共查询到20条相似文献,搜索用时 15 毫秒
1.
Yin Z Patel SJ Wang WL Chan WL Ranga Rao KR Wang G Ngew X Patel V Beer D Knox JE Ma NL Ehrhardt C Lim SP Vasudevan SG Keller TH 《Bioorganic & medicinal chemistry letters》2006,16(1):40-43
With the aim of discovering potent and selective dengue NS3 protease inhibitors, we systematically synthesized and evaluated a series of tetrapeptide aldehydes based on lead aldehyde 1 (Bz-Nle-Lys-Arg-Arg-H, K(i)=5.8 microM). In general, we observe that interactions of P(2) side chain are more important than P(1) followed by P(3) and P(4). Tripeptide and dipeptide aldehyde inhibitors also show low micromolar activity. Additionally, an effective non-basic, uncharged replacement of P(1) Arg is identified. 相似文献
2.
Edeildo Ferreira da Silva-Júnior João Xavier de Araújo-Júnior 《Bioorganic & medicinal chemistry》2019,27(18):3963-3978
Currently, more than 70 flaviviruses were identified and reported in the literature, whose Dengue (DENV), Zika (ZIKV), and West Nile (WNV) viruses have been responsible for millions of cases of infections worldwide, mainly in developing countries. These viruses are transmitted by the bite of mosquitoes from genus Aedes, or Culex and, in some cases, Stegomyia. Despite numerous efforts to identify a selective, safe, and effective antiviral agent, there is no currently approved drug for the treatment of flaviviral infections. Then, current pharmacological therapy has the objective to treat the clinical symptoms. Various peptidomimetics and peptide-derivatives have been synthesized and evaluated against several biological targets from flaviviruses with different applications, such as diagnosis, E protein inhibitors, entry inhibitors, virucidal inhibitors, and also viral replication inhibitors. Flaviviral replication depends on the NS3pro that is completely activated when it is complexed to its cofactor, NS2B; forming a viral enzymatic complex. The development of NS2B-NS3pro inhibitors is considered a challenging work due to its active site is shallow and open-pocket. In this work, we report all advances involving peptidomimetics, peptide-derived, and peptide-hybrids found in the literature. In sense, we discuss the influence of different functional groups in the activity and selectivity. Moreover, the first inhibitors reported in the literature as covalent ligands, comprising two basic residues followed by an electrophilic moiety that binds to the catalytic serine (Ser135–O?) are also discussed in details, such as trifluoromethyl ketones, aldehydes, and boronic acids. Furthermore, it is presented the influence of introducing transition metals, providing metallopeptide inhibitors; and cyclization of linear peptides, generating cyclic and macrocyclic peptide inhibitors. Finally, we provide the most accurate state of the art found in the literature, which can be utilized to design new and effective antiviral agents. 相似文献
3.
Marcin Skoreński Aleksandra Milewska Krzysztof Pyrć Marcin Sieńczyk 《Journal of enzyme inhibition and medicinal chemistry》2019,34(1):8-14
West Nile virus (WNV) is a member of the flavivirus genus belonging to the Flaviviridae family. The viral serine protease NS2B/NS3 has been considered an attractive target for the development of anti-WNV agents. Although several NS2B/NS3 protease inhibitors have been described so far, most of them are reversible inhibitors. Herein, we present a series of α-aminoalkylphosphonate diphenyl esters and their peptidyl derivatives as potent inhibitors of the NS2B/NS3 protease. The most potent inhibitor identified was Cbz-Lys-Arg-(4-GuPhe)P(OPh)2 displaying Ki and k2/Ki values of 0.4 µM and 28 265 M?1s?1, respectively, with no significant inhibition of trypsin, cathepsin G, and HAT protease. 相似文献
4.
Rönn R Lampa A Peterson SD Gossas T Akerblom E Danielson UH Karlén A Sandström A 《Bioorganic & medicinal chemistry》2008,16(6):2955-2967
Inhibition of the hepatitis C virus (HCV) NS3 protease has emerged as an attractive approach to defeat the global hepatitis C epidemic. In this work, we present the synthesis and biochemical evaluation of HCV NS3 protease inhibitors comprising a non-natural aromatic P(1) moiety. A series of inhibitors with aminobenzoyl sulfonamides displaying submicromolar potencies in the full-length NS3 protease assay was prepared through a microwave-irradiated, palladium-catalyzed, amidocarbonylation protocol. 相似文献
5.
Murray D. Bailey Josée Bordeleau Michel Garneau Mélissa Leblanc Christopher T. Lemke Jeff O’Meara Peter W. White Montse Llinàs-Brunet 《Bioorganic & medicinal chemistry letters》2013,23(15):4447-4452
A number of potent peptidic inhibitors of the NS3 protease have been described in the literature based on a substrate-based approach. In an on-going effort to reduce the peptidic character of this class of inhibitors, two novel series of analogs have been prepared in which the usual P3 amino acid residue is replaced by a succinamide fragment. This new backbone modification not only reduces the peptidic nature of traditional inhibitors but also provides new SAR opportunities for the capping group. Optimization of each of these two series resulted in inhibitors with sub-nanomolar potencies. 相似文献
6.
Truncation and substitution SAR studies of azapeptide-based inhibitors of the Hepatitis C virus (HCV) NS3 serine protease have been performed. These azapeptides were designed from the HCV polyprotein's NS5A-NS5B trans cleavage junction and contained an azaamino acid residue at the P1 position. These azapeptides exhibited predominantly non-acylating, competitive inhibition, contrary to classical azapeptides. 相似文献
7.
Perni RB Pitlik J Britt SD Court JJ Courtney LF Deininger DD Farmer LJ Gates CA Harbeson SL Levin RB Lin C Lin K Moon YC Luong YP O'Malley ET Rao BG Thomson JA Tung RD Van Drie JH Wei Y 《Bioorganic & medicinal chemistry letters》2004,14(6):1441-1446
The alpha-ketoamide warhead (e.g., 15) was found to be a practical replacement for aliphatic aldehydes in a series of HCV NS3.4A protease inhibitors. Structure-activity relationships and prime side optimization are discussed. 相似文献
8.
Kanin Wichapong Somsak Pianwanit Wolfgang Sippl Sirirat Kokpol 《Journal of molecular recognition : JMR》2010,23(3):283-300
The pathogenic West Nile virus (WNV) and Dengue virus (DV) are growing global threats for which there are no specific treatments. Both viruses possess a two component NS2B/NS3 protease which cleaves viral precursor proteins. Whereas for the WNV protease two crystal structures in complex with an inhibitor have been solved recently, no such information is available for the DV protease. Here, we report the generation of a homology model of DV NS2B/NS3 protease. Since it is known from the related WNV protease that it adopts a distinct conformation in free and in inhibitor‐complexed form, a special emphasis was given to the analysis of the protease flexibility. Therefore, several models of DV NS2B/NS3 protease complexed with the peptidic inhibitor (Bz‐Nle(P4)‐Lys(P3)‐Arg(P2)‐Arg(P1)‐H) were generated. The first DV protease model (DV‐1) was constructed using the available crystal structure of the apo DV NS2B/NS3 protease. The second model (DV‐2) was built taking the WNV NS3/NS2B protease in the inhibitor‐complexed form as the template structure. Molecular dynamics simulations which were carried out for the WNV crystal structures as well as for the DV models provided an understanding of the role of NS2B for maintaining the protease in the active conformation. It was also demonstrated that NS2B is not only important for maintaining NS3 in the active form, but is also essential for establishing the interaction between residues from the S2 pocket and the peptidic inhibitor. The DV NS2B/NS3 model in the productive conformation can now be used for structure‐based design purposes. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
9.
【目的】圣路易斯脑炎病毒(St. Louis encephalitis virus,SLEV)属于黄病毒科,是一种单股正链RNA病毒。黄病毒编码的非结构蛋白NS3在病毒复制以及多聚蛋白加工过程中起着重要作用,NS2B是其发挥作用的重要辅助因子。因此,NS2B-NS3蛋白酶复合物是抗病毒药物的重要靶标。本研究旨在构建SLEV NS2B-NS3蛋白酶的原核表达系统并建立其抑制剂的高通量筛选方法,从而发现其小分子抑制剂。【方法】通过PCR扩增SLEVNS2B-NS3蛋白的编码区,构建原核表达质粒;在大肠杆菌BL21(DE3)中,经异丙基硫代半乳糖苷(Isopropyl β-D-thiogalactoside)诱导得到可溶性的NS2B-NS3蛋白,并用镍亲和层析方法进行纯化;基于荧光共振能量转移(Fluorescence resonance energy transfer)技术检测NS2B-NS3蛋白酶活性,建立其抑制剂的高通量筛选平台。【结果】SLEV NS2B-NS3蛋白酶纯化程度高达95%以上,基于酶活测定的抑制剂筛选平台准确可行。对700多个上市药物进行筛选后,发现原花青素对SLEVNS2B-NS3蛋白酶具有明显的抑制活性。【结论】本研究为SLEVNS2B-NS3蛋白酶抑制剂提供了一种操作方便、高通量的筛选方法,并首次发现了原花青素具有抑制SLEV NS2B-NS3蛋白酶活性的功能,可以作为治疗SLEV感染的潜在靶向药物。 相似文献
10.
Poliakov A Johansson A Akerblom E Oscarsson K Samuelsson B Hallberg A Danielson UH 《Biochimica et biophysica acta》2004,1672(1):51-59
The selectivity of hepatitis C virus (HCV) non-structural protein 3 (NS3) protease inhibitors was determined by evaluating their inhibitory effect on other serine proteases (human leukocyte elastase (HLE), porcine pancreatic elastase (PPE), bovine pancreatic chymotrypsin (BPC)) and a cysteine protease (cathepsin B). For these peptide inhibitors, the P1-side chain and the C-terminal group were the major determinants of selectivity. Inhibitors with electrophilic C-terminal residues were generally non-selective while compounds with non-electrophilic C-terminal residues were more selective. Furthermore, compounds with P1 aminobutyric acid residues were non-selective, while 1-aminocyclopropane-1-carboxylic acid (ACPC) and norvaline-based inhibitors were generally selective. The most potent and selective inhibitors of NS3 protease tested contained a non-electrophilic phenyl acyl sulfonamide C-terminal residue. HLE was most likely to be inhibited by the HCV protease inhibitors, in agreement with similar substrate specificities for these enzymes. The identified structure-activity relationships for selectivity are of significance for design of selective HCV NS3 protease inhibitors. 相似文献
11.
Perni RB Farmer LJ Cottrell KM Court JJ Courtney LF Deininger DD Gates CA Harbeson SL Kim JL Lin C Lin K Luong YP Maxwell JP Murcko MA Pitlik J Rao BG Schairer WC Tung RD Van Drie JH Wilson K Thomson JA 《Bioorganic & medicinal chemistry letters》2004,14(8):1939-1942
We recently described the identification of an optimized alpha-ketoamide warhead for our series of HCV NS3.4A inhibitors. We report herein a series of HCV protease inhibitors incorporating 3-alkyl-substituted prolines in P(2). These compounds show exceptional enzymatic and cellular potency given their relatively small size. The marked enhancement of activity of these 3-substituted proline derivatives relative to previously reported 4-hydroxyproline derivatives constitutes additional evidence for the importance of the S(2) binding pocket as the defining pharmacophore for inhibition of the NS3.4A enzyme. 相似文献
12.
《Bioorganic & medicinal chemistry letters》2014,24(3):969-972
A sulfonamide replacement of the P2–P3 amide bond in the context of macrocyclic HCV NS3 protease inhibitors was investigated. These analogs displayed good inhibitory potency in the absence of any P3 capping group. The synthesis and preliminary SAR are described. 相似文献
13.
Naud J Lemke C Goudreau N Beaulieu E White PD Llinàs-Brunet M Forgione P 《Bioorganic & medicinal chemistry letters》2008,18(11):3400-3404
The design and synthesis of tripeptide-based inhibitors of the HCV NS3 protease containing a novel P2-triazole is described. Replacement of the P2 quinoline with a triazole moiety provided a versatile handle which could be expediently modified to generate a diverse series of inhibitors. Further refinement by the incorporation of an aryl-substituted triazole and replacement of the P1 acid with an acyl sulfonamide ultimately provided inhibitors with interesting cellular activity. 相似文献
14.
X. Christopher Sheng Hyung-Jung Pyun Kleem Chaudhary Jianying Wang Edward Doerffler Melissa Fleury Darren McMurtrie Xiaowu Chen William E. Delaney Choung U. Kim 《Bioorganic & medicinal chemistry letters》2009,19(13):3453-3457
A novel class of phosphonate derivatives was designed to mimic the interaction of product-like carboxylate based inhibitors of HCV NS3 protease. A phosphonic acid (compound 2) was demonstrated to be a potent HCV NS3 protease inhibitor, and a potential candidate for treating HCV infection. The syntheses and preliminary biological evaluation of this phosphonate class of inhibitor are described. 相似文献
15.
Arakaki TL Fang NX Fairlie DP Young PR Martin JL 《Protein expression and purification》2002,25(2):241-247
An active form of the Dengue virus protease NS3 (CF40.Gly.NS3pro) was expressed in Escherichia coli. This construct consists of a critical 40 amino acid cofactor domain from NS2B fused to the N-terminal 184 amino acid protease domain of NS3 via a flexible, covalent linker (Gly(4)SerGly(4)). The recombinantly produced protein is soluble and has a hexa-histidine tag engineered at the N-terminus for ease of purification using metal affinity chromatography. However, the presence of lower molecular weight impurities after affinity chromatography indicated the need for additional purification steps. The consistent appearance of these impurities suggested that they may be the products of proteolysis and/or auto-proteolysis. The latter possibility was subsequently excluded by the observation of the same impurities in a purified, catalytically inactive form of the recombinant protease (CF40.Gly.NS3pro.SA). Further analysis indicated that these impurities may represent premature translation termination products. Regardless of their origin, they were shown to form various sized aggregates with full-length CF40.Gly.NS3pro that can be separated by size exclusion chromatography, yielding fractions of active protease of sufficient purity for crystallisation trials. The ultimate goal of these studies is to obtain a crystal structure of a catalytically active form of the Dengue virus NS3 protease for structure-based drug design. 相似文献
16.
Han W Hu Z Jiang X Wasserman ZR Decicco CP 《Bioorganic & medicinal chemistry letters》2003,13(6):1111-1114
Using a tetrapeptide-based alpha-ketoamide template, various amines and amino acids were incorporated to explore the prime side of the HCV NS3 protease catalytic site. Glycine carboxylic acid was found to be the most effective prime group. Further optimization yielded an inhibitor with IC(50) of 0.060 microM. 相似文献
17.
P1 Phenethyl peptide boronic acid inhibitors of HCV NS3 protease 总被引:1,自引:0,他引:1
Priestley ES De Lucca I Ghavimi B Erickson-Viitanen S Decicco CP 《Bioorganic & medicinal chemistry letters》2002,12(21):3199-3202
A series of peptide boronic acids containing extended, hydrophobic P1 residues was prepared to probe the shallow, hydrophobic S1 region of HCV NS3 protease. The p-trifluoromethylphenethyl P1 substituent was identified as optimal with respect to inhibitor potency for NS3 and selectivity against elastase and chymotrypsin. 相似文献
18.
E Bianchi S Orrù F Dal Piaz R Ingenito A Casbarra G Biasiol U Koch P Pucci A Pessi 《Biochemistry》1999,38(42):13844-13852
One of the most promising approaches to anti-hepatitis C virus drug discovery is the development of inhibitors of the virally encoded protease NS3. This chymotrypsin-like serine protease is essential for the maturation of the viral polyprotein, and processing requires complex formation between NS3 and its cofactor NS4A. Recently, we reported on the discovery of potent cleavage product-derived inhibitors [Ingallinella et al. (1998) Biochemistry 37, 8906-8914]. Here we study the interaction of these inhibitors with NS3 and the NS3/cofactor complex. Inhibitors bind NS3 according to an induced-fit mechanism. In the absence of cofactor different binding modes are apparent, while in the presence of cofactor all inhibitors show the same binding mode with a small rearrangement in the NS3 structure, as suggested by circular dichroism spectroscopy. These data are consistent with the hypothesis that NS4A complexation induces an NS3 structure that is already (but not entirely) preorganized for substrate binding not only for what concerns the S' site, as already suggested, but also for the S site. Inhibitor binding to the NS3/cofactor complex induces the stabilization of the enzyme structure as highlighted by limited proteolysis experiments. We envisage that this may occur through stabilization of the individual N-terminal and C-terminal domains where the cofactor and inhibitor, respectively, bind and subsequent tightening of the interdomain interaction in the ternary complex. 相似文献
19.
Alpha-ketoacids are potent slow binding inhibitors of the hepatitis C virus NS3 protease 总被引:1,自引:0,他引:1
Narjes F Brunetti M Colarusso S Gerlach B Koch U Biasiol G Fattori D De Francesco R Matassa VG Steinkühler C 《Biochemistry》2000,39(7):1849-1861
The replication of the hepatitis C virus (HCV), an important human pathogen, crucially depends on the proteolytic maturation of a large viral polyprotein precursor. The viral nonstructural protein 3 (NS3) harbors a serine protease domain that plays a pivotal role in this process, being responsible for four out of the five cleavage events that occur in the nonstructural region of the HCV polyprotein. We here show that hexapeptide, tetrapeptide, and tripeptide alpha-ketoacids are potent, slow binding inhibitors of this enzyme. Their mechanism of inhibition involves the rapid formation of a noncovalent collision complex in a diffusion-limited, electrostatically driven association reaction followed by a slow isomerization step resulting in a very tight complex. pH dependence experiments point to the protonated catalytic His 57 as an important determinant for formation of the collision complex. K(i) values of the collision complexes vary between 3 nM and 18.5 microM and largely depend on contacts made by the peptide moiety of the inhibitors. Site-directed mutagenesis indicates that Lys 136 selectively participates in stabilization of the tight complex but not of the collision complex. A significant solvent isotope effect on the isomerization rate constant is suggestive of a chemical step being rate limiting for tight complex formation. The potency of these compounds is dominated by their slow dissociation rate constants, leading to complex half-lives of 11-48 h and overall K(i) values between 10 pM and 67 nM. The rate constants describing the formation and the dissociation of the tight complex are relatively independent of the peptide moiety and appear to predominantly reflect the intrinsic chemical reactivity of the ketoacid function. 相似文献
20.
Jenny Kouretova M. Zouhir Hammamy Anton Epp Kornelia Hardes Stephanie Kallis Linlin Zhang 《Journal of enzyme inhibition and medicinal chemistry》2017,32(1):712-721
West Nile virus (WNV) and Dengue virus (DENV) replication depends on the viral NS2B-NS3 protease and the host enzyme furin, which emerged as potential drug targets. Modification of our previously described WNV protease inhibitors by basic phenylalanine analogs provided compounds with reduced potency against the WNV and DENV protease. In a second series, their decarboxylated P1-trans-(4-guanidino)cyclohexylamide was replaced by an arginyl-amide moiety. Compound 4-(guanidinomethyl)-phenylacetyl-Lys-Lys-Arg-NH2 inhibits the NS2B-NS3 protease of WNV with an inhibition constant of 0.11?µM. Due to the similarity in substrate specificity, we have also tested the potency of our previously described multibasic furin inhibitors. Their further modification provided chimeric inhibitors with additional potency against the WNV and DENV proteases. A strong inhibition of WNV and DENV replication in cell culture was observed for the specific furin inhibitors, which reduced virus titers up to 10,000-fold. These studies reveal that potent inhibitors of furin can block the replication of DENV and WNV. 相似文献