首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms by which stomata respond to red light and CO2 are unknown, but much of the current literature assumes that these mechanisms reside wholly within the guard cells. However, responses of guard cells in isolated epidermes are typically much smaller than those in leaves, and there are several lines of evidence in the literature suggesting that the mesophyll is necessary for these responses in leaves. This paper advances the opinion that although guard cells may have small direct responses to red light and CO2, most of the stomatal response to these factors in leaves is caused by an unknown signal that originates in the mesophyll.  相似文献   

2.
Abstract. Net photosynthesis and transpiration rates of potato plants, grown in pots in the greenhouse, were measured at various light irradiances and ambient CO2 concentrations, 3d after inoculation with second stage juveniles of Globodera pallida. Gas exchange rates, both in darkness and in light, and the initial light use efficiency were strongly reduced by nematodes. Stomatal conductance of infected plants was lower than that of control plants and showed little response to decreasing ambient CO2 concentration. The maximum internal CO2 concentration of infected plants was lower than that of control plants. Globodera pallida reduced photosynthesis also by apparent non-stomatal effects.
The effects of G. pallida on gas exchange rates are similar to the effects of abscisic acid in the transpiration stream and of abiotic stresses in the root environment. Apparently, there is a general response of plant roots to adverse conditions. The reduction of photosynthesis may be an important factor in yield reduction by potato cyst nematodes.  相似文献   

3.
To investigate the diurnal variation of stomatal sensitivity to CO2, stomatal response to a 30 min pulse of low CO2 was measured four times during a 24 h time-course in two Crassulacean acid metabolism (CAM) species Kalanchoe daigremontiana and Kalanchoe pinnata , which vary in the degree of succulence, and hence, expression and commitment to CAM. In both species, stomata opened in response to a reduction in p CO2 in the dark and in the latter half of the light period, and thus in CAM species, chloroplast photosynthesis is not required for the stomatal response to low p CO2. Stomata did not respond to a decreased p CO2 in K. daigremontiana in the light when stomata were closed, even when the supply of internal CO2 was experimentally reduced. We conclude that stomatal closure during phase III is not solely mediated by high internal p CO2, and suggest that in CAM species the diurnal variability in the responsiveness of stomata to p CO2 could be explained by hypothesizing the existence of a single CO2 sensor which interacts with other signalling pathways. When not perturbed by low p CO2, CO2 assimilation rate and stomatal conductance were correlated both in the light and in the dark in both species.  相似文献   

4.
Abstract: Long-term (14 days) carbon costs of N2 fixation were studied in pot trials. For this purpose the CO2 release from the root space of nodulated and non-nodulated (urea nourished) Vicia faba L. and Pisum sativum L. plants was compared and related to the amount of fixed or assimilated N. Additional measurements of shoot CO2 exchange and dry matter increment were carried out in order to calculate the overall carbon balance. The carbon costs for N2 fixation in Vicia faba 1. (2.87 mg C/mg NfiX) were higher than in Pisum sativum L. (2.03 mg C/mg Nfix). However, the better carbon efficiency in Pisum sativum 1. did not lead to a better growth performance compared to Vicia faba L. Vicia faba L. compensated for the carbon and energy expenditure by more intensive photosynthesis in the N2-fixing treatment. This was not the case with Pisum sativum L., where the carbon balance indicates that the carbon costs of N2 fixation restricted root growth. It is proposed that low carbon costs for N2 fixation indicate an adaptation to a critical carbon supply of roots and nodules, e.g., during the pod-filling of grain legumes.  相似文献   

5.
In future elevated CO2 environments, chewing insects are likely to perform less well than at present because of the effects of increased carbon fixation on their host plants. When the aphid, Aulacorthum solani was reared on bean ( Vicia faba ) and tansy ( Tanacetum vulgare ) plants under ambient and elevated CO2, performance was enhanced on both hosts at elevated CO2. The nature of the response was different on each plant species suggesting that feeding strategy may influence an insect's response to elevated CO2. On bean, the daily rate of production of nymphs was increased by 16% but there was no difference in development time, whereas on tansy, development time was 10% shorter at elevated CO2 but the rate of production of nymphs was not affected. The same aphid clone therefore responded differently to elevated CO2 on different host plants. This increase in aphid performance could lead to larger populations of aphids in a future elevated CO2 environment.  相似文献   

6.
The responses of steady-state CO2 assimilation rate (A), transpiration rate (E), and stomatal conductance (gs) to changes in leaf-to-air vapour pressure difference (δW) on one hand and to increasing soil drought on the other hand were examined in 2-year-old seedlings of Pseudotsuga menziesii, Pseudotsuga macrocarpa and Cedrus atlantica. Analysing the data through A vs intercellular CO2 molar fraction (ci) graphs, we could determine stomatal and mesophyll contributions to changes in A as δW or soil drought were increased. Increasing soil drought affected gs and mesophyll photosynthesis independently, since clearly distinct predawn leaf water potential (ψp) regions appeared in which either stomatal or mesophyll effects prevailed for explaining the changes in A. The two Pseudotsuga species exhibited a large ψP range (between ca -0.8 and -1.5 to -1.9 MPa) in which only stomata were responsible for the decrease in A. A dramatic decline in mesophyll photosynthesis was noticed starting from values as high as -1.2 MPa ( C. atlantica ), -1.5 MPa ( P. macrocarpa ) and -1.9 MPa ( P. menziesii ). Increasing ΔW at high soil water content led to a sharp decline in A primarily due to an alteration of mesophyll photosynthesis. Stomatal conductance for CO2 diffusion was affected in a lesser extent and in close correlation with the changes in mesophyll photosynthesis, which could suggest the existence of a functional linkage between mesophyll photosynthesis and stomata. Surprisingly, the drought resistant P. macrocarpa exhibited the least conservative water use efficiency in response to the two types of drought. In this species drought adaptation seems to be mainly due to its high root growth and soil prospection ability.  相似文献   

7.
Stomatal density (SD) and stomatal conductance ( g s) can be affected by an increase of atmospheric CO2 concentration. This study was conducted on 17 species growing in a naturally enriched CO2 spring and belonging to three plant communities. Stomatal conductance, stomatal density and stomatal index (SI) of plants from the spring, which were assumed to have been exposed for generations to elevated [CO2], and of plants of the same species collected in a nearby control site, were compared. Stomatal conductance was significantly lower in most of the species collected in the CO2 spring and this indicated that CO2 effects on g s are not of a transitory nature but persist in the long term and through plant generations. Such a decrease was, however, not associated with changes in the anatomy of leaves: SD was unaffected in the majority of species (the decrease was only significant in three out of the 17 species examined), and also SI values did not vary between the two sites with the exception of two species that showed increased SI in plants grown in the CO2-enriched area. These results did not support the hypothesis that long-term exposure to elevated [CO2] may cause adaptive modification in stomatal number and in their distribution.  相似文献   

8.
The cellular basis of guard cell sensing of rising CO2   总被引:5,自引:1,他引:4  
Numerous studies conducted on both whole plants and isolated epidermes have documented stomatal sensitivity to CO2. In general, CO2 concentrations below ambient stimulate stomatal opening, or an inhibition of stomatal closure, while CO2 concentrations above ambient have the opposite effect. The rise in atmospheric CO2 concentrations which has occurred since the industrial revolution, and which is predicted to continue, will therefore alter rates of transpirational water loss and CO2 uptake in terrestrial plants. An understanding of the cellular basis for guard cell CO2 sensing could allow us to better predict, and perhaps ultimately to manipulate, such vegetation responses to climate change. However, the mechanisms by which guard cells sense and respond to the CO2 signal remain unknown. It has been hypothesized that cytosolic pH and malate levels, cytosolic Ca2+ levels, chloroplastic zeaxanthin levels, or plasma-membrane anion channel regulation by apoplastic malate are involved in guard cell perception and response to CO2. In this review, these hypotheses are discussed, and the evidence for guard cell acclimation to prevailing CO2 concentrations is also considered.  相似文献   

9.
Previous studies have suggested that the red light and CO2 responses of stomata are caused by a signal from the mesophyll to the guard cells. Experiments were conducted to test the idea that this signal is a vapour‐phase ion. Stomata in isolated epidermes of Tradescantia pallida were found to respond to air ions created by an electrode that was positioned under the epidermes. Anthocyanins in the epidermes of this species were observed to change colour in response to these air ions, and this change in colour was attributed to changes in pH. A similar change in lower epidermal colour was observed in intact leaves upon illumination and with changes in CO2 concentration. Based on the change in epidermal colour, the pH of the epidermis was estimated to be approximately 7.0 in darkness and 6.5 in the light. Stomata in isolated epidermes responded to pH when suspended over (but not in contact with) solutions of different pH. We speculate that stomatal responses to CO2 and light are caused by vapour‐phase ions, possibly hydronium ions that change the pH of the epidermis.  相似文献   

10.
The stomatal response to CO2 is linked to changes in guard cell zeaxanthin*   总被引:4,自引:2,他引:2  
The mechanisms mediating CO2 sensing and light–CO2 interactions in guard cells are unknown. In growth chamber-grown Vicia faba leaves kept under constant light (500 μ mol m–2 s–1) and temperature, guard cell zeaxanthin content tracked ambient [CO2] and stomatal apertures. Increases in [CO2] from 400 to 1200 cm3 m–3 decreased zeaxanthin content from 180 to 80 mmol mol–1 Chl and decreased stomatal apertures by 7·0 μ m. Changes in zeaxanthin and aperture were reversed when [CO2] was lowered. Guard cell zeaxanthin content was linearly correlated with stomatal apertures. In the dark, the CO2-induced changes in stomatal aperture were much smaller, and guard cell zeaxanthin content did not change with chamber [CO2]. Guard cell zeaxanthin also tracked [CO2] and stomatal aperture in illuminated stomata from epidermal peels. Dithiothreitol (DTT), an inhibitor of zeaxanthin formation, eliminated CO2-induced zeaxanthin changes in guard cells from illuminated epidermal peels and reduced the stomatal CO2 response to the level observed in the dark. These data suggest that CO2-dependent changes in the zeaxanthin content of guard cells could modulate CO2-dependent changes of stomatal apertures in the light while a zeaxanthin-independent CO2 sensing mechanism would modulate the CO2 response in the dark.  相似文献   

11.
The patterns of light activation of 4 chloroplastic enzymes were examined in mesophyll protoplasts of pea ( Pisum sativum ) in the absence or presence of oligomycin (inhibitor of oxidative phosphorylation) or antimycin A (inhibitor of cytochrome pathway) or salicylhydroxamic acid (SHAM, inhibitor of alternative pathway). The results were compared with those of DCMU (inhibitor of photosynthetic electron transport). The light activation of NADP glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH), fructose-1,6-bisphosphatase (FBPase), phosphoribulokinase (PRK) (enzymes of the Calvin cycle) and NADP malate dehydrogenase (NADP-MDH) (reflects chloroplast redox state) was more pronounced at limiting CO2 (0.1 m M NaHCO3) than that at optimal CO2 (1.0 m M NaHCO3). SHAM decreased markedly (up to 33%) the light activation of all 4 enzymes, while antimycin A or oligomycin exerted only a limited effect (<10% decrease). Antimycin A or oligomycin or SHAM had no significant effect on light activation of these 4 enzymes in isolated chloroplasts. However, DCMU caused a remarkable decrease in light activation of enzymes in both protoplasts (up to 78%) and chloroplasts (up to 69%). These results suggest that the restriction of alternative pathway of mitochondrial metabolism results in a marked decrease in the light activation of key chloroplastic enzymes in mesophyll protoplasts but not in isolated chloroplasts. Such a decrease in the light activation of enzymes could be also a secondary feedback effect because of the restriction on carbon assimilation.  相似文献   

12.
Stomatal responses to humidity in air and helox   总被引:11,自引:5,他引:6  
Abstract. Stomatal responses to humidity were studied in several species using normal air and a helium: oxygen mixture (79:21 v/v, with CO2 and water vapour added), which we termed 'helox'. Since water vapour diffuses 2.33 times faster in helox than in air, it was possible to vary the water-vapour concentration difference between the leaf and the air at the leaf surface independently of the transpiration rate and vice versa. The CO2 concentration at the evaporating surfaces ( ci ), leaf temperature and photon flux density were kept constant throughout the experiments. The results of these experiments were consistent with a mechanism for Stomatal responses to humidity that is based on the rate of water loss from the leaf. Stomata apparently did not directly sense and respond to either the water vapour concentration at the leaf surface or the difference in water vapour concentration between the leaf interior and the leaf surface. In addition, stomatal responses that caused reductions in transpiration rate at low humidities were accompanied by decreases in photosynthesis at constant ci , suggesting heterogeneous (patchy) stomatal closure.  相似文献   

13.
Abstract. Two experiments are described which test the normal correlations that arise between stomatal conductance, net CO2 assimilation rate, and intercellular CO2 concentration (Ci), using whole shoots of Commelina communis L. In the first, conductance increased with decreasing Ci, at four different quantum flux densities, such that there was no unique relationship between conductance and quantum flux density or Ci, In the second, conductance increased hyperbolically with increasing quantum flux density while Ci was held constant at 466, 302, and 46 μmiolmol−1, and the response differed at each Ci. In neither experiment was conductance consistently related to net CO2 assimilation rate in the mesophyll. In both experiments high Ci suppressed the response of conductance to light, while there was a large response of conductance to light at low Ci, indicating an interaction between the effects of light and CO2 on stomata. The results show that the parallel responses of assimilation and conductance to light result in constant intercellular CO2 concentrations, and not that stomata maintain a 'constant Ci'.  相似文献   

14.
Abstract. The effect of short-term SO2 fumigation on photosynthesis and transpiration of Vicia faba L. was measured at different irradiances and SO2 concentrations. At high irradiances photosynthetic rates were reduced when leaves were exposed to SO2 and the magnitude of the reduction was linearly related to the rate of SO2 uptake through the stomata. Photosynthetic rates stabilized within 2 h after the start of fumigation.
The effect of SO2 on photosynthesis was measured at different CO2 concentrations to analyse the contribution of stomatal and non-stomatal factors to photosynthetic inhibition. Mesophyll resistance to CO2 diffusion increased as a result of SO2 exposure and caused a rapid reduction in photosynthesis after the start of fumigation. Stomatal resistance was not affected directly by SO2 fumigation, but indirectly as a result of a feedback loop between net photosynthesis and internal CO2 concentration.
Analysis of gas-exchange measurements in biochemical terms indicated that photosynthetic inhibition during SO2 exposure can be explained by a stronger reduction in the affinity of RBP carboxylase/oxygenase for CO2 than for O2.  相似文献   

15.
Net photosynthesis, transpiration, dark respiration rates and stomatal and mesophyll resistances were studied in young potted seedlings of Pinus halepensis Mill. under gradually decreasing soil and leaf water potentials. Stomatal resistance under non-limiting xylem water potentials was 6–7 times higher than mesophyll resistance. Stomata started to close at threshold xylem water potentials of −0.8 MPa, whereas mesophyll resistance started to increase at about −1.4 MPa. Decreasing xylem water potentials increased the CO2 compensation point and decreased the water use efficiency (expressed by the photosynthesis to transpiration ratio) and dark respiration rate. It is concluded that at least part of the drought resistance characteristics of P. halepensis are associated with a sensitive stomatal mechanism which enables an efficient control of water loss.  相似文献   

16.
The role of mitochondrial respiration in optimizing photosynthesis was assessed in mesophyll protoplasts of pea ( Pisum sativum L., cv. Arkel) by using low concentrations of oligomycin (an inhibitor of oxidative phosphorylation), antimycin A (inhibits cytochrome pathway of electron transport) and salicylhydroxamic acid (SHAM, an inhibitor of alternative oxidase). All three compounds decreased the rate of photosynthetic O2 evolution in mesophyll protoplasts, but did not affect chloroplast photosynthesis. The inhibition of photosynthesis by these mitochondrial inhibitors was stronger at optimal CO2 (1.0 m M NaHCO3) than that at limiting CO2 (0.1 m M NaHCO3). We conclude that mitochondrial metabolism through both cytochrome and alternative pathways is essential for optimizing photosynthesis at limiting as well as at optimal CO2. The ratios of ATP to ADP in whole protoplast extracts were hardly affected, despite the marked decrease in their photosynthetic rates by SHAM. Similarly, the decrease in the ATP/ADP ratio by oligomycin or antimycin A was more pronounced at limiting CO2 than at optimal CO2. The mitochondrial oxidative electron transport, through both cytochrome and alternative pathways, therefore akppears to be more important than oxidative phosphorylation in optimizing photosynthesis, particularly at limiting CO2 (when ATP demand is expected to be low). Our results also confirm that the alternative pathway has a significant role in contributing to the cellular ATP, when the cytochrome pathway is limited.  相似文献   

17.
Net CO2 exchange rates and dark respiration rates were determined for single attached legume leaves (leaflets) after 6 to 9 days of aphid infestation. Plant-aphid combinations used were broad bean ( Vicia faba L. cv. Aquadulce) and cowpea [ Vigna unguiculata (L.) Walp. cv. Caloona)] infested with cowpea aphids ( Aphis craccivora Koch) and broad bean and garden pea ( Pisum sativum L. cv. Victory Freezer) infested with pea aphids [ Acyrthosiphon pisum (Harris)]. Leaves from all aphid-infested plants had significantly greater net CO2 exchange rates in the light than their respective controls and rates of dark respiration of leaves from infested cowpea and garden pea were also significantly greater than those of controls. Dark respiration, as a percentage of net CO2 exchange rates in the light, was greater in aphid-infested than in control plants. When the mean net daily carbon gain was calculated for the leaves of each plant-aphid combination, leaves from aphid-infested plants had the greatest gain. It is proposed that net CO2, exchange rates increased due to increased sink demand and dark respiration rates increased to meet the increased energy requirements of phloem loading and cellular maintenance associated with aphid feeding. The apparent compensatory carbon gain of infested leaves was consumed by the aphids.  相似文献   

18.
The oxygen requirement for stomatal opening in maize plants ( Zea mays L. hybrid INRA 508) was studied at different CO2 concentrations and light intensities. In the absence of CO2, stomatal opening always required O2, but this requirement decreased with increasing light intensity. In darkness, the lowest O2 partial pressure needed to obtain a weak stomatal movement was about 50 Pa. This value was lowered to ca 10 Pa in light (320 μmol m−2 s−1).
On the other hand. in the absence of O2, CO2enabled stomatal opening to occur in the light, presumably due to the evolved photosynthetic O2. Thus, CO2, which generally reduced stomatal aperture, could induce stomatal movement in anoxia and light. The effect of CO2 on stomatal opening was closely dependent on O2 concentration and light intensity. Stomatal aperture appeared CO2-independent at an O2 partial pressure which was dependent on light intensity and was about 25 Pa at 320 umol m−2 s−1.
The presence of a plasmalemma oxidase, in addition to mitochondrial oxidase, might explain the differences in the O2 requirement at various light intensities. The possible involvement of such a system in relation to the effect of CO2 is discussed.  相似文献   

19.
Causes of differences in photosynthetic nitrogen-use efficiency (PNUE), the rate of photosynthesis per unit leaf N, were investigated in four species. These were in order of decreasing PNUE; the two herbs Galinsoga ciliata and Origanum vulgare , and the two trees Populus nigra and Quercus robur . Plants were grown in pots outdoors at three levels of nutrient availability. The light- and CO2 response of gas exchange of leaves were measured, and their nitrogen and chlorophyll contents were determined. Furthermore, the internal conductance for CO2 diffusion was estimated. Nutrients did not have a large effect on PNUE except in Galinsoga . Leaf mass per unit area was negatively correlated with PNUEmax, which is likely to be partly caused by N present in cell wall proteins among other non-photosynthetic N compounds. The trees had a larger fraction of photosynthetic N in light harvesting components compared to the herbs. This contributed also substantially to the difference in PNUE at light saturation (PNUEmax) between the two groups, but not for PNUE calculated for an overcast day. Intercellular CO2 concentration was high in Galinsoga and Populus , which contributed significantly to their higher PNUEmax, particularly at low nutrient availability. The large gradient in CO2 concentration between intercellular spaces and chloroplasts was another factor that explained a substantial part of the differences in PNUEmax between Quercus and the other species that had smaller gradients. Stomatal and internal conductances for CO2 explained most of the difference in PNUEmax between Quercus and Populus at high nutrient availability for which these data were available.  相似文献   

20.
Methods of estimating the mesophyll conductance (gm) to the movement of CO2 from the substomatal airspace to the site of fixation are expensive or rely upon numerous assumptions. It is proposed that, for C3 species, measurement of the response of photosynthesis to [O2] at limiting [CO2], combined with a standard biochemical model of photosynthesis, can provide an estimate of gm. This method was used to determine whether gm changed with [CO2] and with water stress in soybean leaves. The value of gm estimated using the O2 response method agreed with values obtained using other methods. The gm was unchanged over the tested range of substomatal [CO2]. Water stress, which decreased stomatal conductance (gs) by about 80%, did not affect gm, while the model parameter VCmax was reduced by about 25%. Leaves with gs reduced by about 90% had gm values reduced by about 50%, while VCmax was reduced by about 64%. It is concluded that gm in C3 species can be conveniently estimated using the response of photosynthesis to [O2] at limiting [CO2], and that gm in soybean was much less sensitive to water stress than gs, and was somewhat less sensitive to water stress than VCmax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号