is not important in spore resistance to abrasion.  相似文献   

18.
AIMS: To determine the mechanisms of Bacillus subtilis spore killing by hypochlorite and chlorine dioxide, and its resistance against them. METHODS AND RESULTS: Spores of B. subtilis treated with hypochlorite or chlorine dioxide did not accumulate damage to their DNA, as spores with or without the two major DNA protective alpha/beta-type small, acid soluble spore proteins exhibited similar sensitivity to these chemicals; these agents also did not cause spore mutagenesis and their efficacy in spore killing was not increased by the absence of a major DNA repair pathway. Spore killing by these two chemicals was greatly increased if spores were first chemically decoated or if spores carried a mutation in a gene encoding a protein essential for assembly of many spore coat proteins. Spores prepared at a higher temperature were also much more resistant to these agents. Neither hypochlorite nor chlorine dioxide treatment caused release of the spore core's large depot of dipicolinic acid (DPA), but hypochlorite- and chlorine dioxide-treated spores much more readily released DPA upon a subsequent normally sub-lethal heat treatment than did untreated spores. Hypochlorite-killed spores could not initiate the germination process with either nutrients or a 1 : 1 chelate of Ca2+-DPA, and these spores could not be recovered by lysozyme treatment. Chlorine dioxide-treated spores also did not germinate with Ca2+-DPA and could not be recovered by lysozyme treatment, but did germinate with nutrients. However, while germinated chlorine dioxide-killed spores released DPA and degraded their peptidoglycan cortex, they did not initiate metabolism and many of these germinated spores were dead as determined by a viability stain that discriminates live cells from dead ones on the basis of their permeability properties. CONCLUSIONS: Hypochlorite and chlorine dioxide do not kill B. subtilis spores by DNA damage, and a major factor in spore resistance to these agents appears to be the spore coat. Spore killing by hypochlorite appears to render spores defective in germination, possibly because of severe damage to the spore's inner membrane. While chlorine dioxide-killed spores can undergo the initial steps in spore germination, these germinated spores can go no further in this process probably because of some type of membrane damage. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide information on the mechanisms of the killing of bacterial spores by hypochlorite and chlorine dioxide.  相似文献   

19.
AIMS: To determine the mechanisms of Bacillus subtilis spore resistance to and killing by a novel sporicide, dimethyldioxirane (DMDO) that was generated in situ from acetone and potassium peroxymonosulfate at neutral pH. METHODS AND RESULTS: Spores of B. subtilis were effectively killed by DMDO. Rates of killing by DMDO of spores lacking most DNA protective alpha/beta-type small, acid-soluble spore proteins (alpha- beta- spores) or the major DNA repair protein, RecA, were very similar to that of wild-type spore killing. Survivors of wild-type and alpha- beta- spores treated with DMDO also exhibited no increase in mutations. Spores lacking much coat protein due either to mutation or chemical decoating were much more sensitive to DMDO than were wild-type spores, but were more resistant than growing cells. Wild-type spores killed with this reagent retained their large pool of dipicolinic acid (DPA), and the survivors of spores treated with DMDO were sensitized to wet heat. The DMDO-killed spores germinated with nutrients, albeit more slowly than untreated spores, but germinated faster than untreated spores with dodecylamine. The killed spores were also germinated by very high pressures and by lysozyme treatment in hypertonic medium, but many of these spores lysed shortly after their germination, and none of these treatments were able to revive the DMDO-killed spores. CONCLUSIONS: DMDO is an effective reagent for killing B. subtilis spores. The spore coat is a major factor in spore resistance to DMDO, which does not kill spores by DNA damage or by inactivating some component needed for spore germination. Rather, this reagent appears to kill spores by damaging the spore's inner membrane in some fashion. SIGNIFICANCE AND IMPACT OF THE STUDY: This work demonstrates that DMDO is an effective decontaminant for spores of Bacillus species that can work under mild conditions, and the killed spores cannot be revived. Evidence has also been obtained on the mechanisms of spore resistance to and killing by this reagent.  相似文献   

20.
Germination of dormant spores of Bacillus species is initiated when nutrient germinants bind to germinant receptors in spores’ inner membrane and this interaction triggers the release of dipicolinic acid and cations from the spore core and their replacement by water. Bacillus subtilis spores contain three functional germinant receptors encoded by the gerA, gerB, and gerK operons. The GerA germinant receptor alone triggers germination with L-valine or L-alanine, and the GerB and GerK germinant receptors together trigger germination with a mixture of L-asparagine, D-glucose, D-fructose and KCl (AGFK). Recently, it was reported that the B. subtilis gerW gene is expressed only during sporulation in developing spores, and that GerW is essential for L-alanine germination of B. subtilis spores but not for germination with AGFK. However, we now find that loss of the B. subtilis gerW gene had no significant effects on: i) rates of spore germination with L-alanine; ii) spores’ levels of germination proteins including GerA germinant receptor subunits; iii) AGFK germination; iv) spore germination by germinant receptor-independent pathways; and v) outgrowth of germinated spores. Studies in Bacillus megaterium did find that gerW was expressed in the developing spore during sporulation, and in a temperature-dependent manner. However, disruption of gerW again had no effect on the germination of B. megaterium spores, whether germination was triggered via germinant receptor-dependent or germinant receptor-independent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号