首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Uracil accumulates in DNA as a result of impaired folate-dependent de novo thymidylate biosynthesis, a pathway composed of the enzymes serine hydroxymethyltransferase (SHMT), thymidylate synthase (TYMS), and dihydrofolate reductase. In G1, this pathway is present in the cytoplasm and at S phase undergoes small ubiquitin-like modifier-dependent translocation to the nucleus. It is not known whether this pathway functions in the cytoplasm, nucleus, or both in vivo. SHMT1 generates 5,10-methylenetetrahydrofolate for de novo thymidylate biosynthesis, a limiting step in the pathway, but also tightly binds 5-methyltetrahydrofolate in the cytoplasm, a required cofactor for homocysteine remethylation. Overexpression of SHMT1 in cell cultures inhibits folate-dependent homocysteine remethylation and enhances thymidylate biosynthesis. In this study, the impact of increased Shmt1 expression on folate-mediated one-carbon metabolism was determined in mice that overexpress the Shmt1 cDNA (Shmt1tg+ mice). Compared with wild type mice, Shmt1tg+ mice exhibited elevated SHMT1 and TYMS protein levels in tissues and evidence for impaired homocysteine remethylation but surprisingly exhibited depressed levels of nuclear SHMT1 and TYMS, lower rates of nuclear de novo thymidylate biosynthesis, and a nearly 10-fold increase in uracil content in hepatic nuclear DNA when fed a folate- and choline-deficient diet. These results demonstrate that SHMT1 and TYMS localization to the nucleus is essential to prevent uracil accumulation in nuclear DNA and indicate that SHMT1-mediated nuclear de novo thymidylate synthesis is critical for maintaining DNA integrity.  相似文献   

3.
5-Formyltetrahydrofolate (5-formylTHF) is the only folate derivative that does not serve as a cofactor in folate-dependent one-carbon metabolism. Two metabolic roles have been ascribed to this folate derivative. It has been proposed to 1) serve as a storage form of folate because it is chemically stable and accumulates in seeds and spores and 2) regulate folate-dependent one-carbon metabolism by inhibiting folate-dependent enzymes, specifically targeting folate-dependent de novo purine biosynthesis. Methenyltetrahydrofolate synthetase (MTHFS) is the only enzyme that metabolizes 5-formylTHF and catalyzes its ATP-dependent conversion to 5,10-methenylTHF. This reaction determines intracellular 5-formylTHF concentrations and converts 5-formylTHF into an enzyme cofactor. The regulation and metabolic role of MTHFS in one-carbon metabolism was investigated in vitro and in human neuroblastoma cells. Steady-state kinetic studies revealed that 10-formylTHF, which exists in chemical equilibrium with 5,10-methenylTHF, acts as a tight binding inhibitor of mouse MTHFS. [6R]-10-formylTHF inhibited MTHFS with a K(i) of 150 nM, and [6R,S]-10-formylTHF triglutamate inhibited MTHFS with a K(i) of 30 nm. MTHFS is the first identified 10-formylTHF tight-binding protein. Isotope tracer studies in neuroblastoma demonstrate that MTHFS enhances de novo purine biosynthesis, indicating that MTHFS-bound 10-formylTHF facilitates de novo purine biosynthesis. Feedback metabolic regulation of MTHFS by 10-formylTHF indicates that 5-formylTHF can only accumulate in the presence of 10-formylTHF, providing the first evidence that 5-formylTHF is a storage form of excess formylated folates in mammalian cells. The sequestration of 10-formylTHF by MTHFS may explain why de novo purine biosynthesis is protected from common disruptions in the folate-dependent one-carbon network.  相似文献   

4.
Folate-dependent one-carbon metabolism is required for the synthesis of purines and thymidylate and for the remethylation of homocysteine to methionine. Methionine is subsequently adenylated to S-adenosylmethionine (SAM), a cofactor that methylates DNA, RNA, proteins, and many metabolites. Previous experimental and theoretical modeling studies have indicated that folate cofactors are limiting for cytoplasmic folate-dependent reactions and that the synthesis of DNA precursors competes with SAM synthesis. Each of these studies concluded that SAM synthesis has a higher metabolic priority than dTMP synthesis. The influence of cytoplasmic serine hydroxymethyltransferase (cSHMT) on this competition was examined in MCF-7 cells. Increases in cSHMT expression inhibit SAM concentrations by two proposed mechanisms: (1) cSHMT-catalyzed serine synthesis competes with the enzyme methylenetetrahydrofolate reductase for methylenetetrahydrofolate in a glycine-dependent manner, and (2) cSHMT, a high affinity 5-methyltetrahydrofolate-binding protein, sequesters this cofactor and inhibits methionine synthesis in a glycine-independent manner. Stable isotope tracer studies indicate that cSHMT plays an important role in mediating the flux of one-carbon units between dTMP and SAM syntheses. We conclude that cSHMT has three important functions in the cytoplasm: (1) it preferentially supplies one-carbon units for thymidylate biosynthesis, (2) it depletes methylenetetrahydrofolate pools for SAM synthesis by synthesizing serine, and (3) it sequesters 5-methyltetrahydrofolate and inhibits SAM synthesis. These results indicate that cSHMT is a metabolic switch that, when activated, gives dTMP synthesis higher metabolic priority than SAM synthesis.  相似文献   

5.
Cytoplasmic serine hydroxymethyltransferase (cSHMT) enzyme levels are elevated by the expression of the heavy chain ferritin (H ferritin) cDNA in cultured cells without corresponding changes in mRNA levels, resulting in enhanced folate-dependent de novo thymidylate biosynthesis and impaired homocysteine remethylation. In this study, the mechanism whereby H ferritin regulates cSHMT expression was determined. cSHMT translation is shown to be regulated by an H ferritin-responsive internal ribosome entry site (IRES) located within the cSHMT mRNA 5'-untranslated region (5'-UTR). The cSHMT 5'-UTR exhibited IRES activity during in vitro translation of bicistronic mRNA templates, and in MCF-7 and HeLa cells transfected with bicistronic mRNAs. IRES activity was depressed in H ferritin-deficient mouse embryonic fibroblasts and elevated in cells expressing the H ferritin cDNA. H ferritin was shown to interact with the mRNA-binding protein CUGBP1, a protein known to interact with the alpha and beta subunits of eukaryotic initiation factor eIF2. Small interference RNA-mediated depletion of CUGBP1 decreased IRES activity from bicistronic templates that included the cSHMT 3'-UTR in the bicistronic construct. The identification of this H ferritin-responsive IRES represents a mechanism that accounts for previous observations that H ferritin regulates folate metabolism.  相似文献   

6.
10-Formyltetrahydrofolate dehydrogenase (FDH) catalyzes the NADP(+)-dependent conversion of 10-formyltetrahydrofolate to CO(2) and tetrahydrofolate (THF) and is an abundant high affinity folate-binding protein. Although several activities have been ascribed to FDH, its metabolic role in folate-mediated one-carbon metabolism is not well understood. FDH has been proposed to: 1) inhibit purine biosynthesis by depleting 10-formyl-THF pools, 2) maintain cellular folate concentrations by sequestering THF, 3) deplete the supply of folate-activated one-carbon units, and 4) stimulate the generation of THF-activated one-carbon unit synthesis by channeling folate cofactors to other folate-dependent enzymes. The metabolic functions of FDH were investigated in neuroblastoma, which do not contain detectable levels of FDH. Both low and high FDH expression reduced total cellular folate concentrations by 60%, elevated rates of folate catabolism, and depleted cellular 5-methyl-THF and S-adenosylmethionine levels. Low FDH expression increased the formyl-THF/THF ratio nearly 10-fold, whereas THF accounted for nearly 50% of total folate in neuroblastoma with high FDH expression. FDH expression did not affect the enrichment of exogenous formate into methionine, serine, or purines and did not suppress de novo purine nucleotide biosynthesis. We conclude that low FDH expression facilitates the incorporation of one-carbon units into the one-carbon pool, whereas high levels of FDH expression deplete the folate-activated one-carbon pool by catalyzing the conversion of 10-formyl-THF to THF. Furthermore, FDH does not increase cellular folate concentrations by sequestering THF in neuroblastoma nor does it inhibit or regulate de novo purine biosynthesis. FDH expression does deplete cellular 5-methyl-THF and S-adenosylmethionine levels indicating that FDH impairs the folate-dependent homocysteine remethylation cycle.  相似文献   

7.
Folate-mediated one-carbon metabolism is a metabolic network of interconnected pathways that is required for the de novo synthesis of three of the four DNA bases and the remethylation of homocysteine to methionine. Previous studies have indicated that the thymidylate synthesis and homocysteine remethylation pathways compete for a limiting pool of methylenetetrahydrofolate cofactors and that thymidylate biosynthesis is preserved in folate deficiency at the expense of homocysteine remethylation, but the mechanisms are unknown. Recently, it was shown that thymidylate synthesis occurs in the nucleus, whereas homocysteine remethylation occurs in the cytosol. In this study we demonstrate that methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), an enzyme that generates methylenetetrahydrofolate from formate, ATP, and NADPH, functions in the nucleus to support de novo thymidylate biosynthesis. MTHFD1 translocates to the nucleus in S-phase MCF-7 and HeLa cells. During folate deficiency mouse liver MTHFD1 levels are enriched in the nucleus >2-fold at the expense of levels in the cytosol. Furthermore, nuclear folate levels are resistant to folate depletion when total cellular folate levels are reduced by >50% in mouse liver. The enrichment of folate cofactors and MTHFD1 protein in the nucleus during folate deficiency in mouse liver and human cell lines accounts for previous metabolic studies that indicated 5,10-methylenetetrahydrofolate is preferentially directed toward de novo thymidylate biosynthesis at the expense of homocysteine remethylation during folate deficiency.  相似文献   

8.
The hydroxymethyl group of serine is a primary source of tetrahydrofolate (THF)-activated one-carbon units that are required for the synthesis of purines and thymidylate and for S-adenosylmethionine (AdoMet)-dependent methylation reactions. Serine hydroxymethyltransferase (SHMT) catalyzes the reversible and THF-dependent conversion of serine to glycine and 5,10-methylene-THF. SHMT is present in eukaryotic cells as mitochondrial SHMT and cytoplasmic (cSHMT) isozymes that are encoded by distinct genes. In this study, the essentiality of cSHMT-derived THF-activated one-carbons was investigated by gene disruption in the mouse germ line. Mice lacking cSHMT are viable and fertile, demonstrating that cSHMT is not an essential source of THF-activated one-carbon units. cSHMT-deficient mice exhibit altered hepatic AdoMet levels and uracil content in DNA, validating previous in vitro studies that indicated this enzyme regulates the partitioning of methylenetetrahydrofolate between the thymidylate and homocysteine remethylation pathways. This study suggests that mitochondrial SHMT-derived one-carbon units are essential for folate-mediated one-carbon metabolism in the cytoplasm.  相似文献   

9.
The de novo thymidylate biosynthetic pathway in mammalian cells translocates to the nucleus for DNA replication and repair and consists of the enzymes serine hydroxymethyltransferase 1 and 2α (SHMT1 and SHMT2α), thymidylate synthase, and dihydrofolate reductase. In this study, we demonstrate that this pathway forms a multienzyme complex that is associated with the nuclear lamina. SHMT1 or SHMT2α is required for co-localization of dihydrofolate reductase, SHMT, and thymidylate synthase to the nuclear lamina, indicating that SHMT serves as scaffold protein that is essential for complex formation. The metabolic complex is enriched at sites of DNA replication initiation and associated with proliferating cell nuclear antigen and other components of the DNA replication machinery. These data provide a mechanism for previous studies demonstrating that SHMT expression is rate-limiting for de novo thymidylate synthesis and indicate that de novo thymidylate biosynthesis occurs at replication forks.  相似文献   

10.
Compartmentation of folate-mediated one-carbon metabolism in eukaryotes   总被引:21,自引:0,他引:21  
D R Appling 《FASEB journal》1991,5(12):2645-2651
Folate coenzymes supply the activated one-carbon units required in nucleic acid biosynthesis, mitochondrial and chloroplast protein biosynthesis, amino acid metabolism, methyl group biogenesis, and vitamin metabolism. Because of its central role in purine and thymidylate biosynthesis, folate-mediated one-carbon metabolism has been the target of many anticancer drug therapies. This review is a summary of recent results that suggest that folate-mediated one-carbon metabolism is highly compartmentalized in eukaryotic cells. Evidence exists for compartmentation of folate coenzymes and their one-carbon units between intracellular organelles, for substrate channeling of folate coenzymes, and for compartmentation by intracellular folate-binding proteins. Metabolic, regulatory, and therapeutic implications of these processes are discussed.  相似文献   

11.
12.
5,10-Dideazatetrahydrofolate (DDATHF) is a new antimetabolite designed as an inhibitor of folate metabolism at sites other than dihydrofolate reductase. DDATHF was found to inhibit the growth of L1210 and CCRF-CEM cells in culture at concentrations in the range of 10-30 nM. The inhibitory effect of DDATHF on the growth of L1210 and CCRF-CEM cells was reversed by either hypoxanthine or aminoimidazole carboxamide. Growth inhibition by DDATHF was prevented by addition of both thymidine and hypoxanthine, but not by thymidine alone. 5-Formyltetrahydrofolate reversed the effects of DDATHF in a dose-dependent manner. DDATHF had no appreciable inhibitory activity against either dihydrofolate reductase or thymidylate synthase in vitro, but was found to be an excellent substrate for folylpolyglutamate synthetase. DDATHF had little or no effect on incorporation of either deoxyuridine or thymidine into DNA, in distinct contrast to the effects of the classical dihydrofolate reductase inhibitor, methotrexate. DDATHF was found to deplete cellular ATP and GTP over the same concentrations as those inhibitory to leukemic cell growth, suggesting that the locus of DDATHF action was in the de novo purine biosynthesis pathway. The synthesis of formylglycinamide ribonucleotide in intact L1210 cells was inhibited by DDATHF with the same concentration dependence as inhibition of growth. This suggested that DDATHF inhibited glycinamide ribonucleotide transformylase, the first folate-dependent enzyme of de novo purine synthesis. DDATHF is a potent folate analog which suppresses purine synthesis through direct or indirect inhibition of glycinamide ribonucleotide transformylase.  相似文献   

13.
Serine hydroxymethyltransferase 1 (SHMT1) expression limits rates of de novo dTMP synthesis in the nucleus. Here we report that SHMT1 is ubiquitinated at the small ubiquitin-like modifier (SUMO) consensus motif and that ubiquitination at that site is required for SHMT1 degradation. SHMT1 protein levels are cell cycle-regulated, and Ub-SHMT1 levels are lowest at S phase when SHMT1 undergoes SUMO modification and nuclear transport. Mutation of the SUMO consensus motif increases SHMT1 stability. SHMT1 interacts with components of the proteasome in both the nucleus and cytoplasm, indicating that degradation occurs in both compartments. Ubc13-mediated ubiquitination is required for SHMT1 nuclear export and increases stability of SHMT1 within the nucleus, whereas Ubc9-mediated modification with Sumo2/3 is involved in nuclear degradation. These data demonstrate that SUMO and ubiquitin modification of SHMT1 occurs on the same lysine residue and determine the localization and accumulation of SHMT1 in the nucleus.  相似文献   

14.
In view of growing body of evidence favouring the association of aberrations in one-carbon metabolism and oxidative stress in the aetiology of coronary artery disease (CAD), we investigated the risk associated with polymorphisms regulating the folate uptake and transport such as the glutamate carboxypeptidase II (GCPII) C1561T, reduced folate carrier 1 (RFC1) G80A and cytosolic serine hydroxymethyltransferase (cSHMT) C1420T. We further evaluated the impact of seven putatively functional polymorphisms of this pathway on oxidative stress markers. Genotyping was performed on 288 CAD cases and 266 healthy controls along with the dietary folate assessment. GCPII C1561T polymorphism was found to be an independent risk factor (OR 2.71, 95% CI 1.47–4.98) for CAD, whereas cSHMT C1420T conferred protection (OR 0.51, 95% CI 0.37–0.70). Oxidative stress markers like the plasma levels of malondialdehyde, protein carbonyls and 8-oxo-deoxyguanosine were significantly increased and total glutathione was significantly decreased in CAD cases. Elevated oxidative stress was observed in subjects carrying GCPII 1561T and MTRR 66A-variant alleles and low oxidative stress was observed in the subjects carrying cSHMT 1420T and TYMS 5′-UTR 2R allele. GCPII C1561T, MTHFR C677T and MTRR A66G polymorphisms were observed to influence the homocysteine levels (P < 0.05). SHMT and TYMS variants were found to decrease oxidative stress by increasing the folate pool (r = 0.38, P = 0.003) and also by increasing the antioxidant status (r = 0.28, P = 0.03). Influence of dietary folate status was not observed. Overall, this study revealed elevated oxidative stress that was associated with the aberrations in one-carbon metabolism which could possibly influence the CAD risk.  相似文献   

15.
Genetic and biochemical consequences of thymidylate stress   总被引:8,自引:0,他引:8  
We have examined the genetic and biochemical consequences of thymidylate stress in haploid and diploid strains of the simple eukaryote Saccharomyces cerevisiae (Bakers' yeast). Previously we reported that inhibition of dTMP biosynthesis causes "thymineless death" and is highly recombinagenic, but apparently not mutagenic, at the nuclear level; however, it is mutagenic for mitochondria. Concurrent provision of dTMP abolishes these effects. Conversely, excess dTMP is highly mutagenic for nuclear genes. It is likely that DNA strand breaks are responsible for the recombinagenic effects of thymidylate deprivation; such breaks could be produced by reiterative uracil incorporation and excision in DNA repair patches. In our experiments, thymidylate stress was produced both by starving dTMP auxotrophs for the required nucleotide and also by blocking de novo synthesis of thymidylate by various antimetabolites. We found that the antifolate methotrexate is a potent inducer of mitotic recombination (both gene conversion and mitotic crossing-over). This suggests that the gene amplification associated with methotrexate resistance in mammalian cells could arise, in part, by unequal sister-chromatid exchange induced by thymidylate stress. In addition, several sulfa drugs, which impede de novo folate biosynthesis, also have considerable recombinagenic activity.  相似文献   

16.
17.
18.
Folates have a key role in metabolism, and the folate-dependent generation of DNA precursors in the form of deoxythymidine 5'-phosphate is particularly important for the replication of malaria parasites. Although Plasmodium falciparum can synthesize folate derivatives de novo, a long-standing mystery has been the apparent absence of a key enzyme, dihydroneopterin aldolase, in the classical folate biosynthetic pathway of this organism. The discovery that a different enzyme, pyruvoyltetrahydropterin synthase, can produce the necessary substrate for the subsequent step in folate synthesis raises the question of whether this solution is unique to P. falciparum. Bioinformatic analyses suggest otherwise and indicate that an alternative route to folate could be widespread among diverse microorganisms and could be a target for novel drugs.  相似文献   

19.
The folate derivative 5-formyltetrahydrofolate (folinic acid; 5-CHO-THF) was discovered over 40 years ago, but its role in metabolism remains poorly understood. Only one enzyme is known that utilizes 5-CHO-THF as a substrate: 5,10-methenyltetrahydrofolate synthetase (MTHFS). A BLAST search of the yeast genome using the human MTHFS sequence revealed a 211-amino acid open reading frame (YER183c) with significant homology. The yeast enzyme was expressed in Escherichia coli, and the purified recombinant enzyme exhibited kinetics similar to previously purified MTHFS. No new phenotype was observed in strains disrupted at MTHFS or in strains additionally disrupted at the genes encoding one or both serine hydroxymethyltransferases (SHMT) or at the genes encoding one or both methylenetetrahydrofolate reductases. However, when the MTHFS gene was disrupted in a strain lacking the de novo folate biosynthesis pathway, folinic acid (5-CHO-THF) could no longer support the folate requirement. We have thus named the yeast gene encoding methenyltetrahydrofolate synthetase FAU1 (folinic acid utilization). Disruption of the FAU1 gene in a strain lacking both 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase isozymes (ADE16 and ADE17) resulted in a growth deficiency that was alleviated by methionine. Genetic analysis suggested that intracellular accumulation of the purine intermediate AICAR interferes with a step in methionine biosynthesis. Intracellular levels of 5-CHO-THF were determined in yeast disrupted at FAU1 and other genes encoding folate-dependent enzymes. In fau1 disruptants, 5-CHO-THF was elevated 4-fold over wild-type yeast. In yeast lacking MTHFS along with both AICAR transformylases, 5-CHO-THF was elevated 12-fold over wild type. 5-CHO-THF was undetectable in strains lacking SHMT activity, confirming SHMT as the in vivo source of 5-CHO-THF. Taken together, these results indicate that S. cerevisiae harbors a single, nonessential, MTHFS activity. Growth phenotypes of multiply disrupted strains are consistent with a regulatory role for 5-CHO-THF in one-carbon metabolism and additionally suggest a metabolic interaction between the purine and methionine pathways.  相似文献   

20.
Folate-dependent one-carbon metabolism is critical for the synthesis of numerous cellular constituents required for cell growth, and serine hydroxymethyltransferase (SHMT) is central to this process. Our studies reveal that the gene for cytosolic SHMT (cSHMT) maps to the critical interval for Smith-Magenis syndrome (SMS) on chromosome 17p11.2. The basic organization of the cSHMT locus on chromosome 17 was determined and was found to be deleted in all 26 SMS patients examined by PCR, FISH, and/or Southern analysis. Furthermore, with respect to haploinsufficiency, cSHMT enzyme activity in patient lymphoblasts was determined to be approximately 50% that of unaffected parent lymphoblasts. Serine, glycine, and folate levels were also assessed in three SMS patients and were found to be within normal ranges. The possible effects of cSHMT hemizygosity on the SMS phenotype are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号