首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small ubiquitin-like proteins (SUMO) are recently discovered post-translational modifiers that regulate protein functions and intracellular trafficking. In this study, we are describing two chemoluminescence-based assays, one for SUMOylation and another one for SUMO-mediated protein-protein interactions. These assays can be used to characterize the activity and kinetics of the enzymes that catalyze SUMOylation, and in high-throughput screening for inhibitors of SUMOylation and SUMO-dependent protein-protein interactions. These novel assays represent the most sensitive assays for ubiquitin-like systems published to date. Similar strategies can be used to develop assays for other ubiquitin-like modification systems.  相似文献   

2.
3.
4.
The karyophilic properties of the human immunodeficiency virus, type I (HIV-1) pre-integration complex (PIC) allow the virus to infect non-dividing cells. To better understand the mechanisms responsible for nuclear translocation of the PIC, we investigated nuclear import of HIV-1 integrase (IN), a PIC-associated viral enzyme involved in the integration of the viral genome in the host cell DNA. Accumulation of HIV-1 IN into nuclei of digitonin-permeabilized cells does not result from passive diffusion but rather from an active transport that occurs through the nuclear pore complexes. HIV-1 IN is imported by a saturable mechanism, implying that a limiting cellular factor is responsible for this process. Although IN has been previously proposed to contain classical basic nuclear localization signals, we found that nuclear accumulation of IN does not involve karyopherins alpha, beta1, and beta2-mediated pathways. Neither the non-hydrolyzable GTP analog, guanosine 5'-O-(thiotriphosphate), nor the GTP hydrolysis-deficient Ran mutant, RanQ69L, significantly affects nuclear import of IN, which depends instead on ATP hydrolysis. Therefore these results support the idea that IN import is not mediated by members of the karyopherin beta family. More generally, in vitro nuclear import of IN does not require addition of cytosolic factors, suggesting that cellular factor(s) involved in this active but atypical pathway process probably remain associated with the nuclear compartment or the nuclear pore complexes from permeabilized cells.  相似文献   

5.
U Stochaj  R Rassadi  J Chiu 《FASEB journal》2000,14(14):2130-2132
Stress modifies all aspects of cellular physiology, including the targeting of macromolecules to the nucleus. To determine how distinct types of stress affect classical nuclear protein import, we followed the distribution of NLS-GFP, a reporter protein containing a classical nuclear localization sequence (NLS) fused to green fluorescent protein GFP. Nuclear accumulation of NLS-GFP requires import to be constitutively active; inhibition of import redistributes NLS-GFP throughout the nucleus and cytoplasm. In the yeast Saccharomyces cerevisiae, starvation, heat shock, ethanol and hydrogen peroxide rapidly inhibited classical nuclear import, whereas osmotic stress had no effect. To define the mechanisms underlying the inhibition of classical nuclear import, we located soluble components of the nuclear transport apparatus. Failure to accumulate NLS-GFP in the nucleus always correlated with a redistribution of the small GTPase Gsp1p. Whereas predominantly nuclear under normal conditions, Gsp1p equilibrated between nucleus and cytoplasm in cells exposed to starvation, heat, ethanol or hydrogen peroxide. Furthermore, analysis of yeast strains carrying mutations in different nuclear transport factors demonstrated a role for NTF2, PRP20 and MOG1 in establishing a Gsp1p gradient, as conditional lethal alleles of NTF2 and PRP20 or a deletion of MOG1 prevented Gsp1p nuclear accumulation. On the basis of these results, we now propose that certain types of stress release Gsp1p from its nuclear anchors, thereby promoting a collapse of the nucleocytoplasmic Gsp1p gradient and inhibiting classical nuclear protein import.  相似文献   

6.
Adenovirus, a respiratory virus with a double-stranded DNA genome, replicates in the nuclei of mammalian cells. We have developed a cytosol-dependent in vitro assay utilizing adenovirus nucleocapsids to examine the requirements for adenovirus docking to the nuclear pore complex and for DNA import into the nucleus. Our assay reveals that adenovirus DNA import is blocked by a competitive excess of classical protein nuclear localization sequences and other inhibitors of nuclear protein import and indicates that this process is dependent on hsc70. Previous work revealed that the hexon (coat) protein of adenovirus is the only major protein on the surface of the adenovirus nucleocapsid that docks at the nuclear pore complex. This, together with our finding that in vitro nuclear import of hexon is inhibited by an excess of classical nuclear localization sequences, suggests a role for the hexon protein in adenovirus DNA import. However, recombinant transport factors that are sufficient for hexon import in permeabilized cells do not support DNA import, indicating that there are other as yet unidentified factors required for this process.  相似文献   

7.
Newly synthesised histones are thought to dimerise in the cytosol and undergo nuclear import in complex with histone chaperones. Here, we provide evidence that human H3.1 and H4 are imported into the nucleus as monomers. Using a tether‐and‐release system to study the import dynamics of newly synthesised histones, we find that cytosolic H3.1 and H4 can be maintained as stable monomeric units. Cytosolically tethered histones are bound to importin‐alpha proteins (predominantly IPO4), but not to histone‐specific chaperones NASP, ASF1a, RbAp46 (RBBP7) or HAT1, which reside in the nucleus in interphase cells. Release of monomeric histones from their cytosolic tether results in rapid nuclear translocation, IPO4 dissociation and incorporation into chromatin at sites of replication. Quantitative analysis of histones bound to individual chaperones reveals an excess of H3 specifically associated with sNASP, suggesting that NASP maintains a soluble, monomeric pool of H3 within the nucleus and may act as a nuclear receptor for newly imported histone. In summary, we propose that histones H3 and H4 are rapidly imported as monomeric units, forming heterodimers in the nucleus rather than the cytosol.  相似文献   

8.
A comparison has been made of the enzymes catalyzing the transfer of manose, glucose and N-acetylglucosamine from, respectively, GDPmannose, UDP-glucose and UDP-N-acetylglucosamine to endogenous dolichol phosphate (Dol-P) in liver Golgi membranes. Evidence is presented which suggests that all three reactions utilize the same pool of Dol-P. The transfer of mannose from GDP-Man to Dol-P is not inhibited by 0.1 mM UDP or UMP; 0.1 mM GDP did block the accumulation of mannose in Dol-P-Man. The net transfer of glucose and N-acetylglucosamine to Dol-P is prevented by 0.1 mM UDP but not 0.1 mM GDP. UDPglucose inhibits the reverse of the glucose transfer reaction but not reverse of the N-acetylglucosamine or mannose transfer reaction. On the basis of this, and other data, it is concluded that the three sugar transfer reactions utilize separate enzymes.  相似文献   

9.
Nuclear import and export signals on macromolecules mediate directional, receptor-driven transport through the nuclear pore complex (NPC) by a process that is suggested to involve the sequential binding of transport complexes to different nucleoporins. The directionality of transport appears to be partly determined by the nucleocytoplasmic compartmentalization of components of the Ran GTPase system. We have analyzed whether the asymmetric localization of discrete nucleoporins can also contribute to transport directionality. To this end, we have used quantitative solid phase binding analysis to determine the affinity of an importin beta cargo complex for Nup358, the Nup62 complex, and Nup153, which are in the cytoplasmic, central, and nucleoplasmic regions of the NPC, respectively. These nucleoporins are proposed to provide progressively more distal binding sites for importin beta during import. Our results indicate that the importin beta transport complex binds to nucleoporins with progressively increasing affinity as the complex moves from Nup358 to the Nup62 complex and to Nup153. Antibody inhibition studies support the possibility that importin beta moves from Nup358 to Nup153 via the Nup62 complex during import. These results indicate that nucleoporins themselves, as well as the nucleocytoplasmic compartmentalization of the Ran system, are likely to play an important role in conferring directionality to nuclear protein import.  相似文献   

10.
It is proposed that the lytB gene encodes an enzyme of the deoxyxylulose-5-phosphate (DOXP) pathway that catalyzes a step at or subsequent to the point at which the pathway branches to form isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A mutant of the cyanobacterium Synechocystis strain PCC 6803 with an insertion in the promoter region of lytB grew slowly and produced greenish-yellow, easily bleached colonies. Insertions in the coding region of lytB were lethal. Supplementation of the culture medium with the alcohol analogues of IPP and DMAPP (3-methyl-3-buten-1-ol and 3-methyl-2-buten-1-ol) completely alleviated the growth impairment of the mutant. The Synechocystis lytB gene and a lytB cDNA from the flowering plant Adonis aestivalis were each found to significantly enhance accumulation of carotenoids in Escherichia coli engineered to produce these colored isoprenoid compounds. When combined with a cDNA encoding deoxyxylulose-5-phosphate synthase (dxs), the initial enzyme of the DOXP pathway, the individual salutary effects of lytB and dxs were multiplied. In contrast, the combination of lytB and a cDNA encoding IPP isomerase (ipi) was no more effective in enhancing carotenoid accumulation than ipi alone, indicating that the ratio of IPP and DMAPP produced via the DOXP pathway is influenced by LytB.  相似文献   

11.
12.
In order to study the biosynthesis of agatharesinol, a norlignan, l-phenylalanine-[ring-2,3,4,5,6-2H] and trans-cinnamic acid-[ring-13C6] were administered to fresh sapwood sticks of Cryptomeria japonica (sugi, Japanese cedar), that is, the labeled precursors were allowed to be absorbed through the tangential section of the wood sticks. The wood sticks were then maintained in high humidity desiccators for approximately 20 d after which ethyl acetate (EtOAc) extracts of the wood sticks were analyzed by gas chromatography-mass spectrometry (GC-MS). Native agatharesinol (trimethylsilylated) produces an m/z 369 ion and an m/z 484 ion that are characteristic of its structure. Agatharesinol formed in the sapwood sticks treated with the deuterium-labeled l-phenylalanine generated both of these ions together with m/z 373 and 377 ions (m/z 369+4 and +8, respectively), and also m/z 488 and 492 ions (m/z 484+4 and +8, respectively). Generation of m/z 373 and 488 ions is attributed to the substitution by deuterium of the four hydrogen atoms of either of the p-hydroxyphenyl rings of agatharesinol, and that of m/z 377 and 492 ions is attributed to the substitution by deuterium of the eight hydrogen atoms of both p-hydroxyphenyl rings. In the administration of the 13C-labeled trans-cinnamic acid, m/z 375 and 381 ions (m/z 369+6 and +12, respectively), and also m/z 490 and 496 ions (m/z 484+6 and +12, respectively) were found, indicating that either aromatic ring or both aromatic rings of agatharesinol were 13C-labeled. Consequently, assimilation of the labeled precursors into agatharesinol was clearly detected, and an experimental procedure for studies on the biosynthesis was developed.  相似文献   

13.
Oxalate accumulation of up to 8 g/liter was induced in Aspergillus niger by shifting the pH from 6 to 8. This required the presence of Pi and a nitrogen source and was inhibited by the protein synthesis inhibitor cycloheximide. Exogenously added 14CO2 was not incorporated into oxalate, but was incorporated into acetate and malate, thus indicating the biosynthesis of oxalate by hydrolytic cleavage of oxaloacetate. Inhibition of mitochondrial citrate metabolism by fluorocitrate did not significantly decrease the oxalate yield. The putative enzyme that was responsible for this was oxaloacetate hydrolase (EC 3.7.1.1), which was induced de novo during the pH shift. Subcellular fractionation of oxalic acid-forming mycelia of A. niger showed that this enzyme is located in the cytoplasm of A. niger. The results are consistent with a cytoplasmic pathway of oxalate formation which does not involve the tricarboxylic acid cycle.  相似文献   

14.
A comparison has been made of the enzymes catalyzing the transfer of mannose, glucose and N-acetylglucosamine from, respectively, GDPmannose, UDP-glucose and UDP-N-acetylglucosamine to endogenous dolichol phosphate (Dol-P) in liver Golgi membranes. Evidence is presented with suggests that all three reactions utilize the same pool of Dol-P. The transfer of mannose from GDP-Man to Dol-P is not inhibited by 0.1 mM UDP or UMP; 0.1 mM GDP did block the accumulation of mannose in Dol-P-Man. The net transfer of glucose and N-acetylglucosamine to Dol-P is prevented by 0.1 mM UDP but not 0.1 mM GDP. UDPglucose inhibits the reverse of the glucose transfer reaction but not the reverse of the N-acetylglucosamine or mannose trasfer reaction. On the basis of this, and other data, it is concluded that the three sugar transfer reactions utilize separate enzymes.  相似文献   

15.
A nuclear receptor likely involved in nuclear protein import is described. Purified ATP-depleted yeast nuclei show saturable high-affinity binding of the yeast nuclear protein Mcm1. The dissociation constant for the binding is 0.5 microM, and the number of binding sites is approximately 3,500 per nucleus, equivalent to 10-30 binding sites per nuclear pore. Mcm1 competes with other yeast nuclear proteins Ste12 and Swi5, but not with Rap1 or Nop1, indicating that there may be different types of import receptors. Bound Mcm1 is resistant to extraction by nucleases, salt, and non-ionic detergent, but can be released by 5 M urea, suggesting that Mcm1 binds to a yeast equivalent of the nuclear pore complex-lamina fraction of higher eukaryotes.  相似文献   

16.
The interaction of the human immunodeficiency virus type 1 (HIV-1) nucleoprotein complex with the cell nuclear import machinery is necessary for viral replication in macrophages and for the establishment of infection in quiescent T lymphocytes. The karyophilic properties of two viral proteins, matrix (MA) and Vpr, are keys to this process. Here, we show that an early step of HIV-1 nuclear import is the recognition of the MA nuclear localization signal (NLS) by Rch1, a member of the karyopherin-alpha family. Furthermore, we demonstrate that an N-terminally truncated form of Rch1 which binds MA but fails to localize to the nucleus efficiently blocks MA- but not Vpr-mediated HIV-1 nuclear import. Correspondingly, NLS peptide inhibits the nuclear migration of MA but not that of Vpr and prevents the infection of terminally differentiated macrophages by vpr-defective virus but not wild-type virus. These results are consistent with a model in which Rch1 or another member of the karyopherin-alpha family, through the recognition of the MA NLS, participates in docking the HIV-1 nucleoprotein complex at the nuclear pore. In addition, our data suggest that Vpr governs HIV-1 nuclear import through a distinct pathway.  相似文献   

17.
Sequence requirements for plasmid nuclear import   总被引:8,自引:0,他引:8  
The nuclear envelope is a major barrier for nuclear uptake of plasmids and represents one of the most significant unsolved problems of nonviral gene delivery. We have previously shown that the nuclear entry of plasmid DNA is sequence-specific, requiring a 366-bp fragment containing the SV40 origin of replication and early promoter. In this report, we show that, although fragments throughout this region can support varying degrees of nuclear import, the 72-bp repeats of the SV40 enhancer facilitate maximal transport. The functions of the promoter and the origin of replication are not needed for nuclear localization of plasmid DNA. In contrast to the import activity of the SV40 enhancer, two other strong promoter and enhancer sequences, the human cytomegalovirus (CMV) immediate-early promoter and the Rous sarcoma virus LTR, were unable to direct nuclear localization of plasmids. The inability of the CMV promoter to mediate plasmid nuclear import was confirmed by measurement of the CMV promoter-driven expression of green fluorescent protein (GFP) in microinjected cells. At times before cell division, as few as 3 to 10 copies per cell of cytoplasmically injected plasmids containing the SV40 enhancer gave significant GFP expression, while no expression was obtained with more than 1000 copies per cell of plasmids lacking the SV40 sequence. However, the levels of expression were the same for both plasmids after cell division in cytoplasmically injected cells and at all times in nuclear injected cells. Thus, the inclusion this SV40 sequence in nonviral vectors may greatly increase their ability to be transported into the nucleus, especially in nondividing cells.  相似文献   

18.
Importin alpha plays a pivotal role in the classical nuclear protein import pathway. Importin alpha shuttles between nucleus and cytoplasm, binds nuclear localization signal-bearing proteins, and functions as an adapter to access the importin beta-dependent import pathway. In contrast to what is found for importin beta, several isoforms of importin alpha, which can be grouped into three subfamilies, exist in higher eucaryotes. We describe here a novel member of the human family, importin alpha7. To analyze specific functions of the distinct importin alpha proteins, we recombinantly expressed and purified five human importin alpha's along with importin alpha from Xenopus and Saccharomyces cerevisiae. Binding affinity studies showed that all importin alpha proteins from humans or Xenopus bind their import receptor (importin beta) and their export receptor (CAS) with only marginal differences. Using an in vitro import assay based on permeabilized HeLa cells, we compared the import substrate specificities of the various importin alpha proteins. When the substrates were tested singly, only the import of RCC1 showed a strong preference for one family member, importin alpha3, whereas most of the other substrates were imported by all importin alpha proteins with similar efficiencies. However, strikingly different substrate preferences of the various importin alpha proteins were revealed when two substrates were offered simultaneously.  相似文献   

19.
Lai MC  Kuo HW  Chang WC  Tarn WY 《The EMBO journal》2003,22(6):1359-1369
Alternative splicing of precursor mRNA is often regulated by serine/arginine-rich proteins (SR proteins) and hnRNPs, and varying their concentration in the nucleus can be a mechanism for controlling splice site selection. To understand the nucleocytoplasmic transport mechanism of splicing regulators is of key importance. SR proteins are delivered to the nucleus by transportin-SRs (TRN-SRs), importin beta-like nuclear transporters. Here we identify and characterize a non-SR protein, RNA-binding motif protein 4 (RBM4), as a novel substrate of TRN-SR2. TRN-SR2 interacts specifically with RBM4 in a Ran-sensitive manner. TRN-SR2 indeed mediates the nuclear import of a recombinant protein containing the RBM4 C-terminal domain. This domain serves as a signal for both nuclear import and export, and for nuclear speckle targeting. Finally, both in vivo and in vitro splicing analyses demonstrate that RBM4 not only modulates alternative pre-mRNA splicing but also acts antagonistically to authentic SR proteins in splice site and exon selection. Thus, a novel splicing regulator with opposite activities to SR proteins shares an identical import pathway with SR proteins to the nucleus.  相似文献   

20.
Chemically synthesized selenobiotin is, like sulfur biotin, able to bind to avidin. This observation was used to help identify biologically synthesized selenobiotin as an excretion product of Phycomyces blakesleeanus. The identification of [75Se]selenobiotin was based on the highly specific binding of biotin to avidin used as an affinity ligand to Sepharose, on its release from the complex by proteolytic treatment, and its chromatographic behavior relative to [14C]biotin standards. These results represent the first evidence of a biological synthesis of a heterocyclic ring that contains selenium in place of sulfur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号