首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: To identify the nutrients that can trigger the loss of flocculation under growth conditions in an ale-brewing strain, Saccharomyces cerevisiae NCYC 1195. METHODS AND RESULTS: Flocculation was evaluated using the method of Soares, E.V. and Vroman, A. [Journal of Applied Microbiology (2003) 95, 325]. Yeast growth with metabolizable carbon sources (glucose, fructose, galactose, maltose or sucrose) at 2% (w/v), induced the loss of flocculation in yeast that had previously been allowed to flocculate. The yeast remained flocculent when transferred to a medium containing the required nutrients for yeast growth and a sole nonmetabolizable carbon source (lactose). Transfer of flocculent yeast into a growth medium with ethanol (4% v/v), as the sole carbon source did not induce the loss of flocculation. Even the addition of glucose (2% w/v) or glucose and antimycin A (0.1 mg l(-1)) to this culture did not bring about loss of flocculation. Cycloheximide addition (15 mg l(-1)) to glucose-growing cells stopped flocculation loss. CONCLUSIONS: Carbohydrates were the nutrients responsible for stimulating the loss of flocculation in flocculent yeast cells transferred to growing conditions. The glucose-induced loss of flocculation required de novo protein synthesis. Ethanol prevented glucose-induced loss of flocculation. This protective effect of ethanol was independent of the respiratory function of the yeast. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes to the elucidation of the role of nutrients in the control of the flocculation cycle in NewFlo phenotype yeast strains.  相似文献   

2.
AIMS: To study the effect of different starvation conditions on the flocculation of an ale brewing yeast of Saccharomyces cerevisiae NCYC 1195. METHODS AND RESULTS: Flocculation was assessed by a micro-flocculation technique (Soares and Mota 1997). Carbon-starved cells of a NewFlo phenotype strain did not lose flocculation during a 48 h period. Cells incubated only in the presence of fermentable carbon sources (glucose, galactose and maltose at 2%, w/v), showed a progressive flocculation loss. The incubation of cells in 4% (v/v) ethanol did not induce a flocculation loss. The simultaneous incubation of cells in the presence of 2% (w/v) glucose and 15 microg ml(-1) cycloheximide hindered flocculation loss. The presence of 0.1 mmol l(-1) PMSF or 10 mmol l-1 EDTA prevented partially or completely, respectively, the loss of flocculation in the presence of glucose. CONCLUSIONS: Fermentable sugars induced a flocculation loss, which seems to require de novo protein synthesis and the involvement of different proteases. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings reported here contribute to the elucidation of the role of nutrients on the physiological control of yeast flocculation.  相似文献   

3.
4.
AIMS: To examine the role of the nutrients on the onset of flocculation in an ale-brewing strain, Saccharomyces cerevisiae NCYC 1195. METHODS AND RESULTS: Flocculation was evaluated using the method of Soares, E.V. and Vroman, A. [Journal of Applied Microbiology (2003) 95, 325]. For cells grown in chemically defined medium (yeast nitrogen base with glucose) or in rich medium (containing yeast extract, peptone and fermentable sugars: fructose or maltose), the onset of flocculation occurred after the end of exponential respiro-fermentative phase of growth being coincident with the attainment of the lower level of carbon source in the culture medium. Cells, in exponential respiro-fermentative phase of growth, transferred to a glucose-containing medium without nitrogen source, developed a flocculent phenotype, while these carbon source starved cells, in the presence of all other nutrients that support growth, did not flocculate. In addition, cells in exponential phase of growth, under catabolite repression, when transferred to a medium containing 0.2% (w/v) of fermentable sugar (fructose or maltose) or 2% (v/v) ethanol, showed a rapid triggering of flocculation, while when incubated in 2% (v/v) glycerol did not develop a flocculent phenotype. CONCLUSIONS: The onset of flocculation occurs when a low sugar and/or nitrogen concentration is reached in culture media. The triggering of flocculation is an energetic dependent process influenced by the carbon source metabolism. The presence of external nitrogen source is not necessary for developing a flocculent phenotype. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes to the elucidation of the role of nutrients on the onset of flocculation in NewFlo phenotype yeast strains. This information might be useful to the brewing industry, in the control of yeast flocculation, as the time when the onset of flocculation occurs can determine the fermentation performance and the beer quality.  相似文献   

5.
Nine indigenous cachaça Saccharomyces cerevisiae strains and one wine strain were compared for their trehalose metabolism characteristics under non-lethal (40°C) and lethal (52°C) heat shock, ethanol shock and combined heat and ethanol stresses. The yeast protection mechanism was studied through trehalose concentration, neutral trehalase activity and expression of heat shock proteins Hsp70 and Hsp104. All isolates were able to accumulate trehalose and activate neutral trehalase under stress conditions. No correlation was found between trehalose levels and neutral trehalase activity under heat or ethanol shock. However, when these stresses were combined, a positive relationship was found. After pre-treatment at 40°C for 60 min, and heat shock at 52°C for 8 min, eight strains maintained their trehalose levels and nine strains improved their resistance against lethal heat shock. Among the investigated stresses, heat treatment induced the highest level of trehalose and combined heat and ethanol stresses activated the neutral trehalase most effectively. Hsp70 and Hsp104 were expressed by all strains at 40°C and all of them survived this temperature although a decrease in cell viability was observed at 52°C. The stress imposed by more than 5% ethanol (v/v) represented the best condition to differentiate strains based on trehalose levels and neutral trehalase activity. The investigated S. cerevisiae strains exhibited different characteristics of trehalose metabolism, which could be an important tool to select strains for the cachaça fermentation process.  相似文献   

6.
Summary The effects of heat shock and ethanol stress on the viability of a lager brewing yeast strain during fermentation of high gravity wort were studied. These stress effects resulted in reduced cell viability and inhibition of cell growth during fermentation. Cells were observed to be less tolerant to heat shock during the fermentation of 25°P (degree Plato) wort than cells fermenting 16°P wort. Degree Plato (oP) is the weight of extract (sugar) equivalent to the weight of sucrose in a 100 g solution at 20°C. Relieving the stress effects of ethanol by washing the cells free of culture medium, improved their tolerance to heat shock. Cellular changes in yeast protein composition were observed after 24 h of fermentation at which time more than 2% (v/v) ethanol was present in the growth medium. The synthesis of these proteins was either induced by ethanol or was the result of the transition of cells from exponential phase to stationary phase of growth. No differences were observed in the protein composition of cells fermenting 16°P wort compared to those fermenting 25°P wort. Thus, the differences in the tolerance of these cells to heat shock may be due to the higher ethanol concentration produced in 25°P wort which enhanced their sensitivity to heat shock.  相似文献   

7.
8.
Induced thermotolerance is a phenomenon whereby exposure to a mild heat shock can induce heat shock proteins (HSP) and other cellular changes to make cells more resistant to a subsequent, more severe heat shock. Given that the 2-cell bovine embryo is very sensitive to heat shock, but can also produce HSP70 in response to elevated temperature, experiments were conducted to test whether 2-cell embryos could be made to undergo induced thermotolerance. Another objective was to test the role of the heat-inducible form of heat shock protein 70 (HSP70i) in development and sensitivity of bovine embryos to heat shock. To test for induced thermotolerance, 2-cell bovine embryos were first exposed to a mild heat shock (40 degrees C for 1 hr, or 41 degrees C or 42 degrees C for 80 min), allowed to recover at 38.5 degrees C and 5% (v/v) CO2 for 2 hr, and then exposed to a severe heat shock (41 degrees C for 4.5, 6, or 12 hr). Regardless of the conditions, previous exposure to mild heat shock did not reduce the deleterious effect of heat shock on development of embryos to the blastocyst stage. The role of HSP70i in embryonic development was tested in two experiments by culturing embryos with a monoclonal antibody to the inducible form of HSP70. At both 38.5 degrees C and 41 degrees C, the proportion of 2-cell embryos that developed to blastocyst was reduced (P < 0.05) by addition of anti-HSP70i to the culture medium. In contrast, sensitivity to heat shock was not generally increased by addition of antibody. In conclusion, bovine 2-cell embryos appear incapable of induced thermotolerance. Lack of capacity for induced thermotolerance could explain in part the increased sensitivity of 2-cell embryos to heat shock as compared to embryos at later stages of development. Results also implicate a role for HSP70i in normal development of bovine embryos.  相似文献   

9.
This study has highlighted the role of magnesium ions in the amelioration of the detrimental effects of ethanol toxicity and temperature shock in a winemaking strain of Saccharomyces cerevisiae. Specifically, results based on measurements of cellular viability and heat shock protein synthesis together with scanning electron microscopy have shown that, by increasing the bioavailability of magnesium ions, physiological protection is conferred on yeast cells. Elevating magnesium levels in the growth medium from 2 to 20 mM results in repression of certain heat shock proteins following a typical heat shock regime (30–42°C shift). Seed inocula cultures prepropagated in elevated levels of magnesium (i.e. ‘preconditioned’) also conferred thermotolerance on cells and repressed the biosynthesis of heat shock proteins. Similar results were observed in response to ethanol stress. Extra- and intracellular magnesium may both act in the physiological stress protection of yeast cells and this approach offers potential benefits in alcoholic fermentation processes. The working hypothesis based on our findings is that magnesium protects yeast cells by preventing increases in cell membrane permeability elicited by ethanol and temperature-induced stress.  相似文献   

10.
11.
Yeast flocculation is an important trait in the brewing industry as well as in ethanol production, through which biomass can be recovered by cost-effective sedimentation. However, mass transfer limitation may affect yeast growth and ethanol fermentation if the flocculation occurs earlier before fermentation is completed. In this article, a novel type of cell-cell flocculation induced by trehalose-6-phosphate synthase 1 (TPS1) promoter was presented. The linear cassette HO-P(TPS1)-FLO1(SPSC01)-KanMX4-HO was constructed to transform the non-flocculating industrial yeast S. cerevisiae 4126 by chromosome integration to obtain a new flocculating yeast strain, ZLH01, whose flocculation was induced by ethanol produced during fermentation. The experimental results illustrated that flocculation of ZLH01 was triggered by 3% (v/v) ethanol and enhanced as ethanol concentration increased till complete flocculation was achieved at ethanol concentration of 8% (v/v). Real time PCR analysis confirmed that the expression of FLO1(SPSC01) was dependent on ethanol concentration. The growth and ethanol fermentation of ZLH01 were improved significantly, compared with the constitutive flocculating yeast BHL01 engineered with the same FLO gene but directed by the constitutive 3-phosphoglycerate kinase promoter PGK1, particularly under high temperature conditions. These characteristics make the engineered yeast more suitable for ethanol production from industrial substrates under high gravity and temperature conditions. In addition, this strategy offers advantage in inducing differential expression of other genes for metabolic engineering applications of S. cerevisiae.  相似文献   

12.
A stable mutant flocculent yeast strain of Saccharomyces cerevisiae KRM-1 was isolated during repeated-batch ethanol fermentation using kitchen refuse as the medium. The mechanism of flocculation and interaction with the medium was investigated. According to sugar inhibition assay, it was found that the mutant flocculent strain was a NewFlo phenotype. Flocculation was completely inhibited by protease, proteinase K and partially reduced by treatments with carbohydrate-hydrolyzing enzymes. Flocculation ability showed no difference for pH 3.0–6.0. Furthermore, the mutant flocculent yeast provided repeated-batch cultivations employing cell recycles by flocculation over 10 rounds of cultivation for the production of ethanol from kitchen refuse medium, resulting in relatively high productivity averaging 8.25 g/L/h over 10 batches and with a maximal of 10.08 g/L/h in the final batch. Cell recycle by flocculation was fast and convenient, and could therefore be applicable for industrial-scale ethanol production.  相似文献   

13.
14.
Summary The effects of heat and ethanol shock on fatty acid composition and intracellular trehalose concentration of lager and ale brewing yeasts were examined. Exposure of cells to heat shock at 37°C or 10% (v/v) ethanol for 60 min resulted in a significant increase in the ratio of the total unsaturated to saturated fatty acyl residues and the intracellular trehalose concentration of cells. A similar increase in the amount of unsaturated fatty acids was observed in cells after 24 h of fermentation of 16°P (degree Plato) or 25°P wort, at which time more than 2% (v/v) ethanol was present in the growth medium. These results suggest that unsaturated fatty acids and high concentrations of intracellular trehalose may protect the cells from the inhibitory effects of heat and ethanol shock.  相似文献   

15.
The response of a yeast unsaturated fatty acid auxotroph, defective in delta 9-desaturase activity, to heat and ethanol stresses was examined. The most heat- and ethanol-tolerant cells had membranes enriched with oleic acid (C18:1), followed in order by cells enriched with linoleic (C18:2) and linolenic (C18:3) acids. Cells subjected to a heat shock (25-37 degrees C for 30 min) accumulated trehalose and synthesized typical heat shock proteins. Although there were no obvious differences in protein profiles attributable to lipid supplementation of the mutant, relative protein synthesis as determined by densitometric analysis of autoradiograms suggested that hsp expression was different. However, there was no consistent relationship between the synthesis of heat shock proteins and the acquisition of thermotolerance in the lipid supplemented auxotroph or related wild type. Furthermore, trehalose accumulation was also not closely related to stress tolerance. On the other hand, the data presented indicated a more consistent role for membrane lipid composition in stress tolerance than trehalose, heat shock proteins, or ergosterol. We suggest that the sensitivity of C18:3-enriched cells to heat and ethanol may be attributable to membrane damage associated with increases in membrane fluidity and oxygen-derived free radical attack of membrane lipids.  相似文献   

16.
The effect of brief heat shock on Chenopodium cells was investigated by measuring biochemical parameters for cellular vitality, membrane function and integrity: extracellular pH, release of osmotic compounds, phosphatase, protein and betalain, and cellular reduction of DCPIP and MTT. A threshold temperature was found at 45 degrees C, where release of osmotic compounds, protein and betalain, and reduction of DCPIP and MTT indicate loss of vitality. Extracellular pH and an alkaline phosphatase responded 10-20 degrees C below this threshold, suggesting that extracellular alkalinization, and probably the release of a phosphatase, are part of a specific cellular response to abiotic stress induced by heat shock. The extracellular proton concentration did not increase above 45 degrees C: this may indicate equilibration of gradients driving this process or an inactivation of cellular mechanisms responsible for extracellular alkalinization. The response of extracellular pH to heat shock in Chenopodium cell suspensions was fast, i.e., up to +1 pH in 5 min. Addition of the K+/H+ antiporter nigericin to Chenopodium cells caused an extracellular alkalinization similar to heat shock. The heat shock-induced extracellular alkalinization was characterized by Q10 values for distinct ranges of temperature (Q10 of 56 for 24-31 degrees C, 2.3 for 31-42 degrees C, and 1.0 for 42-50 degrees C). To the author's knowledge, the Q10 of 56 is the highest found up to now. These results suggest that extracellular protons are involved in temperature sensing and signalling in plant cells, probably via a channel-mediated pathway.  相似文献   

17.
18.
A correlation is known to exist in yeast and other organisms between the cellular resistance to stress and the life span. The aim of this study was to examine whether stress treatment does affect the generative life span of yeast cells. Both heat shock (38 degrees C, 30 min) and osmotic stress (0.3 M NaCl, 1 h) applied cyclically were found to increase the mean and maximum life span of Saccharomyces cerevisiae. Both effects were more pronounced in superoxide dismutase-deficient yeast strains (up to 50% prolongation of mean life span and up to 30% prolongation of maximum life span) than in their wild-type counterparts. These data point to the importance of the antioxidant barrier in the stress-induced prolongation of yeast life span.  相似文献   

19.
AIMS: The effects of stresses imposed on bacterial contaminants during food processing and treatment of packaging material were evaluated on the food pathogen Bacillus cereus. METHODS AND RESULTS: Conditions were established which allowed the cells to adapt to heat, ethanol and hydrogen peroxide stresses, but not to osmotic shock. Cross protection between stresses indicated a clear hierarchy of resistance with salt protecting against hydrogen peroxide, which protected against ethanol, which protected against heat shock. The cultures were shown to be most sensitive to heat, ethanol and oxidative stress at mid-exponential phase and to become resistant at stationary phase. Adaptive levels of stressor were found to induce synthesis of general stress and stress-specific proteins and differential accumulation of proteins was demonstrated between heat- or salt-stressed and unstressed cells. CONCLUSIONS: Sequencing revealed that a number of glycolytic enzymes were regulated by heat and osmotic shocks and that the chaperone GroEL was induced by heat shock. SIGNIFICANCE AND IMPACT OF THE STUDY: The implications of the physiological data in designing storage and processing conditions for food are discussed. The identification of stress-regulated proteins reveals a clear role for glycolysis in adaptation to heat shock and osmotic stress.  相似文献   

20.
We have characterized the general properties of the heat shock response of the Gram-positive hardy bacteriumEnterococcus faecalis. The heat resistance (60°C or 62.5°C, 30 min) of log phase cells ofE. faecalis grown at 37°C was enhanced by exposing cells to a prior heat shock at 45°C or 50°C for 30 min. These conditioning temperatures also induced ethanol (22%, v/v) tolerance. The onset of thermotolerance was accompanied by the synthesis of a number of heat shock proteins. The most prominent bands had molecular weights in the range of 48 to 94kDa. By Western blot analysis two of them were found to be immunologically related to the well known DnaK (72 kDa) and GroEL (63 kDa) heat shock proteins ofEscherichia coli. Four other proteins showing little or no variations after exposure to heat are related to DnaJ, GrpE and Lon (La)E. coli proteins and to theBacillus subtilis 43 factor. Ethanol (2% or 4%, v/v) treatments elicited a similar response although there was a weaker induction of heat shock proteins than with heat shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号