首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G A Elhag  D P Bourque 《Biochemistry》1992,31(29):6856-6864
A tobacco (Nicotiana tabacum cv. Petite Havana) leaf cDNA library was constructed in the expression vector lambda gt11. Immunological and nucleic acid hybridization screening yielded several cDNAs encoding an M(r) 19,641 precursor to an M(r) 14,420 mature protein which is homologous to Escherichia coli ribosomal protein L27. One cDNA (L27-1; 882 nucleotides long) contains 104 bp of 5'-noncoding sequence, 51 codons for a transit peptide, 128 codons for the predicted mature L27 polypeptide, and 241 bp of 3'-noncoding sequence, including the poly(A)29 tail. A beta-galactosidase-L27 fusion protein was bound to nitrocellulose filters, expressed, and used as an affinity matrix to purify monospecific antibody to L27 protein from an antiserum of rabbits immunized with 50S chloroplast ribosomal proteins. Using this monospecific antibody, protein L27 was identified among HPLC-purified tobacco chloroplast ribosome 50S subunit proteins. The predicted amino terminus of the mature L27 protein was confirmed by partial sequencing of the HPLC-purified L27 protein. The mature L27 protein has 66%, 61%, 56%, and 48% amino acid sequence identity with the L27-type ribosomal proteins of Bacillus subtilis, E. coli, Bacillus stearo-thermophilus, and yeast mitochondria (MRP7), respectively, in the homologous overlapping regions. The transit peptide of tobacco chloroplast ribosomal protein L27 has 41% amino acid sequence similarity with the MRP7 mitochondrial targeting sequence. Tobacco chloroplast L27 protein also has a 40 amino acid long carboxyl-terminal extension (compared to its bacterial counterparts) which is similar to the corresponding portion of yeast MRP7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have cloned the nuclear gene MRP4 coding for a mitochondrial ribosomal protein of the yeast, Saccharomyces cerevisiae. The gene was isolated by complementation of a respiratory-deficient mutant with a pleiotropic defect in mitochondrial gene expression. The nucleotide sequence of MRP4 revealed that it has sequence similarity with Escherichia coli ribosomal protein S2 and related proteins of chloroplast ribosomes from different plants. Further characterization of the MRP4 protein revealed that it is a component of the 37 S subunit of mitochondrial ribosomes. Moreover, the phenotype of cells carrying a disrupted copy of MRP4 is consistent with the MRP4 protein being an essential component of the mitochondrial protein synthetic machinery. Finally, we note that the MRP4 protein and other members of the S2 family of ribosomal proteins have regions of sequence similarity with the mammalian 68-kDa high affinity laminin receptor.  相似文献   

3.
MRP20 and MRP49 are proteins of the large subunit of the mitochondrial ribosome in Saccharomyces cerevisiae. Their genes were identified through immunological screening of a genomic library in the expression vector lambda gt11. Nucleotide sequencing revealed that MRP49 is tightly linked to TPK3 and encodes a 16-kDa, basic protein with no significant relatedness to any other known protein. MRP20 specifies a 263-amino-acid polypeptide with sequence similarity to members of the L23 family of ribosomal proteins. The levels of the mRNAs and proteins for both MRP20 and MRP49 were regulated in response to carbon source. In [rho0] strains lacking mitochondrial rRNA, the levels of the two proteins were reduced severalfold, presumably because the unassembled proteins are unstable. Null mutants of MRP20 converted to [rho-] or [rho0], a characteristic phenotype of mutations in essential genes for mitochondrial translation. Inactivation of MRP49 caused a cold-sensitive respiration-deficient phenotype, indicating that MRP49 is not an essential ribosomal protein. The mrp49 mutants were defective in the assembly of stable 54 S ribosomal subunits at the nonpermissive temperature. With the results presented here, there are now published sequences for 14 yeast mitochondrial ribosomal proteins, only five of which bear discernable relationships to eubacterial ribosomal proteins.  相似文献   

4.
O'Brien TW 《IUBMB life》2003,55(9):505-513
Mammalian mitochondrial ribosomes (55S) differ unexpectedly from bacterial (70S) and cytoplasmic ribosomes (80S), as well as other kinds of mitochondrial ribosomes. Typical of mammalian mitochondrial ribosomes, the bovine mitochondrial ribosome has been developed as a model system for the study of human mitochondrial ribosomes, to address several questions related to the structure, function, biosynthesis and evolution of these interesting ribosomes. Bovine mitochondrial ribosomal proteins (MRPs) from each subunit have been identified and characterized with respect to individuality and electrophoretic properties, amino acid sequence, topographic disposition, RNA binding properties, evolutionary relationships and reaction with affinity probes of ribosomal functional domains. Several distinctive properties of these ribosomes are being elucidated, including their antibiotic susceptibility and composition. Human mitochondrial ribosomes lack several of the major RNA stem structures of bacterial ribosomes but they contain a correspondingly higher protein content (as many as 80 proteins), suggesting a model where proteins have replaced RNA structural elements during the evolution of these ribosomes. Despite their lower RNA content they are physically larger than bacterial ribosomes, because of the 'extra' proteins they contain. The extra proteins in mitochondrial ribosomes are 'new' in the sense that they are not homologous to proteins in bacterial or cytoplasmic ribosomes. Some of the new proteins appear to be bifunctional. All of the mammalian MRPs are encoded in nuclear genes (a separate set from those encoding cytoplasmic ribosomal proteins) which are evolving more rapidly than those encoding cytoplasmic ribosomal proteins. The MRPs are imported into mitochondria where they assemble coordinately with mitochondrially transcribed rRNAs into ribosomes that are responsible for translating the 13 mRNAs for essential proteins of the oxidative phosphorylation system.  相似文献   

5.
Identification of all the protein components of the small subunit (28 S) of the mammalian mitochondrial ribosome has been achieved by carrying out proteolytic digestions of whole 28 S subunits followed by analysis of the resultant peptides by liquid chromatography and tandem mass spectrometry (LC/MS/MS). Peptide sequence information was used to search the human EST data bases and complete coding sequences of the proteins were assembled. The human mitochondrial ribosome has 29 distinct proteins in the small subunit. Fourteen of this group of proteins are homologs of the Escherichia coli 30 S ribosomal proteins S2, S5, S6, S7, S9, S10, S11, S12, S14, S15, S16, S17, S18, and S21. All of these proteins have homologs in Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae mitochondrial ribosomes. Surprisingly, three variants of ribosomal protein S18 are found in the mammalian and D. melanogaster mitochondrial ribosomes while C. elegans has two S18 homologs. The S18 homologs tend to be more closely related to chloroplast S18s than to prokaryotic S18s. No mitochondrial homologs to prokaryotic ribosomal proteins S1, S3, S4, S8, S13, S19, and S20 could be found in the peptides obtained from the whole 28 S subunit digests or by analysis of the available data bases. The remaining 15 proteins present in mammalian mitochondrial 28 S subunits (MRP-S22 through MRP-S36) are specific to mitochondrial ribosomes. Proteins in this group have no apparent homologs in bacterial, chloroplast, archaebacterial, or cytosolic ribosomes. All but two of these proteins have a clear homolog in D. melanogaster while all but three can be found in the genome of C. elegans. Five of the mitochondrial specific ribosomal proteins have homologs in S. cerevisiae.  相似文献   

6.
7.
Mammalian mitochondrial small subunit ribosomal proteins were separated by two-dimensional polyacrylamide gel electrophoresis. The proteins in six individual spots were subjected to in-gel tryptic digestion. Peptides were separated by capillary liquid chromatography, and the sequences of selected peptides were obtained by electrospray tandem mass spectrometry. The peptide sequences obtained were used to screen human expressed sequence tag data bases, and complete consensus cDNAs were assembled. Mammalian mitochondrial small subunit ribosomal proteins from six different classes of ribosomal proteins were identified. Only two of these proteins have significant sequence similarities to ribosomal proteins from prokaryotes. These proteins correspond to Escherichia coli S10 and S14. Homologs of two human mitochondrial proteins not found in prokaryotes were observed in the genomes of Drosophila melanogaster and Caenorhabditis elegans. A homolog of one of these proteins was observed in D. melanogaster but not in C. elegans, while a homolog of the other was present in C. elegans but not in D. melanogaster. A homolog of one of the ribosomal proteins not found in prokaryotes was tentatively identified in the yeast genome. This latter protein is the first reported example of a ribosomal protein that is shared by mitochondrial ribosomes from lower and higher eukaryotes that does not have a homolog in prokaryotes.  相似文献   

8.
9.
Mitochondrial ribosomal proteins (MRPs) are required for the translation of all 13 mitochondrial encoded genes in humans. It has been speculated that mutations and polymorphisms in the human MRPs may be a primary cause of some oxidative phosphorylation disorders or modulate the severity and tissue specificity of pathogenic mitochondrial DNA mutations. Although the sequences of most of the yeast MRPs are known, only very few mammalian and nearly no human MRPs have been completely characterized. MRPs differ greatly in sequence, and sometimes biochemical properties, between different species, not allowing easy recognition by sequence homology. Therefore, the Mammalian Mitochondrial Ribosomal Consortium is using a direct approach of purifying individual mammalian (bovine) MRPs, determining their N-terminal and/or internal peptide sequences using different protein sequencing techniques, and using the resulting sequence information for screening expressed sequence tags and genomic data bases to determine human, mouse, and rat homologues of the bovine proteins. Two proteins of the large and three proteins of the small ribosomal subunit have been analyzed in this manner. Three of them represent "new," i.e. formerly unknown mammalian mitochondrial ribosomal protein classes. Only one of these three different MRPs shows significant sequence similarities to known ribosomal proteins. In one case, the corresponding human genomic DNA sequences were found in the data bases, and the exon/intron structure was determined.  相似文献   

10.
Graack HR  Bryant ML  O'Brien TW 《Biochemistry》1999,38(50):16569-16577
Bovine mitochondrial ribosomes are presented as a model system for mammalian mitochondrial ribosomes. An alternative system for identifying individual bovine mitochondrial ribosomal proteins (MRPs) by RP-HPLC is described. To identify and to characterize individual MRPs proteins were purified from bovine liver, separated by RP-HPLC, and identified by 2D PAGE techniques and immunoblotting. Molecular masses of individual MRPs were determined. Selected proteins were subjected to N-terminal amino acid sequencing. The peptide sequences obtained were used to screen different databases to identify several corresponding MRP sequences from human, mouse, rat, and yeast. Signal sequences for mitochondrial import were postulated by comparison of the bovine mature N-termini determined by amino acid sequencing with the deduced mammalian MRP sequences. Significant sequence similarities of these new MRPs to known r-proteins from other sources, e.g., E. coli, were detected only for two of the four MRP families presented. This finding suggests that mammalian mitochondrial ribosomes contain several novel proteins. Amino acid sequence information for all of the bovine MRPs will prove invaluable for assigning functions to their genes, which would otherwise remain unknown.  相似文献   

11.
E. coli ribosomal DNA has been used to probe maize mitochondrial DNA. It hybridizes primarily with chloroplast ribosomal DNA sequences and with fungal and bacterial sequences which may contaminate the mtDNA preparations. It also hybridizes to the chloroplast 16S ribosomal RNA gene sequence present in the mitochondrial genome (1) as well as to the mitochondrial 18S ribosomal RNA gene sequence. Weak sequence homology was detected between E. coli rDNA and the mitochondrial 26S ribosomal RNA gene.  相似文献   

12.
Discoordinate expression of the yeast mitochondrial ribosomal protein MRP1   总被引:6,自引:0,他引:6  
We have examined expression of the protein coded within the MRP 1 locus of Saccharomyces cerevisiae. Direct evidence is provided for the assignment of the MRP1 gene product as a protein component of the small subunit of mitochondrial ribosomes. Further studies examined the extent to which the expression of the MRP1 protein is coordinated with the expression of other mitochondrial ribosomal components coded in the nuclear and mitochondrial genomes. Extra copies of the MRP1 gene were introduced into yeast cells to perturb expression from MRP1 relative to other mitochondrial ribosomal components to determine whether forms of regulation function to limit the accumulation of either MRP1 mRNA or protein under these conditions. Increases in MRP1 gene dosage were accompanied by substantial increases in both MRP1 mRNA and protein, indicating that their accumulation was not linked to the level of expression of other mitochondrial ribosomal components. This conclusion was confirmed by additional studies that showed that the accumulation of the MRP1 protein was unaffected in cells that did not express mitochondrially-encoded rRNAs. These results contrast with previous studies on the expression of two other mitochondrial ribosomal proteins indicating that regulatory properties of mitochondrial ribosomal proteins are quite diverse.  相似文献   

13.
Reconstructing the evolution of the mitochondrial ribosomal proteome   总被引:4,自引:1,他引:3  
For production of proteins that are encoded by the mitochondrial genome, mitochondria rely on their own mitochondrial translation system, with the mitoribosome as its central component. Using extensive homology searches, we have reconstructed the evolutionary history of the mitoribosomal proteome that is encoded by a diverse subset of eukaryotic genomes, revealing an ancestral ribosome of alpha-proteobacterial descent that more than doubled its protein content in most eukaryotic lineages. We observe large variations in the protein content of mitoribosomes between different eukaryotes, with mammalian mitoribosomes sharing only 74 and 43% of its proteins with yeast and Leishmania mitoribosomes, respectively. We detected many previously unidentified mitochondrial ribosomal proteins (MRPs) and found that several have increased in size compared to their bacterial ancestral counterparts by addition of functional domains. Several new MRPs have originated via duplication of existing MRPs as well as by recruitment from outside of the mitoribosomal proteome. Using sensitive profile–profile homology searches, we found hitherto undetected homology between bacterial and eukaryotic ribosomal proteins, as well as between fungal and mammalian ribosomal proteins, detecting two novel human MRPs. These newly detected MRPs constitute, along with evolutionary conserved MRPs, excellent new screening targets for human patients with unresolved mitochondrial oxidative phosphorylation disorders.  相似文献   

14.
O'Brien TW 《Gene》2002,286(1):73-79
Mitochondrial ribosomes comprise the most diverse group of ribosomes known. The mammalian mitochondrial ribosomes (55S) differ unexpectedly from bacterial (70S) and cytoplasmic ribosomes (80S), as well as other kinds of mitochondrial ribosomes. The bovine mitochondrial ribosome has been developed as a model system for the study of human mitochondrial ribosomes to address several questions related to the structure, function, biosynthesis and evolution of these interesting ribosomes. Bovine mitochondrial ribosomal proteins (MRPs) from each subunit have been identified and characterized with respect to individuality and electrophoretic properties, amino acid sequence, topographic disposition, RNA binding properties, evolutionary relationships and reaction with affinity probes of ribosomal functional domains. Several distinctive properties of these ribosomes are being elucidated, including their antibiotic susceptibility and composition. Mammalian mitochondrial ribosomes lack several of the major RNA stem structures of bacterial ribosomes but they contain a correspondingly higher protein content (as many as 80 proteins), suggesting a model where proteins have replaced RNA structural elements during the evolution of these ribosomes. Despite their lower RNA content they are physically larger than bacterial ribosomes, because of the 'extra' proteins they contain. The extra proteins in mitochondrial ribosomes are 'new' in the sense that they are not homologous to proteins in bacterial or cytoplasmic ribosomes. Some of the new proteins appear to be bifunctional. All of the mammalian MRPs are encoded in nuclear genes (a separate set from those encoding cytoplasmic ribosomal proteins) which are evolving more rapidly than those encoding cytoplasmic ribosomal proteins. The MRPs are imported into mitochondria where they assemble coordinately with mitochondrially transcribed rRNAs into ribosomes that are responsible for translating the 13 mRNAs for essential proteins of the oxidative phosphorylation system. Interest is growing in the structure, organization, chromosomal location and expression of genes for human MRPs. Proteins which are essential for mitoribosome function are candidates for involvement in human genetic disease.  相似文献   

15.
The nuclear gene for mitochondrial ribosomal protein YmL9 (MRP-L9) of yeast has been cloned and sequenced. The deduced amino acid sequence characterizes YmL9 as a basic (net charge + 30) protein of 27.5 kDa with a putative signal peptide for mitochondrial import of 19 amino acid residues. The intact MRP-L9 gene is essential for mitochondrial function and is located on chromosome XV or VII. YmL9 shows significant sequence similarities to Escherichia coli ribosomal protein L3 and related proteins from various organisms of all three natural kingdoms as well as photosynthetic organelles (cyanelles). The observed structural conservation is located mostly in the C-terminal half and is independent of the intracellular location of the corresponding genes [Graack, H.-R., Grohmann, L. & Kitakawa, M. (1990) Biol. Chem. Hoppe Seyler 371, 787-788]. YmL9 shows the highest degree of sequence similarity to its eubacterial and cyanelle homologues and is less related to the archaebacterial or eukaryotic cytoplasmic ribosomal proteins. Due to their high sequence similarity to the YmL9 protein two mammalian cytoplasmic ribosomal proteins [MRL3 human and rat; Ou, J.-H., Yen, T. S. B., Wang, Y.-F., Kam, W. K. & Rutter, W. J. (1987) Nucleic Acids Res. 15, 8919-8934] are postulated to be true nucleus-encoded mitochondrial ribosomal proteins.  相似文献   

16.
Following purification by affinity chromatography, a Leishmania major S-hexylglutathione- binding protein of molecular mass 66kDa was isolated. The immune serum against the parasite 66kDa polypeptide when used to screen a L. major cDNA library could identify clones encoding for the human v-fos transformation effector homologue, namely ribosomal protein S3a, and thus was named LmS3a-related protein (LmS3arp). A 1027bp cDNA fragment was found to contain the entire parasite gene encoding for a highly basic protein of 30kDa calculated molecular mass sharing homology to various ribosomal S3a proteins from different species. Using computer methods for a multiple alignment and sequence motif search, we found that LmS3arp shares a sequence homology to class theta glutathione S-transferase mainly in a segment containing critical residues involved in glutathione binding. These new findings are discussed in the light of recent published data showing multiple function(s) of the ribosomal proteins S3a.  相似文献   

17.
18.
The nucleotide sequence of mitochondrial ribosomal protein rps13 gene from wild perennial grass Elymus sibiricus is presented. It was determined by the method of PCR amplification with specific oligonucleotide primers and the direct sequencing of the amplification product. The sequence of E. sibiricus mitochondrial gene for S13 predicts a hydrophobic ribosomal protein of 116 amino acids that shows strong similarity to those of wheat (99.7% identity) and maize (98%). The deduced amino acid sequence of S13 protein from E. sibiricus and homologous plant's (Zea mays, Daucus carota, Nicotiana tabacum, Marchantia polymorpha) and nonplant's (Escherichia coli) proteins shows the presence of hydrophobic amino acids' motif -L-X10-L-X10-M-X10-L-X10-L-. Slightly modified it can be found in many other ribosomal proteins. This conserved motif is presumed to be particularly important for association of the ribosomal S13 protein with other proteins in the small subunit of the mitochondrial ribosome.  相似文献   

19.
We have isolated clones representing at least three nuclear genes for mitochondrial ribosomal proteins from Neurospora crassa by screening a lambda gt11 cDNA library with an antiserum against a mixture of these proteins. The cDNA and genomic DNA sequence for one of these genes, mrp-3, was determined. The MRP3 protein was purified by immune-affinity chromatography, using a monoclonal antibody probe, and subjected to amino acid sequence analysis to identify the mature amino terminus and a prospective mitochondrial-targeting presequence. MRP3 was identified as the largest, least basic protein detected from the small subunit of ribosomes which had been salt-washed and fractionated on sucrose gradients. However, the mRNA and protein products of mrp-3 were found to be present in excess over those of other N. crassa mitoribosomal protein genes. Using a solution hybridization/S1 nuclease assay, we found three-fold- more mRNA for mrp-3 than for another mito-ribosomal protein gene. In addition, a 30- to 50-fold excess of non-ribosomal MRP3 protein was discovered. The additional protein was localized in mitochondrial membrane fractions; none was detected in matrix fractions after removal of the ribosomes. An immunologically related protein was detected in ribosome and membrane fractions of mitochondria from Saccharomyces cerevisiae. The functional significance of this dual localization remains an enigma.  相似文献   

20.
Mitochondria possess their own translational machinery, which is composed of components distinct from their cytoplasmic counterparts. To investigate the possible involvement of mitochondrial ribosomal defects in human disease, we mapped nuclear genes that encode mitochondrial ribosomal proteins (MRPs). We generated sequence-tagged sites (STSs) of individual MRP genes that were able to be detected by PCR. They were placed on an STS content map of the human genome by typing of radiation hybrid panels. We located 54 MRP genes on the STS-content map and assigned these genes to cytogenetic bands of the human chromosomes. Although mitochondria are thought to have originated from bacteria, in which the genes encoding ribosomal proteins are clustered into operons, the mapped MRP genes are widely dispersed throughout the genome, suggesting that transfer of each MRP gene to the nuclear genome occurred individually. We compared the assigned positions with candidate regions for mendelian disorders and found certain genes that might be involved in particular diseases. This map provides a basis for studying possible roles of MRP defects in mitochondrial disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号