共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Protein kinase CK1 (previously known as casein kinase I) conforms to a subgroup of the great protein kinase family found in eukaryotic organisms. The CK1 subgroup of vertebrates contains seven members known as alpha, beta, gamma1, gamma2, gamma3, delta, and epsilon. The CK1alpha gene can generate four variants (CK1alpha, CK1alphaS, CK1alphaL, and CK1alphaLS) through alternate splicing, characterized by the presence or absence of two additional coding sequences. Exon "L" encodes a 28-amino acid stretch that is inserted after lysine 152, in the center of the catalytic domain. The "S" insert encodes 12 amino acid residues and is located close to the carboxyl terminus of the protein. This work reports some biochemical and cellular properties of the four CK1alpha variants found to be expressed in zebrafish (Danio rerio). The results obtained indicate that the presence of the "L" insert affects several biochemical properties of CK1alpha: (a) it increases the apparent Km for ATP twofold, from approximately 30 to approximately 60 microM; (b) it decreases the sensitivity to the CKI-7 inhibitor, raising the I50 values from 113 to approximately 230 microM; (c) it greatly decreases the heat stability of the enzyme at 40 degrees C. In addition, the insertion of the "L" fragment exerts very important effects on some cellular properties of the enzyme. CK1alphaL concentrates in the cell nucleus, excluding nucleoli, while the CK1alpha variant is predominantly cytoplasmic, although some presence is observed in the nucleus. This finding supports the thesis that the basic-rich region found in the "L" insert acts as a nuclear localization signal. The "L" insert-containing variant was also found to be more rapidly degraded (half-life of 100 min) than the CK1alpha variant (half-life of 400 min) in transfected Cos-7 cells. 相似文献
5.
6.
The human myelin/oligodendrocyte glycoprotein (MOG) gene is encoded by 10 exons that exhibit a complex pattern of alternative splicing. This report demonstrates that several MOG-specific alternative splice variants are indeed expressed in human oligodendrocytes (OLs) and myelin during perinatal development and are retained through adulthood. While all forms possess the common extracellular Ig-like domain, these alternative MOG structures differ significantly in their respective cytoplasmic domains. Peptide-specific antibodies were generated to facilitate detection of these different MOG moieties. The fidelity of these antibodies is shown using N20 OLs expressing individual MOG variants. These antibodies also only co-localize with another well-characterized marker of OLs and myelin--PLP/DM20 proteins. Among the human tissue samples tested, very limited expression occurred by 36 weeks gestation for 2-3 MOG variants, and the remaining MOG isoforms were not evident until shortly after birth. This study represents the first evidence of alternative translation products from the MOG gene. To date, it is believed that alternative splicing of MOG is limited to primates. Recent completion of various genome projects has revealed that alternative splicing is much more prevalent than originally estimated, and species-specific alternative splicing is now being shown to be highly relevant to expanding proteomic diversity. 相似文献
7.
8.
9.
A novel splicing isoform of protein arginine methyltransferase 1 (PRMT1) that lacks the dimerization arm and correlates with cellular malignancy 下载免费PDF全文
Odysseas Patounas Ioanna Papacharalampous Carmen Eckerich Georgios S. Markopoulos Evangelos Kolettas Frank O. Fackelmayer 《Journal of cellular biochemistry》2018,119(2):2110-2123
10.
The regulation of tau protein expression during different stages of cellular differentiation and development as well as its functional role in morphogenesis, neurofibrillary tangle formation, and neurodegeneration have been topics of extensive study but have not been completely clarified yet. Tau undergoes complex regulated splicing in the mammalian nervous system. Our previous study with tau exon 6 demonstrated that it shows a splicing regulation profile which is distinct from that of the other tau exons as well as a unique expression pattern which is spatially and temporally regulated. In this study, we investigated the expression, localization, and effects of tau isoforms which contain exon 6 in neuroblastoma cells which stably overexpress them. We found that expression of one particular combination of tau exons (the longest adult isoform plus the domain of exon 6) significantly inhibits neurite elongation. 相似文献
11.
12.
13.
14.
Differential expression of PARK2 splice isoforms in an in vitro model of dopaminergic‐like neurons exposed to toxic insults mimicking Parkinson's disease 下载免费PDF全文
Valentina La Cognata Grazia Maugeri Agata Grazia D'Amico Salvatore Saccone Concetta Federico Sebastiano Cavallaro Velia D'Agata 《Journal of cellular biochemistry》2018,119(1):1062-1073
Mutations in PARK2 (or parkin) are responsible for 50% of cases of autosomal‐recessive juvenile‐onset Parkinson's disease (PD). To date, 21 alternative splice variants of the human gene have been cloned. Yet most studies have focused on the full‐length protein, whereas the spectrum of the parkin isoforms expressed in PD has never been investigated. In this study, the role of parkin proteins in PD neurodegeneration was explored for the first time by analyzing their expression profile in an in vitro model of PD. To do so, undifferentiated and all‐trans‐retinoic‐acid (RA)‐differentiated SH‐SY5Y cells (which thereby acquire a PD‐like phenotype) were exposed to PD‐mimicking neurotoxins: 1‐methyl‐4‐phenylpyridinium (MPP+) and 6‐hydroxydopamine (6‐OHDA) are widely used in PD models, whereas carbonyl cyanide m‐chlorophenyl hydrazone (CCCP) and carbobenzoxy‐Leu‐Leu‐leucinal (MG132) interfere, respectively, with mitochondrial mitophagy and proteasomal degradation. Following treatment with each neurotoxin H1, the first parkin isoform to be cloned, was down‐regulated compared to the respective controls both in undifferentiated and RA‐differentiated cells. In contrast, the expression pattern of the minor splice isoforms varied as a function of the compound used: it was largely unchanged in both cell cultures (eg, H21‐H6, H12, XP isoform) or it showed virtually opposite alterations in undifferentiated and RA‐differentiated cells (eg, H20 and H3 isoform). This complex picture suggests that up‐ or down‐regulation may be a direct effect of toxin exposure, and that the different isoforms may exert different actions in neurodegeneration via modulation of different molecular pathways. 相似文献
15.
CC chemokine receptor 7 (CCR7) is selectively expressed on mature dendritic cells (DC). The CCR7 ligands, CC chemokine ligand (CCL) 19 and CCL21, facilitate migration of mature DC from the peripheral tissues to regional lymph nodes. We previously demonstrated that CCR7 ligands induced rapid receptor-mediated endocytosis of dextran in mature DC. In the present study, we further examined the effects of CCR7 ligands on endocytosis of other kinds of antigen, mannosilated bovine serum albumin (Mann-BSA), Escherichia coli(E. coli), or ovalbumin-containing immune complex (OVA-IC), by mature DC. We found that CCR7 ligands enhanced the endocytosis of Mann BSA, E. coli, and OVA-IC in mature DC but not in immature DC. The endocytosis of BSA was not enhanced by CCR7 ligands. Furthermore, the phagocytosis of OVA-IC was significantly inhibited by anti-Fcgamma receptor III/II antibody. These results demonstrate that CCR7 ligands enhance only receptor-mediated endocytosis by mature DC. When rapidly phagocytosed E. coli were traced in CCL19-treated mature DC, most of the phagocytosed E. coli did not colocalize with the lysosomal marker: lysosome-associated membrane protein-1 (Lamp-1), whereas most of E. coli taken up relatively slowly by immature DC colocalized with Lamp-1. These results suggest that phagocytosis of antigens by immature and mature DC plays different functional roles. 相似文献
16.
《Cell cycle (Georgetown, Tex.)》2013,12(11):2114-2121
Cohesion establishment is central to sister chromatid tethering reactions and requires Ctf7/Eco1-dependent acetylation of the cohesin subunit Smc3. Ctf7/Eco1 is essential during S phase, and a number of replication proteins (RFC complexes, PCNA and the DNA helicase Chl1) all play individual roles in sister chromatid cohesion. While the mechanism of cohesion establishment is largely unknown, a popular model is that Ctf7/Eco1 acetylates cohesins encountered by and located in front of the fork. In turn, acetylation is posited both to allow fork passage past cohesin barriers and convert cohesins to a state competent to capture subsequent production of sister chromatids. Here, we report evidence that challenges this pre-replicative cohesion establishment model. Our genetic and biochemical studies link Ctf7/Eco1 to the Okazaki fragment flap endonuclease, Fen1. We further report genetic and biochemical interactions between Fen1 and the cohesion-associated DNA helicase, Chl1. These results raise a new model wherein cohesin deposition and establishment occur in concert with lagging strand-processing events and in the presence of both sister chromatids. 相似文献
17.
18.
Hanton SL Chatre L Matheson LA Rossi M Held MA Brandizzi F 《Plant molecular biology》2008,67(3):283-294
In plants, differentiation of subdomains of the endoplasmic reticulum (ER) dedicated to protein export, the ER export sites (ERES), is influenced by the type of export-competent membrane cargo to be delivered to the Golgi. This raises a fundamental biological question: is the formation of transport intermediates at the ER for trafficking to the Golgi always regulated in the same manner? To test this, we followed the distribution and activity of two plant Sar1 isoforms. Sar1 is the small GTPase that regulates assembly of COPII (coat protein complex II) on carriers that transport secretory cargo from ER to Golgi. We show that, in contrast to a tobacco Sar1 isoform, the two Arabidopsis Sar1 GTPases were localised at ERES, independently of co-expression of Golgi-destined membrane cargo in tobacco cells. Although both isoforms labelled ERES, one was found to partition with the membrane fraction to a greater extent. The different distribution of fluorescent fusions of the two isoforms was influenced by the nature of an amino acid residue at the C-terminus of the protein, suggesting that the requirements for membrane association of the two GTPases are not equal. Furthermore, functional analyses based on the secretion of the bulk flow marker α-amylase indicated that over-expression of GTP-restricted mutants of the two isoforms caused different levels of ER export inhibition. These novel results indicate a functional heterogeneity among plant Sar1 isoforms. 相似文献
19.
20.
The in vivo analysis of the roles of splicing factors in regulating alternative splicing in animals remains a challenge. Using a microarray-based screen, we identified a Caenorhabditis elegans gene, tos-1, that exhibited three of the four major types of alternative splicing: intron retention, exon skipping, and, in the presence of U2AF large subunit mutations, the use of alternative 3' splice sites. Mutations in the splicing factors U2AF large subunit and SF1/BBP altered the splicing of tos-1. 3' splice sites of the retained intron or before the skipped exon regulate the splicing pattern of tos-1. Our study provides in vivo evidence that intron retention and exon skipping can be regulated largely by the identities of 3' splice sites. 相似文献