首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The structure of crotapotin, a protein extracted, from the venom of the Crotalus durissus terrificus, in solution at pH = 1.5, was studied by SAXS. The experimental results yield structural parameter values of the molecular radius of gyration Rg = 13.6 A, volume v = 16.2 x 10(3) A3 A3 and maximal dimension Dmax = 46 A. The distance distribution function deduced from the scattering measurements is consistent with an overall molecular shape of an oblate ellipsoid of revolution with asymmetry parameter v = 0.45.  相似文献   

3.
Water soluble polysaccharides from soybean (SSPS) have a pectin-like structure and are used as stabilisers in acidified beverages. Physicochemical properties such as structure, molecular weight and shape or conformation are primary factors controlling their functional properties. Two soybean polysaccharides, a native SSPS and a modified SSPS treated with beta-(1-->4)-D-galactosidase (GPase/SSPS) were studied by dynamic and static light scattering (DLS, SLS) and size exclusion chromatography (SEC). Consecutive filtrations using a range of membrane pore size removed a small fraction of macromolecular aggregates from dilute polysaccharide solutions with relatively little effect on the major component molecules as monitored by DLS and SEC measurements. Access to aggregate-free dilute solutions of SSPS and GPase/SSPS allowed the direct measurement of molecular characteristics. SLS results showed that SSPS had a weight average molecular weight of (645+/-11)x 10(3)g/mol and a radius of gyration, Rg, of (23.5+/-2.8)nm. By comparing R(g) with the hydrodynamic radius, Rh (21.1+/-0.5 nm) obtained from DLS, the structural parameter rho (Rg/Rh) was found to be 1.1, suggesting that SSPS has an overall globular shape due to a highly branched structure. The modified SSPS had a significantly lower molecular weight (287+/-18)x 10(3)g/mol but a similar radius of gyration (23.2+/-1.7 nm). The structure parameter rho of GPase/SSPS was higher (rho=1.3) because of a smaller hydrodynamic radius (17.7+/-1.8 nm). This suggests that GPase/SSPS has a much less branched structure yet still differs significantly from a linear random coil conformation (rho=1.7-2.0). The results derived from SLS and DLS are in agreement with the conclusions obtained from a chemical analysis where the reduction of molecular weight of GPase/SSPS was caused by the cleavage of galactan side chains.  相似文献   

4.
Radius of gyration is indicator of compactness of protein structure   总被引:1,自引:0,他引:1  
Search and study of the general principles that govern kinetics and thermodynamics of protein folding generate a new insight into the factors controlling this process. Statistical analysis of radii of gyration for 3769 protein structures from four general structural classes (all-alpha, all-beta, alpha/beta, alpha + beta) demonstrates that each class of proteins has its own class-specific radius of gyration, which determines compactness of protein structures: alpha-proteins have the largest radius of gyration. This indicates that they are less tightly packed than beta- and alpha + beta-proteins. Finally, alpha/beta-proteins are the most tightly packed proteins with the least radius of gyration. It should be underlined that radius of gyration normalized on the radius of gyration of ball with the same volume, is independent of the length in comparison with such parameters as compactness and number of contacts per residue.  相似文献   

5.
The size and shape parameters of poly(L -tyrosine) in dimethyl formamide were investigated with fractionated samples of different molecular weight by small-angle X-ray scattering. The molecular weight, the radius of gyration of the molecule as a whole, the radius of gyration of the cross section, the mass per unit length, and the length of helix molecule were determined. The molecular conformations proposed by Applequist and Pao for poly(L -tyrosine) were compared with the experimental results obtained. It was concluded that poly(L -tyrosine) exists in a form of the right-handed α-helix in dimethyl formamide.  相似文献   

6.
7.
Malate synthase from baker's yeast has been investigated in solution by the small-angle X-ray scattering technique. Size, shape and structure of the native substrate-free enzyme and of various enzyme-substrate complexes have been determined. As the enzyme was found to be rather unstable against X-rays, several precautions as well as sophisticated evaluation procedures had to be adopted to make sure that the results were not influenced by radiation damage. These included use of low primary intensity, short time of measurement, the presence of high concentrations of dithiothreitol, combined use of the conventional slit-collimation system and the new cone-collimation system. 1. For the native substrate-free enzyme the following molecular parameters could be established: radius of gyration R = 3.96 +/- 0.02 nm, maximum particle diameter D = 11.2 +/- 0.6 nm, radius of gyration of the thickness Rt = 1.04 +/- 0.04 nm, molecular weight Mr = 187000 +/- 3000, correlation volume Vc = 338 +/- 5 nm3, hydration x = 0.35 +/- 0.02 g/g, mean intersection length - l = 5.0 +/- 0.2 nm. Comparison of the experimental scattering curve with theoretical curves for various models showed that the enzyme is equivalent in scattering to an oblate ellipsoid of revolution rather than to a circular cylinder. The semiaxes of this ellipsoid are a = b = 6.06 nm and c = 2.21 nm. Thus with an axial ratio of about 1:0.36 the enzyme is of very anisometric shape. 2. Binding of the substrates (acetyl-CoA, glyoxylate) or the substrate analogue pyruvate causes slight structural changes of the enzyme. These changes are reflected mainly by a slight decrease of the radius of gyration (0.3--1.3%, as established both with the slit-smeared and the desmeared curves). Concomitantly there occurs a decrease of the maximum particle diameter and an increase of the radius of gyration of the thickness. These changes imply an increase of the axial ratio by 2.2--6.9%, i.e. substrate binding induces a decrease of anisometry. While the particle volume appears to be unchanged on binding glyoxylate or its analogue pyruvate, binding of acetyl-CoA causes slight changes of this parameter. In a similar manner the binding of acetyl-CoA leads to a slight enhancement of the molecular weight; this increase corresponds to the binding of 2.7 +/- 1 molecules of acetyl-CoA.  相似文献   

8.
We perform a statistical analysis of atomic distributions as a function of the distance R from the molecular geometrical center in a nonredundant set of compact globular proteins. The number of atoms increases quadratically for small R, indicating a constant average density inside the core, reaches a maximum at a size-dependent distance R(max), and falls rapidly for larger R. The empirical curves turn out to be consistent with the volume increase of spherical concentric solid shells and a Fermi-Dirac distribution in which the distance R plays the role of an effective atomic energy epsilon(R) = R. The effective chemical potential mu governing the distribution increases with the number of residues, reflecting the size of the protein globule, while the temperature parameter beta decreases. Interestingly, betamu is not as strongly dependent on protein size and appears to be tuned to maintain approximately half of the atoms in the high density interior and the other half in the exterior region of rapidly decreasing density. A normalized size-independent distribution was obtained for the atomic probability as a function of the reduced distance, r = R/R(g), where R(g) is the radius of gyration. The global normalized Fermi distribution, F(r), can be reasonably decomposed in Fermi-like subdistributions for different atomic types tau, F(tau)(r), with Sigma(tau)F(tau)(r) = F(r), which depend on two additional parameters mu(tau) and h(tau). The chemical potential mu(tau) affects a scaling prefactor and depends on the overall frequency of the corresponding atomic type, while the maximum position of the subdistribution is determined by h(tau), which appears in a type-dependent atomic effective energy, epsilon(tau)(r) = h(tau)r, and is strongly correlated to available hydrophobicity scales. Better adjustments are obtained when the effective energy is not assumed to be necessarily linear, or epsilon(tau)*(r) = h(tau)*r(alpha,), in which case a correlation with hydrophobicity scales is found for the product alpha(tau)h(tau)*. These results indicate that compact globular proteins are consistent with a thermodynamic system governed by hydrophobic-like energy functions, with reduced distances from the geometrical center, reflecting atomic burials, and provide a conceptual framework for the eventual prediction from sequence of a few parameters from which whole atomic probability distributions and potentials of mean force can be reconstructed.  相似文献   

9.
A compact denatured state is often observed under a mild denaturation condition for various proteins. A typical example is the alpha-lactalbumin molten globule. Although the molecular compactness and shape are the essential properties for defining the molten globule, there have been ambiguities of these properties for the molten globule of alpha-lactalbumin. Using solution X-ray scattering, we have examined the structural properties of two types of molten globule of alpha-lactalbumin, the apo-protein at neutral pH and the acid molten globule. The radius of gyration for the native holo-protein was 15.7 A, but the two different molten globules both had a radius of gyration of 17.2 A. The maximum dimension of the molecule was also increased from 50 A for the native state to 60 A for the molten globule. These values clearly indicate that the molten globule is not as compact as the native state. The increment in the radius of gyration was less than 10% for the alpha-lactalbumin molten globule, compared with up to 30% for the molten globules of other globular proteins. Intramolecular disulfide bonds restrict the molecular expansion of the molten globule. The distance distribution function of the alpha-lactalbumin molten globule is composed of a single peak suggesting a globular shape, which is simply swollen from the native state. The scattering profile in the high Q region of the molten globule indicates the presence of a significant amount of tertiary fold. Based on the structural properties obtained by solution X-ray scattering, general and conceptual structural images for the molten globules of various proteins are described and compared with the individual, detailed structural model obtained by nuclear magnetic resonance.  相似文献   

10.
Macromolecular Sieving by the Dormant Spore of Bacillus cereus   总被引:4,自引:3,他引:1       下载免费PDF全文
The threshold surface porosity in the dormant spore of Bacillus cereus strain T was assessed by measuring passive permeabilities to a series of polydisperse polyethylene glycol samples which increased in average molecular size. The apparent exclusion threshold at diffusional equilibrium corresponded to a polymer of number-average molecular weight ( M(n)) = 150,000 and equivalent hydrodynamic radius ( r(ES)) = 16 nm, which confirmed a previous report. However, analytical gel chromatography before and after uptake by the spores revealed that only the low molecular weight fractions in a polymer sample distribution were taken up. From graphical analyses of the changes in molecular weight distributions, a quasi-monodisperse exclusion threshold was determined corresponding to M(n) = 8,000 and r(ES) = 3.2 nm. Thus, the equivalent porosity in the limiting outer integument appeared much more restrictive than heretofore shown for spores, although still more open than the monodisperse equivalent for the cell wall of vegetative bacilli.  相似文献   

11.
Identification and study of the main principles underlying the kinetics and thermodynamics of protein folding generate a new insight into the factors that control this process. Statistical analysis of the radius of gyration for 3769 protein domains of four major classes (α, β, α/β, and α + β) showed that each class has a characteristic radius of gyration that determines the protein structure compactness. For instance, α proteins have the highest radius of gyration throughout the protein size range considered, suggesting a less tight packing as compared with β-and (α + β)-proteins. The lowest radius of gyration and, accordingly, the tightest packing are characteristic of α/β-proteins. The protein radius of gyration normalized by the radius of gyration of a ball with the same volume is independent of the protein size, in contrast to compactness and the number of contacts per residue.  相似文献   

12.
Thermal stability of myosin rod from various species   总被引:1,自引:0,他引:1  
The radius of gyration and fraction helix as a function of temperature have been determined for myosin rod from four different species: rabbit, frog, scallop, and antarctic fish. Measurements from sodium dodecyl sulfate gel electrophoresis indicate that all particles have the same molecular weight (approximately 130K). All fragments are nearly 100% alpha-helical at low temperatures (0-5 degrees C). The melting profiles for each are qualitatively similar in shape, but their midpoints are shifted along the temperature axis in the following order: antarctic fish (Tm = 33 degrees C), scallop (Tm = 39 degrees C), frog (Tm = 45 degrees C), and rabbit (Tm = 49 degrees C). Corresponding radius of gyration vs temperature profiles for each species are shifted to lower temperatures (approximately 5-8 degrees C) with respect to the optical rotation melting curves. From plots of radius of gyration vs fraction helix, we find a marked drop in the radius of gyration (from 43 to approximately 34 nm) with less than a 5% decrease in fraction helix for rabbit, frog, and antarctic fish rods, whereas the radius of gyration of scallop rod never exceeds 34 nm. Results indicate hinging of the myosin rod of each species. The thermal stabilities of the myosin rods shift in parallel with the working temperature of their respective muscles.  相似文献   

13.
This paper reports physical-chemical properties of the subunit structure of crotoxin, phospholipase A and crotapotin. The native crotoxin has a sedimentation coefficient of 3S and a radius of gyration of Rg = 16.5 Å and a molecular weight of 30,900. Dissociation of the 3S particle results in two proteins of unequal size with sedimentation coefficients of 1.5 S (crotapotin) and 1S (phospholipase A). These dissociated species and the reconstituted complex were investigated by means of hydrodynamic methods including small angle X-ray scattering. The actual frictional ratios were obtained indicating that crotoxin is a sphere with a Stokes' radius of Ro = 22.5 Å and an axial ratio of 1:3, whereas phospholipase A, depending on the degree of association, has a radius of gyration of Rg = 32.4 Å and a high axial ratio of 1:14 for the monomer. Crotapotin has a radius of gyration of Rg = 12.4 Å, indicating an oblate ellipsoid of revolution of an axial ratio of 1:4. Evidently, the crotoxin complex consists of one highly asymmetric molecule (phospholipase A) and an oblate ellipsoid (crotapotin), which reconstitutes to a spherical 3S-particle (crotoxin).  相似文献   

14.
The highly sulfated polysaccharides heparin and heparan sulfate (HS) play key roles in the regulation of physiological and pathophysiological processes. Despite its importance, no molecular structures of free HS have been reported up to now. By combining analytical ultracentrifugation, small angle x-ray scattering, and constrained scattering modeling recently used for heparin, we have analyzed the solution structures for eight purified HS fragments degree of polymerization 6-18 (dp6-dp18) and dp24, corresponding to the predominantly unsulfated GlcA-GlcNAc domains of heparan sulfate. Unlike heparin, the sedimentation coefficient s(20,)(w) of HS dp6-dp24 showed a small rotor speed dependence, where similar s(20,)(w) values of 0.82-1.26 S (absorbance optics) and 1.05-1.34 S (interference optics) were determined. The corresponding x-ray scattering measurements of HS dp6-dp24 gave radius of gyration (R(G)) values from 1.03 to 2.82 nm, cross-sectional radius of gyration (R(XS)) values from 0.31 to 0.65 nm, and maximum lengths (L) from 3.0 to 10.0 nm. These data showed that HS has a longer and more bent structure than heparin. Constrained scattering modeling starting from 5000-8000 conformationally randomized HS structures gave best fit dp6-dp16 molecular structures that were longer and more bent than their equivalents in heparin. No fits were obtained for HS dp18 or dp24, indicating their higher flexibility. We conclude that HS displays an extended bent conformation that is significantly distinct from that for heparin. The difference is attributed to the different predominant monosaccharide sequence and reduced sulfation of HS, indicating that HS may interact differently with proteins compared with heparin.  相似文献   

15.
Small-angle neutron scattering studies have shown the association of porcine colipase with bile salts micelles to be a lateral one. The molecular structure parameters of the individual components were determined first. A radius of gyration of 13.9 Å is found for colipase, which implies a non-spherical shape for this molecule. The size of taurodeoxycholate micelles is controlled by the ionic strength of the solution. In 0.15 m-NaCl their volume is comparable to that of colipase; they are elongated with an axial ratio of about 2. At higher ionic strengths the elongation of the micelles increases.In 0.15 m-NaCl the complex is found to be an association of one colipase molecule with a volume of detergent corresponding to that of one free micelle. The contrast variation study of the radius of gyration shows that in the complex the centre of masses of the protein and of the detergent are well-separated: a distance between 29 and 45 Å has been estimated. The value of the radius of gyration of the complex at high contrast, and the agreement between the contrast variation analysis and a straightforward application of the parallel axes theorem indicate that the complex is formed by the juxtaposition of the protein and a preformed micelle, which has approximately the same size and shape as a free micelle. There is only one localized surface contact between the protein and the micelle, which implies that colipase possesses a relatively well-defined binding site.  相似文献   

16.
17.
Complexation of human serum albumin (HSA) with poly(N-isopropylacrylamide) (PNIPA) ranging in molecular weight (M(PNIPA)) from 2.1 x 10(4) to 1.72 x 10(6) was studied in an aqueous system (pH 3) containing NaCl as a supporting salt. Dynamic light scattering, static light scattering, electrophoretic light scattering, and dialyzing techniques were used as the experimental tool in a suitable combination. The measurements were performed mainly at 25 degrees C and at 0.01 M NaCl as a function of mixing ratio (r(m), molar ratio of PNIPA to HSA). The results of DLS and ELS evidently demonstrated the formation of a water-soluble complex through mixing of HSA and PNIPA. A detailed analysis of SLS data with the aid of dialysis data revealed that the resulting complex is an "intramolecular" complex consisting of a PNIPA chain with several of bound HSA molecules. Both hydrodynamic radius (R(h)) and radius gyration (R(g)) of intramolecular complexes decreased as r(m) was increased. This result correlated well to the fact that the number (n) of bound proteins per polymer decreases with increasing r(m). The size and the molar mass of the complex became large depending on M(PNIPA), but the increase of M(PNIPA) led to a decrease in n at r(m) < 1. The increase in NaCl concentration from 0.01 to 0.3 M brought about the increase in the size and the molar mass of an intramolecular HSA-PNIPA complex prepared at r(m) = 1.1. This was found to be due to an increase of n. A similar trend was observed when temperature rose from 25 to 32 degrees C (close to lower critical solution temperature of PNIPA). However, the effect of temperature on the increase of was strong in comparison with that of ionic strength. On the basis of these results obtained, the complexation mechanism was discussed in detail.  相似文献   

18.
The tobacco mosaic virus is used as a model molecular assembly to illustrate the basic potentialities of light scattering techniques (both static and dynamic) to undergraduates. The work has two objectives: a pedagogic one (introducing light scattering to undergraduate students) and a scientific one (stabilization of the virus molecular assembly structure by the nucleic acid). Students are first challenged to confirm the stabilization of the cylindrical shape of the virus by the nucleic acid, at pH and ionic strength conditions where the coat proteins alone do not self-assemble. The experimental intramolecular scattering factor is compared with the theoretical ones for several model geometries. The data clearly suggest that the geometry is, in fact, a rod. Comparing the experimental values of gyration radius and hydrodynamic radius with the theoretical expectations further confirms this conclusion. Moreover, the rod structure is maintained over a wider range of pH and ionic strength than that valid for the coat proteins alone. The experimental values of the diffusion coefficient and radius of gyration are compared with the theoretical expectations assuming the dimensions detected by electron microscopy techniques. In fact, both values are in agreement (length approximately 300 nm, radius approximately 20 nm).  相似文献   

19.
20.
A set of conformational restraints derived from nuclear magnetic resonance (n.m.r.) measurements on solutions of the basic pancreatic trypsin inhibitor (BPTI) was used as input for distance geometry calculations with the programs DISGEO and DISMAN. Five structures obtained with each of these algorithms were systematically compared among themselves and with the crystal structure of BPTI. It is clear that the protein architecture observed in single crystals of BPTI is largely preserved in aqueous solution, with local structural differences mainly confined to the protein surface. The results confirm that protein conformations determined in solution by combined use of n.m.r. and distance geometry are a consequence of the experimental data and do not depend significantly on the algorithm used for the structure determination. The data obtained further provide an illustration that long intramolecular distances in proteins, which are comparable with the radius of gyration, are defined with high precision by relatively imprecise nuclear Overhauser enhancement measurements of a large number of much shorter distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号