首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of ICR 2A frog cells to 265 nm, 289 nm, 302 nm or 313 nm monochromatic ultraviolet (UV) wavelengths induced the formation of sister-chromatid exchanges (SCEs). However, treatment of cells with photoreactivating light (PRL) following the UV irradiations resulted in a lower level of SCEs compared with cells incubated in the dark. Hence, it can be concluded that pyrimidine dimers are the principal photoproducts responsible for the induction of SCEs in cells exposed to 265-313 nm UV due to the specificity of DNA photolyase for the light-dependent monomerization of dimers in DNA. It was also found that the maximum yield of induced SCEs in 313 nm-irradiated cells was only about 7 SCEs per cell whereas the plateau values for the shorter wavelengths were approximately 15-20 SCEs per cell. In addition, treatment of cells with 313 nm plus 265 nm light resulted in a lower level of SCEs than in cells exposed to 265 nm UV alone. These results can be interpreted in the context of a replication model for SCE, in which the high level of non-dimer damages produced in the DNA of 313 nm-irradiated cells inhibits the induction of SCEs by the pyrimidine dimers that are also produced by this wavelength.  相似文献   

2.
Sodium selenite (Na2Se03) was tested for its sister-chromatid exchange (SCE)-inducing ability in human whole blood cultures and for the effect of its co-exposure with methyl methanesulfonate (MMS) or N-hydroxy-2-acetyl aminofluorene (N-OH-AAF) on SCE frequency. Long exposure times (77 h and 96 h) to 3.95 × 10-6 M Na2SeO3 resulted in cell death as measured by mitotic indices, but mitotic figures were present after exposure to higher concentrations for a shorter time (19 h). High Na2SeO3 concentrations (7.90 × 10?6 and 1.19 × 10?5 M) resulted in a three-fold increase in the SCE frequency above background level (6–7 SCEs/cell). Exposure of lymphocytes to 1 × 10?4 M MMS for the last 19 h of culture yielded an average SCE frequency of 30.17 ± 0.75 while a similar exposure to 2.7 × 10?5 M N-OH-AAF resulted in 13.61 ± 0.43 SCEs/cell. Simultaneous addition of the high Na2Se03 concentrations and MMS or N-OH-AAF to the cultures resulted in SCE frequencies that were 25–30% and 11–17%, respectively, below the sum of the SCE frequencies produced by the individual compounds.  相似文献   

3.
The number of single-strand breaks produced in DNA after exposure to UV light or to methyl methanesulfonate (MMS) was additive when cells were exposed to both agents in close succession. Repair of the damage from either agent was partially inhibited by cytosine arabinoside, resulting in higher break frequencies under all conditions of exposure. Exposure to both agents followed by growth in cytosine arabinoside resulted in break frequencies that were approximately the same as the sum of those from each agent individually. These findings contrast with previous results in which pyrimidine dimer excision and repair replication after exposure to UV light were inhibited by MMS. These observations are not due to cell permeability changes after alkylation, but can be explained if the complex of excision-repair proteins is only partially inactivated by alkylation. Initial incisions to start repair would still occur but only limited amounts of repair replication would ensue without actual removal of the pyrimidine dimers.  相似文献   

4.
B K?berle  G Speit 《Mutation research》1990,243(3):225-231
Using sister-chromatid exchanges (SCEs) as an indicator for DNA damage, we investigated the role of glutathione (GSH) as a determinant of cellular sensitivity to the DNA-damaging effects of the cytostatic drugs adriamycin (AM) and cyclophosphamide (CP). Exposure of V79 cells to buthionine sulfoximine (BSO) resulted in a complete depletion of cellular GSH content without toxicity and without increasing the SCE frequency. Subsequent 3-h treatment of GSH-depleted cells with AM or S9-mix-activated CP caused a potentiation of SCE induction. In Chinese hamster ovary (CHO) cells, which showed a higher GSH level compared to V79 cells, BSO treatment led to a depletion of GSH to about 5% of the control and increased SCE induction by AM and CP. Compared to V79 cells, the effect of AM on SCE frequencies was less distinct in CHO cells, while CP exerted a similar effect in both cell lines. Pretreatment of V79 cells with GSH increased the cellular GSH content, but had no effect on the induction of SCEs by AM, and pretreatment with cysteine influenced neither GSH levels nor SCE induction by AM. The study shows that SCEs are a suitable indicator for testing the modulation of of drug genotoxicity by GSH. The importance of different GSH contents of cell lines for their response to mutagens is discussed.  相似文献   

5.
Sodium selenite (Na2SeO3) was tested for its sister-chromatid exchange (SCE)-inducing ability in human whole blood cultures and for the effect of its co-exposure with methyl methanesulfonate (MMS) or N-hydroxy-2-acetylaminofluorene (N-OH-AAF) on SCE frequency. Long exposure times (77 h and 96 h) to 3.95 X 10(-6) M Na2SeO3 resulted in cell death as measured by mitotic indices, but mitotic figures were present after exposure to higher concentrations for a shorter time (19 h). High Na2SeO3 concentrations (7.90 X 10(-6) and 1.19 X 10(-5) M) resulted in a three-fold increase in the SCE frequency above background level (6--7 SCEs/cell). Exposure of lymphocytes to 1 X 10(-4) M MMS for the last 19 h of culture yielded an average SCE frequency of 30.17 +/- 0.75 while a similar exposure to 2.7 X 10(-5) M N-OH-AAF resulted in 13.61 +/- 0.43 SCEs/cell. Simultaneous addition of the high Na2SeO3 concentrations and MMS or N-OH-AAF to the cultures resulted in SCE frequencies that were 25--30% and 11--17%, respectively, below the sum of the SCE frequencies produced by the individual compounds.  相似文献   

6.
In experiments to assess the effects of several biological, chemical, and physical variables on sister-chromatid exchange (SCE) induction in cultured lymphocytes exposed to mitomycin C (MMC) before PHA stimulation we observed: (1) high SCE frequencies in female cells, and normal SCE frequencies in Y-bearing metaphases in mixed cultures containing equal numbers of MMC-treated female lymphocytes and untreated male lymphocytes; (2) small, but statistically significant, decreases in SCEs with increasing pH after G0 exposure in the pH range 6.6–7.6; (3) pronounced reductions in MMC-induced SCEs in lymphocytes exposed at 4°C vs. 37°C. In other studies, SCE induction was evaluated in cultures exposed during G0 to MMC concentrations ranging from 0.25 to 2.5 μg/ml for varying time intervals ranging from 5 min to 24 h. For all concentrations tested SCE induction varied as a linear function of G0 exposure time. To compare SCE induction between cultures, we calculated the mean frequencies of SCEs induced per metaphase/unit dose MMC/unit G0 exposure time (SCE/μg/h). A mean frequency of 20.7 ± 4.8 SCE/μg/h was observed for 41 lymphocyte cultures suggesting that a single term adequately describes the rate of SCE induction following G0 exposure to a 10-fold range in concentration of MMC for time intervals of 30 min to 24 h.  相似文献   

7.
We have been developing a rapid and convenient assay for the measurement of DNA damage and repair in specific genes using quantitative polymerase chain reaction (QPCR) methodology. Since the sensitivity of this assay is limited to the size of the DNA amplification fragment, conditions have been found for the quantitative generation of PCR fragments from human genomic DNA in the range of 6-24 kb in length. These fragments include: (1) a 16.2 kb product from the mitochondrial genome; (2) 6.2, 10.4 kb, and 15.4 kb products from the hprt gene, and (3) 13.5, 17.7, 24.2 kb products from the human beta-globin gene cluster. Exposure of SV40 transformed human fibroblasts to increasing fluences of ultraviolet light (UV) resulted in the linear production of photoproducts with 10 J/m(2) of UVC producing 0.085 and 0.079 lesions/kb in the hprt gene and the beta-globin gene cluster, respectively. Kinetic analysis of repair following 10 J/m(2) of UVC exposure indicated that the time necessary for the removal of 50% of the photoproducts, in the hprt gene and beta-globin gene cluster was 7.8 and 24.2 h, respectively. Studies using lymphoblastoid cell lines show very little repair in XPA cells in both the hprt gene and beta-globin locus. Preferential repair in the hprt gene was detected in XPC cells. Cisplatin lesions were also detected using this method and showed slower rates of repair than UV-induced photoproducts. These data indicate that the use of long targets in the gene-specific QPCR assay allows the measurement of biologically relevant lesion frequencies in 5-30 ng of genomic DNA. This assay will be useful for the measurement of human exposure to genotoxic agents and the determination of human repair capacity.  相似文献   

8.
The induction of sister chromatid exchanges (SCEs) was evaluated in the cultured mouse m5S cells after exposure to extremely low frequency magnetic field (ELFMF; 5, 50 and 400 mT). Exposure to 5 mT and 50 mT ELFMF led to a very small increase in the frequency of SCEs, but no significant difference was observed between exposed and unexposed control cells. The cells exposed to 400 mT ELFMF exhibited a significant elevation of the SCE frequencies. There was no significant difference between data from treatments with mitomycin-C (MMC) alone and from combined treatments of MMC plus ELFMF (400 mT) at any MMC concentrations from 4 to 40 nM. These results suggest that exposure to highest-density ELFMF of 400 mT may induce DNA damage, resulting in an elevation of the SCE frequencies. We suppose that there may be a threshold for the elevation of the SCE frequencies, that is at least over the magnetic density of 50 mT.  相似文献   

9.
The induction of sister chromatid exchanges (SCEs) was evaluated in the cultured mouse m5S cells after exposure to extremely low frequency magnetic field (ELFMF; 5, 50 and 400 mT). Exposure to 5 mT and 50 mT ELFMF led to a very small increase in the frequency of SCEs, but no significant difference was observed between exposed and unexposed control cells. The cells exposed to 400 mT ELFMF exhibited a significant elevation of the SCE frequencies. There was no significant difference between data from treatments with mitomycin-C (MMC) alone and from combined treatments of MMC plus ELFMF (400 mT) at any MMC concentrations from 4 to 40 nM. These results suggest that exposure to highest-density ELFMF of 400 mT may induce DNA damage, resulting in an elevation of the SCE frequencies. We suppose that there may be a threshold for the elevation of the SCE frequencies, that is at least over the magnetic density of 50 mT.  相似文献   

10.
Exposure of dilute aqueous solutions of tryptophan to near UV light (320 to 390 nm) at subsolar levels yields fluorescent photoproducts capable of inhibiting the growth and differentiation of cultured mouse embryonic fibroblasts and fertilized sea urchin eggs. The ability of these cells to incorporate labelled precursors of protein, RNA, and DNA into their respective macromolecules was markedly inhibited by adding tryptophan preirradiated with near UV light to their incubation media. Thus the inhibition of growth and differentiation of these cells seems to result from a depression of their ability to synthesize macromolecules in the presence of the photoproducts.  相似文献   

11.
Exposure of primary human fibroblasts or simian virus 40-transformed human keratinocytes to several different classes of DNA damage, including UV light C (254 nm), resulted in a rapid increase in the expression of human major histocompatibility class I (MHC-I) proteins. MHC-I induction was also detected after exposure to low doses of the protein synthesis inhibitor cycloheximide, suggesting that MHC-I induction by DNA damage may be a component in a derepressible cellular SOS pathway.  相似文献   

12.
Bipyrimidine cyclobutane dimers and 6-4'-(pyrimidin-2'-one)-pyrimidine photoproducts are the major adducts formed in DNA following exposure to ultraviolet light. The relationship between the type and frequency of UV-induced DNA damage and the effects of such damage on DNA replication were investigated. UV-irradiated M13 phage DNA was employed in polymerization reactions with the Kenow fragment of Escherichia coli DNA polymerase I. The locations and frequencies of polymerase termination events occurring within a defined sequence of M13 DNA were compared with measurements of the locations and frequencies of UV-induced DNA damage of the same DNA sequence by using UV-specific enzymatic and chemical methods. The results indicate that both cyclobutane dimers and (6-4) photoproducts quantitatively block polymerization by DNA polymerase I.  相似文献   

13.
3-Aminobenzamide, an inhibitor of poly(ADP-ribose) synthesis, increased baseline sister-chromatid exchange (SCE) frequencies and acted synergistically with the alkylating agent methyl methanesulfonate to induce exchanges in Chinese hamster ovary and SV40-transformed human (GM637) cells. In contrast, 3-aminobenzamide did not affect the frequency of ultraviolet light-induced SCEs. Our data suggest that, in these 2 cell types, synthesis of poly(ADP-ribose) is more important in damage and repair after exposure to an alkylating agent than after exposure to ultraviolet light.  相似文献   

14.
15.
16.
The relationship between cytotoxicity, sister-chromatid exchanges (SCE) and the repair of DNA crosslinks was studied in mouse 10T1/2 cells during confluent holding following either acute or protracted MMC treatment. No cytotoxic effects were observed with increasing doses of MMC until SCE frequencies 1.8 times background levels were induced. Protracted MMC treatments were less cytotoxic than acute MMC exposure at doses which yielded similar frequencies of SCE. The kinetics of recovery during confluent holding in acute MMC-treated cells were similar for cytotoxicity and the repair of DNA interstrand crosslinks. These results suggest that a type of non-lethal DNA damage which causes SCE may persist for long periods of time in MMC-treated cells. This non-lethal damage may accumulate during protracted MMC exposure while damage leading to cell killing is repaired.  相似文献   

17.
Exposure of human fibroblasts (IMR-90) to cool-white fluorescent light causes chromatid breaks and exchanges. This chromatid damage is caused largely by the production of hydrogen peroxide (H2O2) since it can be prevented almost completely by the addition of catalase. In support of this conclusion, exogenous H2O2 is shown to induce chromatid breaks. The clastogenic amounts of H2O2 generated during light exposure are formed within the cell since cells illuminated in saline showed the same extent of damage as cells in culture medium. Addition of selenite to the cultures during light exposure significantly decreases the chromatid damage in a dose-related manner and may be necessary to maintain sufficient activity of glutathione peroxidase. The free hydroxyl radical, . OH, appears to be partially responsible for the light-induced chromatid damage. Of the free-radical scavengers tested, i.e., mannitol, vitamin E, and dimethyl sulfoxide, only mannitol, which scavenges . OH, significantly decreases the light-induced chromatid damage. Thus, both . OH and H2O2 formed within the cell during light exposure are agents that directly or indirectly cause chromatid damage.  相似文献   

18.
The effect of cyclobutyl pyrimidine dimers on cytotoxicity, induction of synthesis of the RecA and UmuC proteins, and mutagenesis was studied in Escherichia coli uvrA6 cells possessing excess amounts of photoreactivating enzyme. Exposure of 254 nm ultraviolet-irradiated (10 J/m2) cells to radiation from daylight fluorescent lamps reduced the amounts of thymine-containing dimers in a photoreactivating fluence-dependent manner, up to about 90% reduction at 5 min exposure. Of the lethal ultraviolet damage, 85% was photoreactivable (i.e. cyclobutyl pyrimidine dimers) and 15% was non-photoreactivable. An incident fluence of 1 J/m2 resulted in approximately a 5-fold increase in the synthesis of the RecA and UmuC proteins, as compared to the spontaneous level. If the UV-irradiated cell suspensions were illuminated with a fluorescent lamp at a dose which resulted in the full photoreactivation of viability, the yields of both proteins were reduced to 60% of the non-photoreactivated control cells. Furthermore, photoreactivation was shown to be more effective in the repair of lethal damage than in the repair of premutational damage. These experiments suggest that, among lethal damages, non-photoreactivable damage plays a more important role in both induction of the SOS functions and mutagenesis in uvrA6 cells than do cyclobutyl pyrimidine dimers.  相似文献   

19.
DNA synthesis was examined in ultraviolet (uv)-irradiated ICR 2A frog cells in which either pyrimidine dimers or nondimer photoproducts represented the major class of DNA lesions. Dimers were induced by exposure of cells to 254 nm uv, while nondimer photoproducts were induced by irradiation of cells with uv produced by a fluorescent sunlamp (FSL) that was filtered through 48A Mylar (removes wavelengths less than 310 nm). The FSL-irradiated cultures were also treated with photoreactivating light (PRL) which removed most of the small number of dimers induced by the irradiation, leaving a relatively pure population of nondimer photoproducts. In addition, cells were exposed to 60Co gamma rays. The cultures were pulse-labeled and the size distribution of the DNA synthesized was estimated using both sucrose gradient sedimentation and alkaline step elution. Using either of these techniques, it was found that the presence of dimers resulted in a reduction principally in the synthesis of high molecular weight (MW) DNA. In contrast, nondimer photoproducts caused a strong inhibition in the synthesis of low MW DNA, as was also observed in gamma-irradiated cells. Hence the induction of pyrimidine dimers in DNA mainly affected the elongation of replicons, whereas nondimer lesions primarily caused an inhibition of replicon initiation.  相似文献   

20.
Exposure of human lymphocyte cultures to a pulsing electromagnetic field (PEMF; 50 Hz, 1.05 mT) for various durations (24, 48 and 72 h) resulted in a statistically significant suppression of mitotic activity and a higher incidence of chromosomal aberrations. Furthermore, the shorter exposure times (24 and 48 h) did not cause a significant delay in cell turnover (cell proliferation index) or an increase in the baseline frequency of sister-chromatid exchanges (SCE). However, cultures continuously exposed to PEMF for 72 h exhibited significant reduction of the cell proliferation index (CPI) and an elevation of SCE rate. These results suggest that exposure to PEMF may induce a type of DNA lesions that lead to chromosomal aberrations and cell death but not to SCE, except probably at longer exposure times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号