共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Tedesco M Farini D De Felici M 《The International journal of developmental biology》2011,55(2):215-222
There are still several unanswered questions and problems about the recently claimed possibility of producing functional germ cells in vitro from pluripotent embryonic stem cells (ESCs). In the present paper, we compared by single-cell analysis the capability of putative primordial germ cells (PGCs), produced in vitro from ESCs, and that of endogenous PGCs isolated from embryos, to enter and progress through meiotic prophase I. Using a protocol previously reported to be suitable to produce female germ cells from mouse ESC monolayers, we first identified putative PGCs by analysing the expression pattern of several markers such as SSEA1, APase, OCT4, NANOG, MVH and SCP3 of pre- and post migratory PGCs. Next, after isolation of such cells from culture, we tested their meiotic capability. The evaluation at 2-5 days of culture of the number of cells showing meiotic nuclear SCP3 staining in cytospreads showed that it remained nearly constant in the putative PGCs, whereas it increased markedly in endogenous PGCs. Moreover, we observed that in putative PGCs, the nuclear distribution or expression of SCP3 and other meiotic markers such as DMC1, gH2AX and SCP1 were always highly abnormal in comparison to that observed in endogenous cultured PGCs. We conclude that although the formation of cells showing characteristics of PGCs can occur efficiently from ESCs in vitro, these cells possess impaired capability to enter and progress through meiotic prophase I. 相似文献
4.
E J Robertson 《Biology of reproduction》1991,44(2):238-245
It is now possible, through the use of a number of experimental technologies, to transfer genetic information into mouse embryos to stably alter the genetic constitution of mice. This experimental approach, namely the generation of so-termed "transgenic" animals, is affording new insights into a wide variety of biological problems. This review focuses on one system for the generation of transgenic mice, which utilizes tissue culture cell lines of embryonic stem cells, termed ES cells. The remarkable property of ES cells is that they retain the potential to reform an embryo; when they are replaced inside a carrier embryo, they resume normal development and contribute to all the tissues of the live-born chimeric animal. Recent experiments, using a repertoire of gene transfer techniques, have shown that ES cells are amenable to a variety of experimental manipulations in tissue culture. Moreover, it has been demonstrated that these genetically altered cells can be transferred into the germ line of chimeric mice, thus allowing the production of unique strains of animals for study. The applications of the ES cell system are reviewed, with particular emphasis on their use for the generation of random insertional mutations using a retrovirally mediated mutagenesis approach. Finally, the use of ES cells in conjunction with the recently described technique of homologous recombination, or "gene targeting," is discussed. This technology allows the generation of animals carrying extremely precise genetic modifications of endogenous genes. 相似文献
5.
6.
De-Zolt S Schnütgen F Seisenberger C Hansen J Hollatz M Floss T Ruiz P Wurst W von Melchner H 《Nucleic acids research》2006,34(3):e25
High-throughput gene trapping is a random approach for inducing insertional mutations across the mouse genome. This approach uses gene trap vectors that simultaneously inactivate and report the expression of the trapped gene at the insertion site, and provide a DNA tag for the rapid identification of the disrupted gene. Gene trapping has been used by both public and private institutions to produce libraries of embryonic stem (ES) cells harboring mutations in single genes. Presently, approximately 66% of the protein coding genes in the mouse genome have been disrupted by gene trap insertions. Among these, however, genes encoding signal peptides or transmembrane domains (secretory genes) are underrepresented because they are not susceptible to conventional trapping methods. Here, we describe a high-throughput gene trapping strategy that effectively targets secretory genes. We used this strategy to assemble a library of ES cells harboring mutations in 716 unique secretory genes, of which 61% were not trapped by conventional trapping, indicating that the two strategies are complementary. The trapped ES cell lines, which can be ordered from the International Gene Trap Consortium (http://www.genetrap.org), are freely available to the scientific community. 相似文献
7.
8.
Commitment of fetal male germ cells to spermatogonial stem cells during mouse embryonic development 总被引:2,自引:0,他引:2
The continuous production of mammalian sperm is maintained by the proliferation and differentiation of spermatogonial stem cells that originate from primordial germ cells (PGCs) in the early embryo. Although spermatogonial stem cells arise from PGCs, it is not clear whether fetal male germ cells function as spermatogonial stem cells able to produce functional sperm. In the present study, we examined the timing and mechanisms of the commitment of fetal germ cells to differentiate into spermatogonial stem cells by transplantation techniques. Transplantation of fetal germ cells into the seminiferous tubules of adult testis showed that donor germ cells, at 14.5 days postcoitum (dpc), were able to initiate spermatogenesis in the adult recipient seminiferous tubules, whereas no germ cell differentiation was observed in the transplantation of 12.5-dpc germ cells. These results indicate that the commitment of fetal germ cells to differentiate into spermatogonial stem cells initiates between embryonic days 12.5 and 14.5. Furthermore, the results suggest the importance of the interaction between germ cells and somatic cells in the determination of fetal germ cell differentiation into spermatogonial stem cells, as normal spermatogenesis was observed when a 12.5-dpc whole gonad was transplanted into adult recipient testis. In addition, sperm obtained from the 12.5- dpc male gonadal explant had the ability to develop normally if injected into the cytoplasm of oocytes, indicating that normal development of fetal germ cells in fetal gonadal explant occurred in the adult testicular environment. 相似文献
9.
Establishment of a human embryonic germ cell line and comparison with mouse and human embryonic stem cells 总被引:4,自引:0,他引:4
Human embryonic stem (ES) cells and embryonic germ (EG) cells are pluripotent and are invaluable material for in vitro studies of human embryogenesis and cell therapy. So far, only two groups have reported the establishment of human EG cell lines, whereas at least five human ES cell lines have been established. To see if human EG cell lines can be reproducibly established, we isolated primordial germ cells (PGCs) from gonadal ridges and mesenteries (9 weeks post-fertilization) and cultured them on mouse STO cells. As with mouse ES colonies, the PGC-derived cells have given rise to multilayered colonies without any differentiation over a year of continuous culture. They are karyotypically normal and express high levels of alkaline phosphatase, Oct-4, and several cell-surface markers. Histological and immunocytochemical analysis of embryoid bodies (EBs) formed from floating cultures of the PGC-derived cell colonies revealed ectodermal, endodermal, and mesodermal tissues. When the EBs were cultured in the presence of insulin, transferrin, sodium selenite, and fibronectin for 1 week, markers of primitive neuroectoderm were expressed in cells within the EBs as well as in cells growing out from the EBs. These observations indicate that our PGC-derived cells satisfy the criteria for pluripotent stem cells and hence may be EG cells. 相似文献
10.
Cell therapy for tissue regeneration requires cells with high self-renewal potential and with the capacity to differentiate into multiple differentiated cell lineages, like embryonic stem cells (ESCs) and adult somatic cells induced to pluripotency (iPSCs) by genetic manipulation. Here we report that normal adult mammalian bone marrow contains cells, with the cell surface antigen CD34, that naturally express genes characteristic of ESCs and required to generate iPSCs. In addition, these CD34+ cells spontaneously express, without genetic manipulation, genes characteristic of the three embryonic germ layers: ectoderm, mesoderm and endoderm. In addition to the neural lineage genes we previously reported in these CD34+ cells, we found that they express genes of the mesodermal cardiac muscle lineage and of the endodermal pancreatic lineage as well as intestinal lineage genes. Thus, these normal cells in the adult spontaneously exhibit characteristics of embryonic-like stem cells. 相似文献
11.
Vahid Mansouri Mohammad Salehi Mohsen Nourozian Fatemeh Fadaei Reza Mastery Farahani Abbas Piryaei Ali Delbari 《Genetics and molecular biology》2015,38(2):220-226
Nuclear transfer embryonic stem cells (ntESCs) show stem cell characteristics such as pluripotency but cause no immunological disorders. Although ntESCs are able to differentiate into somatic cells, the ability of ntESCs to differentiate into primordial germ cells (PGCs) has not been examined. In this work, we examined the capacity of mouse ntESCs to differentiate into PGCs in vitro. ntESCs aggregated to form embryoid bodies (EB) in EB culture medium supplemented with bone morphogenetic protein 4(BMP4) as the differentiation factor. The expression level of specific PGC genes was compared at days 4 and 8 using real time PCR. Flow cytometry and immunocytochemical staining were used to detect Mvh as a specific PGC marker. ntESCs expressed particular genes related to different stages of PGC development. Flow cytometry and immunocytochemical staining confirmed the presence of Mvh protein in a small number of cells. There were significant differences between cells that differentiated into PGCs in the group treated with Bmp4 compared to non-treated cells. These findings indicate that ntESCs can differentiate into putative PGCs. Improvement of ntESC differentiation into PGCs may be a reliable means of producing mature germ cells. 相似文献
12.
Metastable primordial germ cell-like state induced from mouse embryonic stem cells by Akt activation 总被引:1,自引:0,他引:1
Noriko Yamano Shoko Watanabe-Kushima Toru Nakano 《Biochemical and biophysical research communications》2010,392(3):311-60
Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were cultured on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs. 相似文献
13.
Here we describe a simple and efficient protocol for derivation of germline chimera-competent mouse embryonic stem cells (mESCs) from embryonic day 3.5 (E3.5) blastocysts. The protocol involves the use of early-passage mouse embryonic fibroblast feeders (MEF) and the alternation of fetal bovine serum- and serum replacement (SR)-containing media. As compared to other available protocols for mESCs derivation, our protocol differs in the combination of commercial availability of all reagents, technical simplicity and high efficiency. mESC lines are derived with approximately 50% efficiency (50 independent mESC lines derived from 96 blastocysts). We believe that this protocol could be a good starting point for (i) setting up the derivation of mESC lines in a laboratory and (ii) incorporating further steps to improve efficiency or adapt the protocol to other applications. The whole process (from blastocyst extraction to the freezing of mESC line) usually takes between 15 and 20 d. 相似文献
14.
Pluripotent mouse embryonic stem cells (mES cells) exhibit ∼ 100 large γH2AX repair foci in the absence of measurable numbers of DNA double-strand breaks. Many of these cells also show excessive numbers of DNA single-strand breaks (> 10,000 per cell) when analyzed using the alkaline comet assay. To understand the reasons for these unexpected observations, various methods for detecting DNA strand breaks were applied to wild-type mES cells and to mES cells lacking H2AX, ATM, or DNA-PKcs. H2AX phosphorylation and expression of other repair complexes were measured using flow and image analysis of antibody-stained cells. Results indicate that high numbers of endogenous γH2AX foci and single-strand breaks in pluripotent mES cells do not require ATM or DNA-PK kinase activity and appear to be associated with global chromatin decondensation rather than pre-existing DNA damage. This will limit applications of γH2AX foci analysis in mES cells to relatively high levels of initial or residual DNA damage. Excessive numbers of single-strand breaks in the alkaline comet assay can be explained by the vulnerability of replicating chromatin in mES cells to osmotic shock. This suggests that caution is needed in interpreting results with the alkaline comet assay when applied to certain cell types or after treatment with agents that make chromatin vulnerable to osmotic changes. Differentiation of mES cells caused a reduction in histone acetylation, γH2AX foci intensity, and DNA single-strand breakage, providing a link between chromatin structural organization, excessive γH2AX foci, and sensitivity of replicating mES cell chromatin to osmotic shock. 相似文献
15.
Akama K Tatsuno R Otsu M Horikoshi T Nakayama T Nakamura M Toda T Inoue N 《Biochimica et biophysica acta》2008,1784(5):773-782
Embryonic stem (ES) cells are pluripotent stem cells and give rise to a variety of differentiated cell types including neurons. To study a molecular basis for differentiation from ES cells to neural cells, we searched for proteins involved in mouse neurogenesis from ES cells to neural stem (NS) cells and neurons by two-dimensional gel electrophoresis (2-DE) and peptide mass fingerprinting, using highly homogeneous cells differentiated from ES cells in vitro. We newly identified seven proteins with increased expression and one protein with decreased expression from ES cells to NS cells, and eight proteins with decreased expression from NS cells to neurons. Western blot analysis confirmed that a tumor-specific transplantation antigen, HS90B, decreased, and an extracellular matrix and membrane glycoprotein (such as laminin)-binding protein, galectin 1 (LEG1), increased in NS cells, and LEG1 and a cell adhesion receptor, laminin receptor (RSSA), decreased in neurons. The results of RT-PCR showed that mRNA of LEG1 was also up-regulated in NS cells and down-regulated in neurons, implying an important role of LEG1 in regulating the differentiation. The differentially expressed proteins identified here provide insight into the molecular basis of neurogenesis from ES cells to NS cells and neurons. 相似文献
16.
The chromosome make-up of mouse embryonic stem cells is predictive of somatic and germ cell chimaerism 总被引:7,自引:0,他引:7
Longo LETIZIA Bygrave ANNE Grosveld FRANK G. Pandolfi PIER PAOLO 《Transgenic research》1997,6(5):321-328
Mouse pluripotent embryonic stem (ES) cells, once reintroduced into a mouse blastocyst, can contribute to the formation of all tissues, including the germline, of an organism referred to as a chimaeric. However, the reasons why this contribution often appears erratic are poorly understood. We have tested the notion that the chromosome make-up may be important in contributing both to somatic cell chimaerism and to germ line transmission. We found that the percentage of chimaerism of ES cell-embryo chimaeras, the absolute number of chimaeras and the ratio of chimaeras to total pups born all correlate closely with the percentage of euploid metaphases in the ES cell clones injected into the murine blastocyst. The majority of the ES cell clones that we tested, which were obtained from different gene targeting knockout experiments and harboured 50 to 100% euploid metaphases, did transmit to the germline; in contrast, none of the ES cell clones with more than 50% of chromosomally abnormal metaphases transmitted to the germline. Euploid ES cell clones cultured in vitro for more than 20 passages rapidly became severely aneuploid, and again this correlated closely with the percentage of chimaerism and with the number of ES cell--embryo chimaeras obtained per number of blastocysts injected. At the same time, the ability of these clones to contribute to the germline was lost when the proportion of euploid cells dropped below 50%. This study suggests that aneuploidy, rather than loss of totipotency, in ES cells, is the major cause of failure in obtaining contributions to all tissues of the adult chimaera, including the germline. Because euploidy is predictive of germline transmission, karyotype analysis is crucial and time/cost saving in any gene-targeting experiment 相似文献
17.
18.
T Ohtaka Y Matsui M Obinata 《Biochemical and biophysical research communications》1999,260(2):475-482
Induction of hematopoiesis in an embryonic germ (EG) cell line derived from mouse primordial germ cells (PGCs) was examined. When single undifferentiated EG-1 cells were inoculated directly into the methylcellulose medium, both primitive and definitive erythropoiesis were seen in embryoid bodies derived from the EG cells as observed in ES cells, and production of myeloid cell lineages was stimulated by IL-3. These results indicate that EG cells acquired in vitro potency to differentiate toward hematopoietic cells, although they were derived from PGC and are distinct from inner cell mass-derived ES cells with regard to gene expression and patterns of DNA methylation corresponding to genomic imprinting. It turns out that they are useful for study of cell differentiation in the animals whose ES cells are not available. 相似文献
19.
The Wnt family of secreted signaling proteins regulates many aspects of animal development and the behavior of several types of stem cells, including embryonic stem (ES) cells. Activation of canonical Wnt signaling has been shown to either inhibit or promote the differentiation of ES cells into neurons, depending on the stage of differentiation. Here, we describe the expression of all 19 mouse Wnt genes during this process. Using the well-established retinoic acid induction protocol we found that all Wnt genes except Wnt8b are expressed as ES cells differentiate into neurons, many of them in dynamic patterns. The expression pattern of 12 Wnt genes was analyzed quantitatively at 2-day intervals throughout neural differentiation, showing that multiple Wnt genes are expressed at each stage. A large proportion of these, including both canonical and noncanonical Wnts, are expressed at highest levels during later stages of differentiation. The complexity of the patterns observed indicates that disentangling specific roles for individual Wnt genes in the differentiation process will be a significant challenge. 相似文献
20.
孤雌胚胎干细胞(Parthenogenetic embryonic stem cells,pESCs)的遗传物质全部来源于母源基因组,因缺失父源基因而不具备四倍体补偿的能力。为了使pESCs也具备发育到个体的能力,呈现与受精卵来源ESCs类似的多能性,文中借助CRISPR/Cas9系统对孤雌来源的pESCs中的2个重要母源印迹基因的差异甲基化区域(Differentially methylated region,DMR)进行单等位基因敲除(H19-DMR,IG-DMR),获得双基因敲除的(DKO)pESCs。结果表明,pESCs虽然来源于母源基因组,但是其形态特征、多能干性标记分子的表达水平、体外神经分化能力与受精卵来源的ESCs基本一致。最后,通过基因修饰的DKOpESCs可以通过四倍体补偿获得发育到期的胎儿,表明经过印迹基因修饰的pESCs也具有发育到一个完整个体的多能性。从而为再生医学研究提供了一类具有主要组织相容性复合基因匹配且多能性良好的资源细胞。 相似文献