首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A study was made of the effect of temperature on accumulation of glucosamine and 2-aminoisobutyrate by Candida utilis NCYC 321 grown at 30° C or 10° C. Exponential-phase cells contained greater proportions of C16:1 and C18:3 acids, and smaller proportions of C13:1 and C18:2 acids, when grown in a defined medium at 10° C compared with 30° C. Cells grown at 30° C or 10° C were able to accumulate extracellular (10 mM) glucosamine and 2-aminoisobutyrate against concentration gradients. 2-Aminoisobutyrate was not metabolised by the cells; glucosamine was accumulated probably as a mixture of glucosamine 1- and 6-phosphates. Rates of accumulation of glucosamine and 2-aminoisobutyrate by cells grown at 30° C or 10° C decreased markedly when the test temperature was decreased from 30° C to 15° C. The rate of accumulation of glucosamine by cells grown at 10° C was considerably lower at each of the test temperatures compared with the corresponding rates for cells grown at 30° C; the rate of accumulation of 2-aminoisobutyrate was much less affected by the temperature at which the cells were grown and then only when measured at temperatures below about 20° C. Apparent K m values for accumulation of glucosamine by cells grown at 30° C or 10° C decreased considerably when the test temperature was lowered from 20° C to 15° C. The extent of the decrease in K m value was approximately the same for cells grown at 30° C or 10° C. Apparent K m values for accumulation of 2-aminoisobutyrate were hardly affected by test temperature. Apparent V max values for accumulation of glucosamine or 2-aminoisobutyrate were much lower when measured at 15° C than at 30° C. When measured at 30° C, apparent V max values for accumulation of either solute were slightly lower with cells grown at 10° C compared with cells grown at 30° C; when measured at 15° C, the values were slightly greater with cells grown at 10° C. Net accumulation of glucosamine, at 30° C or 20° C, by cells grown at 30° C or 10° C ceased after 4–6 h. Cells grown at either temperature continued to accumulate 2-aminoisobutyrate at 30° C or 20° C for at least 12 h. The rate of efflux of glucosamine by cells grown at 30° C was slower when measured at 20° C compared with 30° C. With cells grown at 10° C, the rate of efflux at 30° C was slower than with cells grown at 30° C; when measured at 20° C, the rates were about equal. The temperature at which the cells were grown did not affect the ability of d-glucose, d-mannose or d-ribose to compete with d-glucosamine, or with the ability of l-alanine to compete with 2-aminoisobutyrate, when tested at 30° C or 20° C. Cells grown 30° C or 10° C had very similar ATP contents. The results are discussed in relation to the effect of temperature on the rate of solute accumulation by micro-organisms.Abbreviation AIB 2-Aminoisobutyrate  相似文献   

2.
Summary The relationships between different microbiological and biochemical parameters and the development of bacterial luminescence associated with the spoilage of marine fish from the Mediterranean-Sea was studied during storage at different temperatures. The bioluminescence level of the bacterial suspensions that were taken from the fish skin increased during the storage; at 20°–25°C the growth and luminescence of the luminuous bacteria correlated well with the total bacterial count while at 5°C the bacterial proliferation was not accompanied by a parallel increase in luminescence.The shift in storage temperature from 25°C to 5°C stabilized the level of the luminescence of bacterial suspension taken from the winter fish which were comprised mainly by Photobacterium phosphoreum, and caused a drop in the luminescence of bacterial suspension taken from the fish caught in the summer which were comprised mainly by Beneckea barveyi. The increase in the bioluminescence level appeared earlier than the increase in trimethylamine level and occured approximately at the same time as the increase in the hypoxanthine concentration. The potential value of the use of bacterial bioluminescence as an early indication for marine fish spoilage is discussed.  相似文献   

3.
The aim of this study was todetermine the biology and reproductivepotential of Euseius scutalis(Athias-Henriot) (Acari: Phytoseiidae) atvarious temperatures. These data are of valuein relation to mass rearing and the developmentof population dynamics models. The developmenttime, survival and fecundity of E.scutalis were determined at 20, 25 and30 ± 1 °C, 65 ± 10% RH and 16:8photoperiod. Total development times of E.scutalis were 6.7, 4.9 and 4.2 days at 20, 25and 30 ± 1 °C, respectively, using adiet of all life stages of the spider mite Panonychus citri (McGregor) (Acari:Tetranychidae). In general, preoviposition andpostoviposition periods of E. scutaliswere shortened as temperature increased, butthe oviposition period was longer at 25 °C than at 20 and 30 °C. Theshortest survival time of E. scutalis, at30 °C, was 10.1 days, followed by 23.7days and 28.6 days at 20 and 25 °C,respectively. Mated females laid on average1.1, 1.4 and 1.7 eggs per female per day and21.5, 39.7 and 17.1 eggs over their entire lifetime at 20, 25 and 30 °C, respectively.The sex ratios of E. scutalis were2.11/1, 2.24/1 and 2.11/1 female/male at 20, 25and 30 °C, respectively. The intrinsicrate of natural increase (r m) increasedwith rising temperatures from 0.166 at 20 °C to 0.295 females/female/day at 30 °C. The net reproductive rate (R 0)was highest at 25 °C (26.03females/female) and lowest at 30 °C(12.95 females/female). Mean generation time(T 0) was longest at 25 °C (17.50days) and shortest (9.53 days) at 30 °C.  相似文献   

4.
Inhibition and recovery of net CO2 uptake and three photosynthetic electron transport reactions as well as plant survival following high-temperature treatments were investigated for Opuntia ficus-indica. For plants maintained at 30°C/20°C day/night air temperatures, treatment at 60°C for 1 h irreversibly inhibited net CO2 uptake and photosynthetic electron transport, resulting in plant death in about 60 days. When a plant maintained at 30°C/20°C was treated at 55°C for 1 h, net CO2 uptake was completely inhibited 1 d after the treatment but fully recovered in 60 d. Differential inactivation of photosystem (PS) I, PSII, and whole chain electron transport activities occurred; PSI was the most tolerant of 55°C and took the least time (45 d) for total recovery. All 30°C/20°C plants survived a 1-h treatment at 55°C, although some pale green areas were observed on the cladode surfaces. In contrast to growing at 30°C/20°C, plants acclimated to 45°C/35°C survived 60°C for 1 h without showing any necrotic or pale green areas on the cladode surfaces. When such a plant was transferred to 30°C/20°C following the high-temperature treatment, recovery in net CO2 uptake began in 1 d and progressed to complete recovery by 30 d. Growth temperatures thus influence the possibility for recovery of photosynthetic reactions and ultimately the survival of O. ficus-indica following a high-temperature exposure.Abbreviations DCPIP 2,6-dichlorophenol indophenol - MV methyl viologen - PAR photosynthetically active radiation - PSI or PSII photosystem I or II - WC whole chain  相似文献   

5.
Effects of temperature on the activity of flucycloxuron on larval stages of Panonychus ulmi (Koch), based on LC50 values, were highly significant (P < 0.001) with temperature coefficients of-1.7 in both the ranges of 15° to 25°C and 20° to 30°C. The slopes of probit regression lines at 15° and 20°C were significantly steeper than those at 25° and 30°C. As a consequence the temperature coefficients based on LC90 values were-4.4 and-2.2, for the 2 temperature ranges. The ovicidal activity of flucycloxuron on P. ulmi was low and was only statistically detectable at 20°C (LC90 of 84 mg a.i./l). In studies with larvae of Aedes aegypti (Linnaeus), Leptinotarsa decemlineata (Say), Plutella xylostella (Linnaeus), Spodeptera exigua (Hübner) and Spodoptera littoralis (Boisduval) probit regression lines were parallel over temperature. The activity of flucycloxuron on these five insect species was not affected by temperature. Based on LC50 values, diflubenzuron showed positive temperature coefficients on P. xylostella of + 2.1 at 15° to 25°C and + 2.5 at 20° to 30°C. For S. littoralis the temperature coefficient was positive (+ 2.4) at 15° to 25°C but negative (-1.9) at the 20° to 30°C range. Temperature coefficients of diflubenzuron were neutral for A. aegypti, L. decemlineata and S. exigua. In the design and analysis of these studies special allowance was made for date effects and variation in natural mortality over temperature.  相似文献   

6.
Climatic and soil factors are limiting rice growth in many countries. In Vietnam, a steep gradient of temperature is observed from the North to the South, and acid sulphate soils are frequently devoted to rice production. We have therefore attempted to understand how temperature affects rice growth in these problem soils, by comparison with rice grown in nutrient solution. Two varieties of rice, IR64 and X2, were cultivated in phytotrons at 19/21°C and 28/32°C (day/night) for 56 days, after 3 weeks preculture in optimal conditions. Two soils from the Mekong Delta were tested. Parallel with the growing experiments, these two soils were incubated in order to monitor redox potential (E h ), pH, soluble Al and Fe, soluble, and available P. Tillering retardation at 20°C compared to 30°C was similar in nutrient solutions and in soils. The effect of temperature on increasing plant biomass was more marked in solutions than in soils. The P concentrations in roots and shoots were higher at 20°C than at 30°C, to such an extent that detrimental effect was suspected in plants grown in solution at the lowest temperature. The translocation of Fe from roots to shoots was stimulated upon rising temperature, both in solutions and in soils. This led to plant death on the most acid soil at 30°C. Indeed, the accumulation of Fe in plants grown on soils was enhanced by the release of Fe2+ due to reduction of Fe(III)-oxihydroxides. Severe reducing conditions were created at 30°C: redox potential (E h ) dropped rapidly down to about 0 V. At 20°C, E h did not drop below about 0.2 V, which is a value well in the range of Fe(III)/Fe(II) buffering. Parallel to E h drop, pH increased up to about 6–6.5 at 30°C, which prevented plants from Al toxicity, even in the most acid soil. Phosphate behavior was obviously related to Fe-dynamics: more reducing conditions at 30°C have resulted in enhancement of available P, especially in the most acid soil.  相似文献   

7.
Sorghum [Sorghum bicolor (L.) Moench] plants were grown in growth chambers at 20, 25 and 30°C in a low P Typic Argiudoll (3.65 µg P g–1 soil, pH 8.3) inoculated with Glomus fasciculatum, Glomus intraradices, and Glomus macrocarpum to determine effects of vesicular-arbuscular mycorrhizal fungi (VAMF) species on plant growth and mineral nutrient uptake. Sorghum root colonization by VAMF and plant responses to Glomus species were temperature dependent. G. macrocarpum colonized sorghum roots best and enhanced plant growth and mineral uptake considerably more than the other VAMF species, especially at 30°C. G. fasciculatum enhanced shoot growth at 20 and 25°C, and mineral uptake only at 20°C. G. intraradices depressed shoot growth and mineral uptake at 30°C. G. macrocarpum enhanced shoot P, K, and Zn at all temperatures, and Fe at 25 and 30°C above that which could be accounted for by increased biomass. Sorghum plant growth responses to colonization by VAMF species may need to be evaluated at different temperatures to optimize beneficial effects.  相似文献   

8.
The relationship between distributional boundaries and temperature responses of some Northeast American and West European endemic and amphiatlantic rhodophytes was experimentally determined under varying regimes of temperature, light, and daylength. Potentially critical temperatures, derived from open ocean surface summer and winter isotherms, were inferred from distributional data for each of these algae. On the basis of the distributional data the algae fall within the limits of three phytogeographic groups: (1) the Northeast American tropical-to-temperate group; (2) the warm-temperate Mediterranean Atlantic group; and (3) the amphiatlantic tropical-to-warm temperate group. Experimental evidence suggests that the species belonging to the northeast American tropical-to-temperate group(Grinnellia americana, Lomentaria baileyana, andAgardhiella subulata) have their northern boundaries determined by a minimum summer temperature high enough for sufficient growth and/or reproduction. The possible restriction of 2 species (G. americana andL. baileyana) to the tropical margins may be caused by summer lethal temperatures (between 30 and 35 °C) or because the gradual disintegration of the upright thalli at high temperatures (>30 °C) promotes an ephemeral existence of these algae towards their southern boundaries. Each of the species have a rapid growth and reproductive potential between 15–30 °C with a broad optimum between 20–30 °C. The lower limit of survival of each species was at least 0 °C (tested in short days only). Growth and reproduction data imply that the restrictive distribution of these algae to the Americas may be due to the fact that for adequate growth and/or reproduction water temperatures must exceed 20 °C. At temperatures 15 °C reproduction and growth are limited, and the amphiatlantic distribution through Iceland would not be permitted. On the basis of experimental evidence, the species belonging to the warm-temperate Mediterranean Atlantic group(Halurus equisetifolius), Callophyllis laciniata, andHypoglossum woodwardii), have their northern boundaries determined by winter lethal temperatures. Growth ofH. equisetifolius proceeded from 10–25 °C, that ofC. laciniata andH. woodwardii from 5–25 °C, in each case with a narrow range for optimal growth at ca. 15 °C. Tetrasporelings ofH. woodwardii showed limited survival at 0 °C for up to 4 d. For all members of the group tetrasporangia occurred from 10–20 °C. The southern boundary ofH. equisetifolius andC. laciniata is a summer lethal temperature whereas that ofH. woodwardii possibly is a winter growth and reproduction limit. Since each member of this group has a rather narrow growth and survival potential at temperatures <5 °C and >20 °C, their occurrence in northeast America is unlikely. The (irregular) distribution ofSolieria tenera (amphiatlantic tropical-to-warm temperate) cannot be entirely explained by the experimental data (possibly as a result of taxonomic uncertainties).Paper presented at the Seaweed Biogeography Workshop of the International Working Group on Seaweed Biogeography, held from 3–7 April, 1984 at the Department of Marine Biology, University of Groningen (The Netherlands). Convenor: C. van den Hoek.  相似文献   

9.
N. Uygun  R. Atlihan 《BioControl》2000,45(4):453-462
Development and fecundity of Scymnus levaillanti(Mulsant) were recorded at fiveconstant temperatures ranging from 15 to 35 ± 1 °C in 5 °C increments, 60 ± 5% RHand 16 h of artificial light (5000 Lux). Developmentaltime (egg to adult) of S. levaillantisignificantly decreased with increasing temperatures,ranging from 63.9 days at 15 °C to 11.1 days at35 °C. Development from egg to adult required305.2 DD above a developmental threshold estimated as11.7 °C. Oviposition periods lasted 86.5, 76.1,47.2, and 31.5 days at 20, 25, 30 and 35 °C,respectively. No eggs were deposited at 15 °C.Higher temperatures resulted in shorter generationtimes (TO) and in decreased net reproductiverates (RO) of the coccinellid. S.levaillanti kept at 30 °C produced 0.151females/female/day, the highest per capita rate ofpopulation growth (rm). The `functional response'of larvae and adults of S. levaillanti matcheswell that described by Holling (1959) as Type 2.Daily number of eggs deposited by females increased toa plateau with increasing prey density. Resultsobtained here provide information about the biology ofS. levaillanti, and its feeding capacityindicates that it may act as an important control agent.  相似文献   

10.
S. Chen  J. Li  X. Han  M. Moens 《BioControl》2003,48(6):713-724
Susceptibility of last instarlarvae of Delia radicum to Steinernema feltiae, S. carpocapsae,S. arenarium, Heterorhabditismegidis and H. bacteriophora wasevaluated in the laboratory at 10 °C,15 °C and 20 °C. S. feltiaewas the only species that killed the larvae at10 °C; S. carpocapsae, S.arenarium and H. megidis were effectiveat 15–20 °C whereas H.bacteriophora killed the maggot only at20 °C. The temperature significantlyaffected the host searching ability of alltested species. Mobility was reduced at lowtemperatures. Significant effects of the hostpresence on nematode mobility were found forS. feltiae, S. arenarium and H. megidis but not for S. carpocapsaeand H. bacteriophora. The dynamics of theattachment to and penetration into the hostwere monitored for S. feltiae at10 °C, 15 °C or 20 °C and forS. carpocapsae at 20 °C. In theperiod of 6–30 hours after inoculation, S.carpocapsae attached in higher number at20 °C than did S. feltiae at alltemperatures. At 20 °C, S.carpocapsae penetrated the host only after 30hours while S. feltiae penetrated alreadyafter 15, 9, 6 hours at 10 °C,15 °C and 20 °C, respectively.  相似文献   

11.
Photoinhibition of photosynthesis and its recovery in the cyanobacteriumSpirulina platensis was studied to find how photosynthetic rates were influenced by light and temperature. By exposing cell samples from a turbidostat culture to combinations of light and temperature, a connection between light, temperature and photoinhibition was found. The experiments showed that a 10 degree increase from 20 °C to 30 °C considerably reduced the photoinhibition. At 25 °C a photon flux density of 1720 µmol m–2 s–1 reduced the photosynthetic rate by 50 % in 1 h, but a similarly high photon flux density had nearly no negative effect at 35 °C. Reactivation in low light from 50% photoinhibition was fast and complete in 60 min at 30 °C, while at 20 °C only about 1/6 of the full capacity was regained in the same time. Addition of the protein synthesis inhibitor streptomycin to cultures undergoing photoinhibition and regeneration indicated the presence also in this organism of a repair mechanism based on protein synthesis.Author for correspondence  相似文献   

12.
Park S. Nobel 《Oecologia》1981,48(2):194-198
Summary Coryphantha vivipara (Nutt.) Britton & Rose var. deserti (Engelm.) W.T. Marshall (Cactaceae) survived snow and tissue temperatures of-12°C in southern Nevada. However, the freezing point depression of the cell sap was only about 0.9°C. When the nocturnal air temperature in the laboratory was reduced from 10°C to-10°C for one night, the optimum temperature for CO2 uptake shifted from 10°C to 6°C and uptake was reduced 70%, but full recovery to the original values occurred in 4 days. Nocturnal temperatures of-15°C killed 2 out of 5 plants and-20°C killed 5 out of 5, as judged by lack of net CO2 uptake at night over a 2-month observation period. when the stems were cooled at 2° C/h, supercooling to about-6°C occurred followed by an exothermic reaction that presumably represented the freezing of extracellular water. When the subzero temperature was lowered further, no other exothermic reaction was observed and the cells became progressively dehydrated. Freezing-induced tissue death was ascribed to this cellular dehydration, which led to about 94% loss of intracellular water at-15°C. when the tissue temperature was lowered, the ability of chlorenchyma cells to plasmolyze and to take up a stain decreased, both being nearly 70% inhibited at-15°C and completely abolished at-20°C. Some cold-bardening occurred, since lowering the air temperature from 30° to-10°C in 10°C increments at weekly intervals caused the subzero temperature for 50% inhibition of staining to decrease from-10°C to-17°C. Extension of the range of C. vivipara to regions with wintertime freezing apparently reflects the tolerance of considerable freeze dehydration by its protoplasts.  相似文献   

13.
Broomrape (Orobanche ramosa L.) is a root holoparasite responsible for important yield losses in numerous crops, particularly in the Mediterranean area. In this paper, the effects of temperature, oxygen concentration and water potential of the medium on broomrape seed germination were investigated. Seeds became able to germinate in the presence of a strigol analogue (GR 24) only after a preincubation period for at least 3 days at 20 °C. Their responsiveness to GR 24 increased with increasing duration of their preconditioning at 20 °C, and was optimal after 2–3 weeks. The preconditioning treatment was effective at temperatures ranging from 10 to 30 °C. At the optimal temperature (20 °C), it required at least 1% oxygen in the atmosphere and remained effective at a water potential of the medium of –2 MPa. A too prolonged preincubation of seeds at sub- or supraoptimal temperatures (5 and 30 °C) resulted in induction of a secondary dormancy. Seeds preconditioned for 14 days at 20 °C germinated in the presence of 1 mg L–1 GR 24 at temperatures ranging from 10 to 25 °C, and the thermal optimum was the same (20 °C) than that of preconditioning. At 20 °C, seeds were able to germinate in the presence of GR 24 under atmospheres containing at least 3% oxygen and at a water potential of the medium as low as –3 MPa. The differences observed in the effects of environmental factors on preconditioning efficiency and germination of preconditioned seeds suggest that both processes involve different mechanisms. The results obtained might also help to better understand the regulation of O. ramosa spread in temperate areas.  相似文献   

14.
Age-specific life tables of two important pests of cowpea, Vigna unguiculata (L.) Walp., the pod sucking bugs Clavigralla tomentosicollis Stål and C. shadabi Dolling (Heteroptera: Coreidae), were obtained from observations carried out at different temperatures. A biophysical model was found satisfactory to describe the temperature-response of developmental and mortality rates of egg and nymphal stages, with a peak developmental rate around 34°C in both species. The variability in development times was small and the experimental data did not permit any conclusion with regard to the Erlang probability density function. Survival of eggs and nymphs remained high between 20° and 30°C for both species. At temperatures above 34°C, C. tomentosicollis survivorship and fecundity was higher than that of C. shadabi, which in turn laid more eggs at temperatures between 20° and 30°C. Maximum fecundity is estimated to be at 29°C for C. tomentosicollis (99 eggs/female) and 26°C for C. shadabi (261 eggs/female). At 30°C, the intrinsic rate of increase reached a maximum in both species, 0.152 per day for C. tomentosicollis and 0.145 per day for C. shadabi, and remained high for C. tomentosicollis until 36°C. C. tomentosicollis performed significantly better on pigeonpea, Cajanus cajan Millsp., than on cowpea at higher temperatures.  相似文献   

15.
The effect of temperatureon conidial germination, mycelial growth, andsusceptibility of adults of three tephritidfruit flies, Ceratitis capitata(Wiedemann), C. fasciventris (Bezzi) andC. cosyra (Walker) to six isolatesof Metarhizium anisopliae were studied inthe laboratory. There were significantdifferences among the isolates in the effect oftemperature on both germination and growth.Over 80% of conidia germinated at 20, 25 and30°C, while between 26 and 67% conidiagerminated at 35°C and less than 10% at15°C within 24 hours. Radial growth was slowat 15°C and 35°C with all of theisolates. The optimum temperature forgermination and mycelial growth was 25°C. Mortality caused by the six fungal isolatesagainst the three fruit fly species varied withtemperature, isolate, and fruit fly species.Fungal isolates were more effective at 25, 30and 35°C than at 20°C. The LT90values decreased with increasing temperature upto the optimum temperature of 30°C. Therewere significant differences in susceptibilitybetween fly species to fungal infection at allthe temperatures tested.  相似文献   

16.
Life table characteristics of Hypoaspis miles Berlese (Acarina: Hypoaspidae) fed on a mixture of Bradysia paupera Tuomikoski (Diptera: Sciaridae) and B. tritici Coquillet larvae were investigated in laboratory experiments at 4 temperatures (15, 20, 25, 30 °C) for development time, juvenile mortality, sex ratio, preoviposition period, oviposition period, postoviposition period, age-specific fecundity, and adult longevity. Juvenile development time decreased with increasing temperature from 46 days at 15 °C to 10 days at 30 °C. The lower temperature threshold was 9.9 °C and development required 205 °D. Juvenile mortality decreased from 52% at 15 °C to 3% at 25 °C and then increased to 24% at 30 °C. Preoviposition period varied with temperature from 12 days at 15 °C to 3 days at 25 °C and then increased to about 4 days at 30 °C. Oviposition period decreased with increasing temperature from 58 days at 15 °C to 25 days at 30 °C. The mean number of eggs per female per day increased from 0.4 at 15 °C to 2.3 at 25 °C and decreased to 1.3 at 30 °C. Age-specific fecundity was described by a temperature dependent model from which the maximum daily fecundity rate could be estimated to be attained at 25.6 °C. Female longevity was significantly shorter than for males, and decreased from 90 days at 15 °C to 34 days at 30 °C. Sex ratio was female-biased at all 4 temperatures and increased with temperature up to 25 °C, decreasing at 30 °C. Estimates of net reproductive rate, intrinsic rate of increase, finite rate of increase, mean generation time and doubling time were obtained. The r m -value increased with temperature from 0.031 day-1 at 15 °C to 0.133 day-1 at 25 °C, after which it decreased to 0.112 day-1 at 30 °C. The study showed that H. miles can develop and reproduce at temperatures between 15 and 30 °C. H. miles and sciarids have approximately the same optimum temperature and thresholds for development and reproduction and H. miles can be used for biological control of sciarids within the temperature range where the pest occurs.  相似文献   

17.
A method of estimating the weight ofindividual Abgrallaspis cyanophylli (Signoret)without the need for removal from the host plant isdescribed. Using this method, which enables accurateestimations of scale insect weight by measuring lengthand relating it to a previously determined regressionmodel, maximum feeding potential in male and femaleChilocorus nigritus (F.) adults was examined atvarious constant temperatures over the range of 13 to30 °C and at a cycling temperature of 12 h/12 hat 14/30 °C (r.h. in the range of 62 to 68%). Mean daily potential food intake varied from 0.097 mg/day at 13 °C to 1.432 mg/day at 30 °C.However, intake at the cycling temperature was significantly higher than that at constant temperatures (1.98 mg/day). At 15, 20 and 30 °C there were no significant differences between male and female potential food requirements whilst at temperatures in the mid range, there was a considerable increase in female potential voracitywhen compared to that of the males. Maximum potentiallarval food requirement for development at 26 °Cand 62% r.h. in C. nigritus was also estimatedusing the above method. A mean of 16.24 mg of Abgrallaspis cyanophylli (Signoret) was required forlarvae of both sexes to complete development. Thisstudy suggests that C. nigritus would be mostefficient as a biological control agent if used inglasshouses with a mean daily temperature above22 °C.  相似文献   

18.
Various heteropteran host eggs stored under two low-temperatures were tested in the laboratory for their usability in the production of sunn pest egg parasitoid, Trissolcus semistriatus. Parasitism, adult emergence rate and development time were assesed on stored and fresh eggs of Eurygaster integriceps, Dolycoris baccarum, Graphosoma lineatum and Eurydema ornatum. Masses of fresh host eggs in microcentrifuge tubes were maintained at +6 °C and −20 °C. Every 30 days, 50 eggs of host species were exposed to parasitism by T. semistriatus. The host eggs stored at 6 °C remained viable to parasitism by T. semistriatus up to 2 months, while those of stored at −20 °C were parasitized at high rates up to 4 months, alhough succesful parasitism rates decrease with time. However, it was indicated that both fresh or stored E. ornatum eggs were not preferred to parasitism by the parasitoid. A longer development time from egg to adult was observed in stored eggs under two tested storage techniques when compared with fresh eggs.  相似文献   

19.
Summary The linear growth rates of fungal isolates were measured on agar plates at temperatures ranging from 4° to 35°C. Fungi tested included the major fungal colonizers of leaves and litter of the three dominant plant species on subantarctic Macquarie Island, and major fungal species associated with plant and soil communities near Australia's Casey Station on the Antarctic Continent. All fungi grew at 4°C and were classified as psychrotrophs. Maximum growth rates were recorded at temperatures of 10° to 20°C for 13 of the 15 isolates from Macquarie Island and for all six isolates from Casey. Most of the leaf colonizing fungi from Macquarie Island had optimum growth temperatures of 15°C whereas all litter fungi from Macquarie Island and Casey fungi except Thelebolus microsporus had optimum growth temperatures of 20°C or above. Maximum growth of all species was at temperatures above those normally prevailing in their natural environments, with most species growing at 4°C at between 10% and 30% of their maximum rates. However, microclimatic effects may have resulted at times in temperatures near their growth optima. The highest growth rates at 4°C were recorded for Phoma spp. 1 and 2, Phoma exigua and Mortierella gamsii from Macquarie Island and Mortierella sp. 1 from Casey. Thelebolus microsporus and sterile sp. G from Casey also grew relatively fast at 4°C, and these species, and Phoma sp. 3 and Phoma exigua from Macquarie Island had the lowest Q-10 values for the temperature range 4° to 15°C.  相似文献   

20.
Experiments are reported in which genetically different strains of Drosophila willistoni compete with D. pseudoobscura. The competition was studied at three temperatures, 20°, 22°, and 25°C. The outcome of the competition depends on the genetic constitution of the competing species, but at 25° and 22°C D. willistoni flies are generally stronger competitors than D. pseudoobscura, while at 20°C D. pseudoobscura generally has a competitive advantage. There is a significant interaction between genotype and temperature; the strain RP3 is the weakest competitor of all D. willistoni strains at 22° and 25°C, but not at 20°C; the strain M18 is the best competitor at 20° and 22°C but not at 25°C.The performance of the four strains of D. willistoni was measured in two more ways. First we estimated their Darwinian fitness relative to other genotypes of the same species. Second, we measured the average population size of each strain in pure culture. There is no significant correlation between population size in pure culture and either competitive fitness or Darwinian fitness. There is, however, a strong positive correlation between Darwinian fitness and interspecific competitive fitness.It is pointed out that natural selection leads to an increase in the average Darwinian fitness of a population but not necessarily to an increase in its adaptedness to the environment. Yet the synthetic theory of evolution assumes that the genes and genotypes favored by natural selection are usually those which increase the adaptedness of their carriers to the environments where they live. The correlation between Darwinian fitness and adaptedness needs to be studied experimentally.This work was supported by NSF grant GB-12562 (International Biological Program), AEC contract AT-(30-1)-3096, and PHS Career Development Award K3GM 37265 to F. J. Ayala. The senior author's stay in New York was financed in part by Research Fellowship 2-12861 from the Panamerican Union.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号