首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The binding of several phosphonodifluoromethyl phenylalanine (F(2)Pmp)-containing peptides to protein-tyrosine phosphatase 1B (PTP1B) and its substrate-trapping mutants (C215S and D181A) has been studied using isothermal titration calorimetry. The binding of a high affinity ligand, Ac-Asp-Ala-Asp-Glu-F(2)Pmp-Leu-NH(2), to PTP1B (K(d) = 0.24 microm) is favored by both enthalpic and entropic contributions. Disruption of ionic interactions between the side chain of Arg-47 and the N-terminal acidic residues reduces the binding affinity primarily through the reduction of the TDeltaS term. The role of Arg-47 may be to maximize surface contact between PTP1B and the peptide, which contributes to high affinity binding. The active site Cys-215 --> Ser mutant PTP1B binds ligands with the same affinity as the wild-type enzyme. However, unlike wild-type PTP1B, peptide binding to C215S is predominantly driven by enthalpy change, which likely results from the elimination of the electrostatic repulsion between the thiolate anion and the phosphonate group. The increased enthalpic contribution is offset by reduction in the binding entropy, which may be the result of increased entropy of the unbound protein caused by this mutation. The general acid-deficient mutant D181A binds the peptide 5-fold tighter than the C215S mutant, consistent with the observation that the Asp to Ala mutant is a better "substrate-trapping" reagent than C215S. The increased binding affinity for D181A as compared with the wild-type PTP1B results primarily from an increase in the DeltaH of binding in the mutant, which may be related to decreased electrostatic repulsion between the phosphate moiety and PTP1B. These results have important implications for the design of high affinity PTP1B inhibitors.  相似文献   

2.
The X-ray crystal structures of two glycosyltransferases (GTs)--beta 1,3-glucuronyltransferase 1 (GlcAT1) and alpha 1,4-N-acetylhexosaminyltransferase (EXTL2)--have now been determined in the presence of both donor and acceptor substrates. These enzymes are involved in glucosaminylglycan (GAG) synthesis where they catalyze inverting and retaining transfer reactions, respectively. As members of a large family of enzymes that transfer sugar groups from donor nucleotide-sugars to acceptor substrates, GlcAT1 and EXTL2 retain conserved GT folds. Comparative analysis of these structures reveals signature features for selecting specific donor sugars. Adaptive binding of the disaccharide moiety of the acceptor sugars enables the enzymes to catalyze either an inverting S(N)2-type displacement reaction or a retaining S(N)i-like transfer reaction.  相似文献   

3.
The human ABO(H) blood group antigens are carbohydrate structures generated by glycosyltransferase enzymes. Glycosyltransferase A (GTA) uses UDP-GalNAc as a donor to transfer a monosaccharide residue to Fuc alpha1-2Gal beta-R (H)-terminating acceptors. Similarly, glycosyltransferase B (GTB) catalyzes the transfer of a monosaccharide residue from UDP-Gal to the same acceptors. These are highly homologous enzymes differing in only four of 354 amino acids, Arg/Gly-176, Gly/Ser-235, Leu/Met-266, and Gly/Ala-268. Blood group O usually stems from the expression of truncated inactive forms of GTA or GTB. Recently, an O(2) enzyme was discovered that was a full-length form of GTA with three mutations, P74S, R176G, and G268R. We showed previously that the R176G mutation increased catalytic activity with minor effects on substrate binding. Enzyme kinetics and high resolution structural studies of mutant enzymes based on the O(2) blood group transferase reveal that whereas the P74S mutation in the stem region of the protein does not appear to play a role in enzyme inactivation, the G268R mutation completely blocks the donor GalNAc-binding site leaving the acceptor binding site unaffected.  相似文献   

4.
MICA is a major histocompatibility complex-like protein that undergoes a structural transition from disorder to order upon binding its immunoreceptor, NKG2D. We redesigned the disordered region of MICA with RosettaDesign to increase NKG2D binding. Mutations that stabilize this region were expected to increase association kinetics without changing dissociation kinetics, increase affinity of interaction, and reduce entropy loss upon binding. MICA mutants were stable in solution, and they were amenable to surface plasmon resonance evaluation of NKG2D binding kinetics and thermodynamics. Several MICA mutants bound NKG2D with enhanced affinity, kinetic changes were primarily observed during association, and thermodynamic changes in entropy were as expected. However, none of the 15 combinations of mutations predicted to stabilize the receptor-bound MICA conformation enhanced NKG2D affinity, whereas all 10 mutants predicted to be destabilized bound NKG2D with increased on-rates. Five of these had affinities enhanced by 0.9-1.8 kcal/mol over wild type by one to three non-contacting substitutions. Therefore, in this case, mutations designed to mildly destabilize a protein enhanced association and affinity.  相似文献   

5.
Peterson KM  Srivastava DK 《Biochemistry》2000,39(41):12678-12687
The substitution of the C=O by the C=S group in 2-azaoctanoyl-CoA increases the volume of the ligand by 11 A(3), and the excision of a methylene group from Glu-376, via Glu-376 --> Asp (E376D) mutation in medium chain acyl-CoA dehydrogenase (MCAD), creates a complementary cavity of 18 A(3) dimension, just opposite to the ligand's carbonyl group. We investigated whether the newly created cavity would facilitate accommodation of the bulkier (C=O --> C=S substituted) ligand within the active site of the enzyme. To ascertain this, we determined the binding affinity and kinetics of association and dissociation of 2-azaoctanoyl-CoA and the C=O --> C=S substituted ligand, 2-azadithiooctanoyl-CoA, involving the wild-type and Glu-376 --> Asp mutant enzymes. The experimental data revealed that the binding of 2-azadithiooctanoyl-CoA to the wild-type enzyme was energetically unfavorable as compared to 2-azaoctanoyl-CoA. However, such an energetic constraint was alleviated for the binding of the former ligand to the E376D mutant enzyme site. A detailed account of the free energy and enthalpic profiles for the binding of 2-azaoctanoyl-CoA and 2-azadithiooctanoyl-CoA to the wild-type and Glu-376 --> Asp mutant enzymes throws light on the flexibility of the enzyme site cavity in stabilizing the ground and transition states of the enzyme-ligand complexes.  相似文献   

6.
25-hydroxyvitamin D(3)- or 1alpha,25-dihydroxyvitamin D(3)-24R-hydroxylase (cytochromeP450C24 or CYP24) has a dual role of removing 25-OH-D(3) from circulation and excess 1,25(OH)(2)D(3) from kidney. As a result, CYP24 is an important multifunctional regulatory enzyme that maintains essential tissue-levels of Vitamin D hormone. As a part of our continuing interest in structure-function studies characterizing various binding proteins in the Vitamin D endocrine system, we targeted recombinant rat CYP24 with a radiolabeled 25-OH-D(3) affinity analog, and showed that the 25-OH-D(3)-binding site was specifically labeled by this analog. An affinity labeled sample of CYP24 was subjected to MS/MS analysis, which identified Ser57 as the only amino acid residue in the entire length of the protein that was covalently modified by this analog. Site-directed mutagenesis was conducted to validate the role of Ser57 towards substrate-binding. S57A mutant displayed significantly lower binding capacity for 25-OH-D(3) and 1,25(OH)(2)D(3). On the other hand, S57D mutant strongly enhanced binding for the substrates and conversion of 1,25(OH)(2)D(3) to calcitroic acid. The affinity probe was anchored via the 3-hydroxyl group of 25-OH-D(3). Therefore, these results suggested that the 3-hydroxyl group (of 25-OH-D(3) and 1,25(OH)(2)D(3)) in the S57D mutant could be stabilized by hydrogen bonding or a salt bridge leading to enhanced substrate affinity and metabolism.  相似文献   

7.
Interactions between the ligands Mg2+, K+, and substrate and the Na+/K+-activated ATPase were examined in terms of a rapid-equilibrium, random-order, terreactant kinetic scheme for the K+-nitrophenyl phosphatase reaction that is catalyzed by this enzyme. At 37 degrees C and pH 7.5 the derived values for the dissociation constants from the free enzyme were 0.2, 0.08, and 1.4 mM for Mg2+, K+, and substrate, respectively. For Mg2+ interactions, the presence of 20% (v/v) dimethyl sulfoxide (Me2SO) increased the calculated affinity 25-fold; higher concentrations increased affinity still further. Neither reducing the temperature to 20 degrees C nor altering the pH from 6.5 to 8.3 appreciably changed the affinity for Mg2+ in the absence or presence of Me2SO. The Mg2+ sites are thus characterized by an absence of functional groups ionizable in the pH range 6.5-8.3, with binding driven by entropy changes, and with Me2SO, probably through solvation effects on the protein, increasing affinity for Mg2+ close to that for Ca2+ and Mn2+. By contrast, for K+ interactions, the presence of 20% Me2SO increased the calculated affinity only by half; moreover, reducing the temperature to 20 degrees C and the pH to 6.5 both increased affinity and diminished the response to Me2SO. The K+ sites are thus characterized by a marked sensitivity to pH and temperature, presumably through alterations in enzyme conformational equilibria that in turn are modifiable by Me2SO. Inhibition by higher concentrations of Mg2+, which varies inversely with the K+ concentration, was decreased by Me2SO. Finally, for substrate interactions, the presence of 20% Me2SO increased the calculated affinity 4-fold, and, as for Mg2+-binding, neither reducing the temperature nor varying the pH over the range 6.5-8.3 appreciably altered the affinity in the absence or presence of Me2SO. Thus, the substrate sites, like the Mg2+ sites, are characterized by an absence of functional groups ionizable in this range, with binding driven by entropy changes, and with Me2SO increasing affinity for substrate, in this case probably through favoring the partitioning of substrate from the medium into the hydrophobic active site.  相似文献   

8.
Two monoclonal antibodies (mAbs) against bovine lung soluble guanylate cyclase (sGC) were prepared and characterized. mAb 3221 recognized both the alpha- and beta-subunits of sGC and had greater binding affinity to the enzyme in the presence of NO. mAb 28131 recognized only the beta-subunit and its affinity did not change with NO. Neither mAb cross-reacted with particulate GC. Cultured Purkinje cells from rats were treated with S-nitroso-N-acetylpenicillamine, an NO donor, and examined by immunocytochemical methods. The immunoreactivity associated with mAb 3221 increased with the cGMP content in a crude extract of cerebellum and the NO2 generated in the culture medium increased.  相似文献   

9.
Zinc endopeptidase thermolysin can be inhibited by a series of phosphorus-containing peptide analogues, Cbz-Gly-psi (PO2)-X-Leu-Y-R (ZGp(X)L(y)R), where X = NH, O, or CH2; Y = NH or O; R = Leu, Ala, Gly, Phe, H, or CH3. The affinity correlation as well as an X-ray crystallography study suggest that these inhibitors bind to thermolysin in an identical mode. In this work, we calculate the electrostatic binding free energies for a series of 13 phosphorus-containing inhibitors with modifications at X, Y, and R moieties using finite difference solution to the Poisson-Boltzmann equation. A method has been developed to include the solvation entropy changes due to binding different ligands to a macromolecule. We demonstrate that the electrostatic energy and empirically derived solvation entropy can account for most of the binding energy differences in this series. By analyzing the binding contribution from individual residues, we show that the energy of a hydrogen bond is not confined to the donor and acceptor. In particular, the positive charges on Zn and Arg 203, which are not the acceptors, contribute significantly to the hydrogen bonds between two amides of ZGpLL and the thermolysin.  相似文献   

10.
The binding reactions of two heterocyclic analogs of protocatechuate (PCA), 2-hydroxyisonicotinic acid N-oxide and 6-hydroxynicotinic acid N-oxide, to Brevibacterium fuscum protocatechuate 3,4-dioxygenase have been characterized. These analogs were synthesized as models for the ketonized tautomer of PCA which we have previously proposed as the form which reacts with O2 in the enzyme complex (Que, L., Jr., Lipscomb, J.D., Munck, E., and Wood, J.M. (1977) Biochim. Biophys. Acta 485, 60-74). Both analogs have much higher affinity for the enzyme than PCA. Repetitive scan optical spectra of each binding reaction show that at least one intermediate is formed. The spectra of the intermediates are red-shifted (lambda max = 500 nm) relative to that of native enzyme (lambda max = 435 nm) but are similar to that of the anaerobic enzyme-PCA complex. In contrast, the spectrum of the final, deadend complex formed by each analog is significantly blue-shifted (lambda max less than 340 nm) resulting in an apparent bleaching of the chromophore of the enzyme. A transient intermediate exhibiting a similar bleached spectrum has been detected in the enzyme reaction cycle immediately after O2 is added to the enzyme-PCA complex (Bull C., Ballou D.P., and Otsuka, S. (1981) J. Biol. Chem. 256, 12681-12686). Stopped flow measurements of the analog binding reactions show that a relatively weak enzyme complex is initially formed followed by at least two isomerizations leading to the bleached, high affinity complexes. EPR spectra of both the early and final complexes reveal only high spin Fe3+ with negative zero field splitting, showing that the optical bleaching is not due to Fe reduction. The studies show that the ketonized analogs are poor models for the enzyme-substrate complex but do successfully mimic many features of the first oxy complex of the reaction cycle. We propose that substrate ketonization occurs coincident with or after O2 binding and may be involved directly in the O2 insertion reaction.  相似文献   

11.
The interaction of succinate with asparatete transcarbamylase from Escherichia coli has been studied by magnetic resonance relaxation measurements of the dicarboxylic acid methylene protons in H2O solutions. The pH and temperature dependence of the relaxation in the presence of either native asparte transcarbamylase or its catalytic subunit in H2O solutions is qualitatively very similar to the corresponding situation utilizing D2O as the solvent. From previous result of measurements in D2O[C.B. Beard and P.G. Schmidt, Biochemistry 12(1973)2255] a mechanism was proposed involving 2 protonated groups affecting succinate binding and titratable over the pH range 7-10. Quantitatively, fitting the data from H2O solutions to the mechanism yeilds values of the fitting parameters generally in good agreement with the D2O experiments. The main exceptions are the pKa values calculated for the two titratable groups. For these species the values obtained in the presence of the catalytic subunit are 6.7 and 7.8 in H2O solutions versus 7.3 and 8.6 in D2O solutions. In the presence of native enzyme the corresponding values are 6.8 and 8.3 in H2O versus 7.6 and 9.2 in D2O. These observed differences are consistent with differences in ionization constants of weak acids in D2O relative to H2O. The results imply that succinate interaction with the enzyme active site is similar in the two solvents.  相似文献   

12.
The heme in lactoperoxidase is attached to the protein by ester bonds between the heme 1- and 5-methyl groups and Glu-375 and Asp-275, respectively. To investigate the cross-linking process, we have examined the D225E, E375D, and D225E/E375D mutants of bovine lactoperoxidase. The heme in the E375D mutant is only partially covalently bound, but exposure to H(2)O(2) results in complete covalent binding and a fully active protein. Digestion of this mutant shows that the heme is primarily bound through its 5-methyl group. Excess H(2)O(2) increases the proportion of the doubly linked species without augmenting enzyme activity. The D225E mutant has little covalently bound heme and a much lower activity, neither of which are significantly increased by the addition of heme and H(2)O(2). The heme is linked to this protein through a single bond to the 1-methyl group. The D225E/E375D mutant has no covalently bound heme and no activity. A small amount of iron 1-hydroxymethylprotoporphyrin IX is obtained from the wild-type enzyme along with the predominant dihydroxylated derivative. The results establish that a single covalent link suffices to achieve maximum catalytic activity and suggest that the 5-hydroxymethyl bond may form before the 1-hydroxymethyl bond.  相似文献   

13.
Saturation transfer difference NMR experiments on human blood group B alpha-(1,3)-galactosyltransferase (GTB) for the first time provide a comprehensive set of binding epitopes of donor substrate analogs in relation to the natural donor UDP-Gal. This study revealed that the enzyme binds several UDP-activated sugars, including UDP-Glc, UDP-GlcNAc, and UDP-GalNAc. In all cases, UDP is the dominant binding epitope. To identify the minimum requirements for specific binding, a detailed analysis utilizing a fragment-based approach was employed. The binding of donor substrate to GTB is essentially controlled by the base as a "molecular anchor." Uracil represents the smallest fragment that is recognized, whereas CDP, AMP, and GDP do not exhibit any significant binding affinity for the enzyme. The ribose and beta-phosphate moieties increase the affinity of the ligands, whereas the pyranose sugar apparently weakens the binding, although this part of the molecule controls the specificity of the enzyme. Accordingly, UDP represents the best binder. The binding affinities of UDP-Gal, UDP-Glc, and UMP are about the same, but lower than that of UDP. Furthermore, we observed that beta-D-galactose and alpha-D-galactose bind weakly to GTB. Whereas beta-D-galactose binds to the acceptor and donor sites, it is suggested that alpha-D-galactose occupies a third hitherto unknown binding pocket. Finally, our experiments revealed that modulation of enzymatic activity by metal ions critically depends on the total enzyme concentration, raising the question as to which of the bivalent metal cations Mg(2+) and Mn(2+) is more relevant under physiological conditions.  相似文献   

14.
Markham GD  Reczkowski RS 《Biochemistry》2004,43(12):3415-3425
S-Adenosylmethionine synthetase (ATP: L-methionine S-adenosyltransferase) catalyzes a two-step reaction in which tripolyphosphate (PPPi) is a tightly bound intermediate. Diimidotriphosphate (O(3)P-NH-PO(2)-NH-PO(3); PNPNP), a non-hydrolyzable analogue of PPPi, is the most potent known inhibitor of AdoMet synthetase with a K(i) of 2 nM. The structural basis for the slow, tight-binding inhibition by PNPNP has been investigated by spectroscopic methods. UV difference spectra reveal environmental alterations of aromatic protein residues upon PNPNP binding to form the enzyme.2Mg(2+).PNPNP complex, and more extensive changes upon formation of the enzyme.2Mg(2+).PNPNP.AdoMet complex. Stopped-flow kinetic studies of complex formation revealed that two slow isomerizations follow PNPNP binding in the presence of AdoMet, in contrast to the lower affinity, rapid-equilibrium binding in the absence of AdoMet. (31)P NMR spectra of enzyme complexes with PNPNP revealed electronic perturbations of each phosphorus atom by distinct upfield chemical shifts for each of the three phosphoryl groups in the enzyme.2Mg(2+).PNPNP complex, and further upfield shifts of at least 2 resonances in the complex with AdoMet. Comparison of the chemical shifts for the enzyme-bound PNPNP with the enzyme complexes containing either the product analogue O(3)P-NH-PO(3) or O(3)P-O-PO(2)-NH-PO(3) indicates that the shifts on binding are largest at the binding sites corresponding to those for the alpha and gamma phosphoryl groups of the nucleotide (-3.1 to -4.1 ppm), while the resonance at the beta phosphoryl group position shifts by -2.1 ppm. EPR spectra of Mn(2+) complexes demonstrate spin coupling between the two Mn(2+) in both enzyme.2Mn(2+).PNPNP and enzyme.2Mn(2+).PNPNP.AdoMet, indicating that the metal ions have comparable distances in both cases. The combined results indicate that formation of the highest affinity complex is associated with protein side chain rearrangements and increased electron density at the ligand phosphorus atoms, likely due to ionization of an -NH- group of the inhibitor. The energetic feasibility of ionization of a -NH- group when two Mg(2+) ions are bound to O(3)P-NH-PO(3) is supported by density functional theoretical calculations on model chelates. This mode of interaction is uniquely available to compounds with P-NH-P linkages and may be possible with other proteins in which multiple cations coordinate a polyphosphate chain.  相似文献   

15.
Substrate initially binds to β-galactosidase (Escherichia coli) at a 'shallow' site. It then moves ~3? to a 'deep' site and the transition state forms. Asn460 interacts in both sites, forming a water bridge interaction with the O3 hydroxyl of the galactosyl moiety in the shallow site and a direct H-bond with the O2 hydroxyl of the transition state in the deep site. Structural and kinetic studies were done with β-galactosidases with substitutions for Asn460. The substituted enzymes have enhanced substrate affinity in the shallow site indicating lower E·substrate complex energy levels. They have poor transition state stabilization in the deep site that is manifested by increased energy levels of the E·transition state complexes. These changes in stability result in increased activation energies and lower k(cat) values. Substrate affinity to N460D-β-galactosidase was enhanced through greater binding enthalpy (stronger H-bonds through the bridging water) while better affinity to N460T-β-galactosidase occurred because of greater binding entropy. The transition states are less stable with N460S- and N460T-β-galactosidase because of the weakening or loss of the important bond to the O2 hydroxyl of the transition state. For N460D-β-galactosidase, the transition state is less stable due to an increased entropy penalty.  相似文献   

16.
T F Holzman  T O Baldwin 《Biochemistry》1982,21(24):6194-6201
A covalently immobilized form of an inhibitor of bacterial luciferase, 2,2-diphenylpropylamine (D phi PA), was an effective affinity resin for purifying this enzyme from several distinct bacterial species. The inhibitor is competitive with the luciferase aldehyde substrate but enhances binding of the flavin substrate FMNH2 (reduced riboflavin 5'-phosphate); comparable binding interactions occur with luciferase, the immobilized inhibitor D phi PA-Sepharose, and the substrates [Holzman, T. F., & Baldwin, T. O. (1981) Biochemistry 20, 5524-5528]. The effect of FMNH2 on the binding of luciferase to D phi PA-Sepharose was mimicked by inorganic phosphate; the luciferase-phosphate complex had a greater affinity for D phi PA-Sepharose than did luciferase. This observation led to the development of a method using D phi PA-Sepharose to purify bacterial luciferase. When crude enzyme in a high-phosphate buffer was applied to a column of the affinity matrix, the luciferase activity was removed from solution. After the column was washed with the same buffer to remove unbound protein, the luciferase was eluted with a non-phosphate cationic buffer. The affinity column has proven useful for rapid purification of luciferase in much greater yield than has been previously possible with standard ion-exchange techniques. This approach has allowed one-step purification of luciferases from ammonium sulfate precipitates of Vibrio harveyi, Vibrio fischeri, and Photobacterium phosphoreum. The dissociation constants in 0.10 M phosphate for the affinity ligand: luciferase complexes were 0.49 micro M, 0.28 micro M, and 0.15 micro M, respectively, for the three species. The dissociation constant for the V. harveyi mutant AK-6, which has normal aldehyde binding but greatly reduced affinity for FMNH2, was 0.30 micro M, while that for the V. harveyi mutant AK-20, which has greatly reduced affinity for aldehyde but a slightly increased affinity for FMNH2, was 1.2 microM. Preliminary experiments indicated that the yellow fluorescence protein (YFP) that participates, through energy transfer, in bioluminescent emission in V. fischeri strain Y-1 could be separated from the luciferase in this strain by chromatography on the affinity matrix, whereas other methods of separating luciferase and YFP have had limited success because of the binding of YFP to luciferase.  相似文献   

17.
It was found that all halides can compete with cyanide for binding with myeloperoxidase. The lower is the pH, the higher is the affinity of halides. The apparent dissociation constants (Kd) of myeloperoxidase-cyanide complex were determined in the presence of F-, Cl-, Br- and I- in the pH range of 4 to 7. In slightly acidic pH (4 - 6) fluoride and chloride exhibit a higher affinity towards the enzyme than bromide and iodide. Taking into account competition between cyanide and halides for binding with myeloperoxidase the dissociation constants of halide-myeloperoxidase complexes were calculated. All halides except fluoride can be oxidized by H2O2 in the presence of myeloperoxidase. However, since fluoride can bind with myeloperoxidase, it can competitively inhibit the oxidation of other halides. Fluoride was a competitive inhibitor with respect to other halides as well as to H2O2. Inhibition constants (Ki) for fluoride as a competitive inhibitor with respect to H2O2 increased from iodide oxidation through bromide to chloride oxidation.  相似文献   

18.
Acclimatization to hypoxia requires time to complete the adaptation mechanisms that influence oxygen (O(2)) transport and O(2) utilization. Although decreasing hemoglobin (Hb) O(2) affinity would favor the release of O(2) to the tissues, increasing Hb O(2) affinity would augment arterial O(2) saturation during hypoxia. This study was designed to test the hypothesis that pharmacologically increasing the Hb O(2) affinity will augment O(2) transport during severe hypoxia (10 and 5% inspired O(2)) compared with normal Hb O(2) affinity. RBC Hb O(2) affinity was increased by infusion of 20 mg/kg of 5-hydroxymethyl-2-furfural (5HMF). Control animals received only the vehicle. The effects of increasing Hb O(2) affinity were studied in the hamster window chamber model, in terms of systemic and microvascular hemodynamics and partial pressures of O(2) (Po(2)). Pimonidazole binding to hypoxic areas of mice heart and brain was also studied. 5HMF decreased the Po(2) at which the Hb is 50% saturated with O(2) by 12.6 mmHg. During 10 and 5% O(2) hypoxia, 5HMF increased arterial blood O(2) saturation by 35 and 48% from the vehicle group, respectively. During 5% O(2) hypoxia, blood pressure and heart rate were 58 and 30% higher for 5HMF compared with the vehicle. In addition, 5HMF preserved microvascular blood flow, whereas blood flow decreased to 40% of baseline in the vehicle group. Consequently, perivascular Po(2) was three times higher in the 5HMF group compared with the control group at 5% O(2) hypoxia. 5HMF also reduced heart and brain hypoxic areas in mice. Therefore, increased Hb O(2) affinity resulted in hemodynamics and oxygenation benefits during severe hypoxia. This acute acclimatization process may have implications in survival during severe environmental hypoxia when logistic constraints prevent chronic acclimatization.  相似文献   

19.
The zinc-deficient enzyme binds the fluorescence probes for the enzyme substrate pocket (auramine O, 13-ethylberberine, chlorprothixene and acridine orange) more tightly than the native enzyme, whereas 1-anilinonaphthalene 8-sulphonic acid is bound with comparable affinity. The use of fluorescence probes as reporter ligands revealed that the formation of binary complexes between the zinc-deficient enzyme and aldehydes is possible (as with the native enzyme) and confirmed an increased affinity of coenzymes to the modified enzyme. The absence of catalytic zinc ions brings about a loss of the essential stabilization effect in simultaneous NADH and aldehyde binding to liver alcohol dehydrogenase. 2,2'-Bipyridine, which chelates the active-site zinc ion in the native enzyme, is bound rather loosely to the same site as aldehydes, auramine O and ethylberberine in the case of the zinc-depleted enzyme. The stopped-flow measurements showed that the pH dependence of auramine O and ethylberberine binding to native and zinc-depleted enzyme is essentially similar. These data are compatible with the presence of ionizable groups in the surroundings of the bound probes. This group might be either His-67, bound to the zinc ion, or the zinc-liganding water molecule in the case of the native enzyme (pK close to 9), or the free His-67 residue in the case of the zinc-deficient enzyme (pK about 8).  相似文献   

20.
The interaction of vanadate ions with the Ca-ATPase from sarcoplasmic reticulum vesicles was studied in a native and a fluorescein-labeled ATPase preparation (Pick, U., and Karlish, S. J. D. (1980) Biochim. Biophys. Acta 626, 255-261). Vanadate induced a fluorescence enhancement in a fluorescein-labeled enzyme, indicating that it shifts the equilibrium between the two conformational states of the enzyme by forming a stable E2-Mg-vanadate complex (E2 is the low affinity Ca2+ binding conformational state of the sarcoplasmic reticulum Ca-ATPase). Indications for tight binding of vanadate to the enzyme (K1/2 = 10 microM) in the absence of Ca2+ and for a slow dissociation of vanadate from the enzyme in the presence of Ca2+ are presented. The enzyme-vanadate complex was identified by the appearance of a time lag in the onset of Ca2+ uptake and by a slowing of the fluorescence quenching response to Ca2+. Ca2+ prevented the binding of vanadate to the enzyme. Pyrophosphate (Kd = 2 mM) and ATP (Kd = 25 microM) competitively inhibited the binding of vanadate, indicating that vanadate binds to the low affinity ATP binding site. Binding of vanadate inhibited the high affinity Ca2+ binding to the enzyme at 4 degrees C. Vanadate also inhibited the phosphorylation reaction by inorganic phosphate (Ki = 10 microM) but had no effect on the phosphorylation by ATP. It is suggested that vanadate binds to a special region in the low affinity ATP binding site which is exposed only in the E2 conformation of the enzyme in the absence of Ca2+ and which controls the rate of the conformation transition in the dephosphorylated enzyme. The implications of these results to the role of the low affinity ATP binding sites are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号